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1Abstract 
With advances in technology scaling, the configuration memory in 
SRAM-based FPGA is contributing a large portion of power 
consumption. Voltage scaling has been widely used to address the 
increases in power consumption in submicron regimes. However, 
with the advent of process variation in the configuration SRAMs, 
voltage scaling can undermine the integrity of a design 
implemented on the FPGA device as the design’s functionality is 
determined by the contents of the configuration SRAMs. In this 
paper, we propose to exploit the abundance of homogenous 
resources on FPGA, in order to realize voltage scaling in the 
presence of process variation. Depending on the design to be 
implemented on FPGA, we select the minimal voltage that sustains 
a reliable placement. We then introduce a novel 2-phase placement 
algorithm that maximizes the reliability of the implemented design 
when voltage scaling is applied to the configuration memory. In the 
first phase, pre-deployment placement, we maximize the reliability 
of the implemented designs considering the a priori distribution of 
SRAM failures due to process variation and voltage scaling. The 
second phase, post-deployment placement, is performed once the 
device is fabricated in order to determine a fault-free placement of 
the design for the FPGA device. Our results indicate significant 
leakage power reduction (more than 50%) in the configuration 
memory when our placement technique is combined with voltage 
scaling with little delay degradation. 

Categories and Subject Descriptors:  
J.6 [Computer Aided Design (CAD)] 
General Terms:  
Algorithms, Design, Reliability 

Keywords:  
FPGA, Process Variation, Voltage Scaling, Placement, Computer 
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1. Introduction 
Field Programmable Gate Arrays (FPGA) are widely used in 

many application domains as they offer high performance, high 
flexibility and fast time-to-market. The ever-increasing demand 
for more computations as well as technology scaling is increasing 
the power densities of FPGA devices. While technology scaling 
impacts the dynamic power and the leakage power of FPGA 
devices, the consequences of aggressive technology scaling is 
more acute for leakage power. As predicted by the ITRS [1], 
leakage power grows rapidly with technology scaling. In FPGA 
devices, the configuration memory is the major contributor of 
leakage power in the system. In fact as much as 45% of the total 
leakage power is consumed by the configuration memory bits [2]. 
This ratio becomes even larger as FPGA systems grow more 
complex. Therefore, in order to cope with the growth of leakage 
power in the newer generations of FPGA devices, power 
management solutions must be provided for the configuration bits 
in FPGA.  

Voltage scaling is one of the most effective means of reducing 
the leakage and dynamic power in digital integrated circuits. In 
FPGAs, Static Random Access Memory (SRAM) is the dominant 
technology used for the configuration bits. Therefore, voltage 
scaling on the SRAMs can be an effective solution for lowering 
the power consumption in the configuration memories of FPGAs. 
However, aggressive voltage scaling causes process-variation-
induced failures in the SRAM cells such as read access failures, 
destructive read failures, hold failures, and write failures [3,4]. 
Concerns on failures due to process variation in SRAMs become 
more prominent for submicron regimes. Such failures in the 
configuration SRAMs undermine the functionality and the 
connectivity of the implemented designs.  

The distinctive feature of FPGA architectures is that it provides 
a large array of logic resources. The inherent redundancy and the 
reconfigurable nature of FPGA systems provide a unique 
opportunity to implement the design in the presence of failures in 
the configuration SRAMs. Fault tolerance can be maintained 
when the fault-free unutilized resources are used. A judicial 
placement around the faulty resources can realize the 
implementation of the design when the configuration SRAMs are 
operating at lower voltages. By utilizing the spare resources of the 
FPGA device and using the a priori distribution of SRAM failures 
due to process variation, we calculate the minimal supply voltage 
that sustains a fault-free placement. In this paper, we study the 
potential of power saving by voltage scaling in the configuration 
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memory when coupled with placement, in order to address the 
failures due to process variation.  

Since the exact locations failures due to process variation can 
only be determined after the FPGA has been manufactured and 
deployed, the final fault-free placement has to be determined after 
the deployment of the FPGA system. Due to within-die and die-
to-die variations, the final fault-free placements are also unique 
for a particular FPGA chip. Therefore, the performance (dictated 
by the critical path delay and the wire length) of the 
implementation of the same design on different FPGA chips will 
vary. Such uncertainty in the performance metrics might not be 
tolerated for performance-critical applications. Furthermore, since 
the placement of the design is done after the system is deployed, it 
is important that the run-time of the placement algorithm be fast, 
or otherwise, the design cannot be efficiently used in time-
constrained applications.  

In our work, we split the task of placement into two phases: pre-
deployment placement (Sec. 5.2) and post-deployment placement 
(Sec. 5.3). We first optimize the reliability of the designs 
implemented on FPGA in conjunction with the critical path delay 
and wire length using the a priori probability distribution of 
SRAM failures due to process variation and voltage scaling. It is 
important to note that we define reliability here as attempting to 
ensure a fault free post-deployment placement. The relative 
locations of the resources are determined in the pre-deployment 
placement. The main idea is to increase the chances that the faulty 
resources be locally replaced by the spare ones after deployment. 
Once the FPGA device is deployed and the fault map of the 
resources is determined, post-deployment placement is 
performed. Since the resources are already placed in such a way 
that faulty resources could be replaced with the spare ones locally, 
the execution time of our post-deployment placement is very fast. 
In addition, as the relative locations of the resources are 
determined once during the pre-deployment placement and the 
faults are resolved locally by using the spare resources in the 
vicinity of the faults, the performance metrics of the resultant 
implementation are very close to the ones obtained in the pre-
deployment placement.  

To the best of our knowledge, this is the first framework that 
proposes aggressive voltage scaling of the configuration bits in 
conjunction with reliability-aware placement to provide drastic 
leakage savings in the configuration memory of FPGA in the 
presence of failures due to process variation. Our experiments 
indicate that by employing voltage scaling, more than 50% 
improvement in the leakage power consumption of the 
configuration memory can be achieved, while the implemented 
designs suffer little, if any, performance degradation. The results 
also suggest that not only is our proposed algorithm very efficient, 
but it also generates placements that are more robust against 
variations in the performance metrics, while the delay degradation 
is insignificant. 

The paper is organized as follows: In Sec. 2 we study the related 
work. In Sec. 3, we explain the architecture of configuration 
memory in SRAM-based FPGA. We study the sources of failure 
in SRAM due to process variation in Sec. 4. In Sec. 5.1, we 
elaborate on our reliability-aware voltage selection for the 
configuration SRAMs. In Sec. 5.2(5.3) we study the reliability 
aware-placement before(after) the deployment of the FPGA 
system. The experimental results are provided in Sec. 6. We 
conclude the paper in Sec. 7. 

2. Related Work 
Voltage scaling has been widely used to lower the power 

consumption in FPGA logic and routing resources. Dual-Vdd has 
been used in FPGAs to reduce the power of the resources which 
are not on the critical paths in the design in order to lower the 
overall power consumption [5,6]. High-Vth SRAMs have been 
used to lower the leakage power [6,7], however, such a solution 
will not reduce the gate leakage, which in low temperatures can 
account for more than 50% of the total leakage power. In order to 
effectively reduce leakage power in the configuration memory, 
our work explores the impact of voltage scaling in the presence of 
process variation and provides a voltage selection and a 
placement technique to maintain reliability.  

The impact of process variation on timing yield at different 
stages of the synthesis flow has been studied and optimized in [8]. 
Novel placement techniques to enhance the timing yield in the 
presence of process variation have been proposed in [9,10]. In our 
paper, the main target is to address the reliability aspects of 
voltage scaling in the presence of process variation for leakage 
savings in FPGA. 

Fault tolerant aggressive voltage scaling on the of SRAM cells 
has been studied in [3,4] and applied in memory designs in [11]. 
Our work tries to take advantage of the unique features of FPGA 
(redundancy and reconfigurability) through placement in order to 
realize voltage scaling in the presence of process variation. 

Fault tolerant placement for FPGA has received a lot of 
attention in the past decade. These methods usually try to place 
the design on the fault-free resources using reconfiguration 
[12,13]. In our work, we provide a novel framework that performs 
fault-tolerant placement to sustain faults in the configuration 
SRAMs due to aggressive voltage scaling. 

3. Configuration Memory Architecture in 
SRAM-based FPGA 

Modern FPGA devices in general provide an array of logic 
resources, which may be interconnected, and configured for 
specific functions. Functionality and connectivity are 
implemented by Clustered Logic blocks (CLB) and routing 
blocks. Each CLB contains a number of Block Logic Elements 
(BLE). Figure 1 depicts the generic structure of a BLE and a 
CLB. The BLEs implement the logic using N-input Look-up 
Tables (LUTs). The outputs of the LUTs can be programmed to 
be latched in a flip-flop. 

  
Figure 1:  BLE (left) and CLB (right) structure in FPGA architecture 

 All CLBs and routing blocks are controlled by SRAM cells. 
Such SRAMs that define the functionality and the connectivity of 
the implemented designs are referred to as the configuration 
SRAMs. Throughout this work, we use the terminologies and the 
features of Xilinx-based FPGA architecture. However, all the 

D-FFLUT

BLE

258



concepts provided in this work can be applied to other SRAM-
based FPGA architectures (i.e. Altera FPGA devices).  

The configuration SRAMs have to be loaded on power-on. If 
needed, the configuration SRAMs can be reloaded with new 
values to reflect the changes in the implemented design. 

The configuration SRAMs lie close to the CLBs or routing 
blocks they control and are organized in a regular pattern. The 
smallest unit of configuration (read/write) is a data frame, which 
is a 1-bit segment of the configuration SRAMs. A CLB frame 
controls a portion of a CLB. Figure 2 depicts a CLB frame in the 
configuration SRAMs. Note that frames lie in a single column of 
configuration SRAMs. 

 
Figure 2: CLB Frame in Xilinx FPGA 

The number of CLB frames depends on the device size. The 
same is true for the number of bits of a CLB frame itself [14]. 

As mentioned earlier, when voltage scaling is applied, some of 
the configuration SRAMs might become faulty. In order to detect 
the faulty SRAMs within the configuration memory, several 
techniques based on readback feature and dynamic 
reconfiguration of FPGAs [14,15] have been developed in 
industry as well as academia. The diagnosis developed in 
[16,17,18] can be applied to obtain the fault map of the 
configuration SRAMs. In this paper, we assume that a single error 
in the configuration bits in a CLB will cause the entire CLB to 
become erroneous. 

4. Impact of Process Variation/Voltage 
Scaling in Reliability/Power Saving in SRAM 

Figure 3 shows the typical six-transistor cell used for CMOS 
SRAM. The cell consists of two cross-coupled CMOS inverters 
(NL-PL and NR-PR) that store one bit of information, and two N-
type transistors (SL and SR) that connect the cell to the bitlines 
(BLC and BLT). Process variation-induced failures can be 
categorized in four major types: Read Access Failure, Write 
Failure, Destructive Read Failure and Hold Failure (the voltages 
at node L and R are referred to as and   respectively) 

Read Access Failure (RAF): Reading the cell storing `0′ 
and `1′, begins with precharging BLT and BLC to . 
Then the wordline, WL, will be set to  which results in turning 
on SL and SR. The ideal case in reading is that NL sinks the 
current from BLT and in the time  (where  is 
the maximum allowed time to load), a sufficient difference on the 
bitlines appears which triggers the sense amplifiers to detect the 
value of the cell. An increase in the access time of the cell during 
read operation such that  is defined as the Read 

Access Failure. It has been shown in [11,4] that  
principally depends on  of SL and NL and  increases 
with an increase in  and/or .  

Write Failure (WF): In writing a `0′ to the node storing `1′ (for 
example, node L in Figure 3), the voltage at node L ( ) has to 
reduce to a value below the trip-voltage of the PR-NR inverter 
within the time that the wordline is high ( ). An increase in 
the  of the cell such that  is defined as the 
Write Failure.  increases if the strength of SL reduces 
(  increases) and/or if that of PL increases (  decreases) 
[11,4]. 

Destructive Read Failure (DRF): While reading the cell (e.g. 
	 `0′ and 	 `1′) due to voltage divider action between SL 

and NL the voltage at node L ( 	) will increase to . If due 
to random variations in the threshold voltages of SL and/or NL, 

 becomes greater than the trip-voltage of PR-NR inverter, the 
value that the cell is storing will flip and the Read-upset or 
Destructive Read Failure (DRF) will occur [11]. 

Hold Failure (HF): Inability to hold the cell value at lower 
voltages than nominal is defined as Hold failure. As a result of 
hold failure, the cell content will be destroyed.  

 
Figure 3: 6T SRAM cell 

It is important to note that technology scaling strongly impacts 
power consumption and delay, while its impact on threshold 
voltage is a shift in the mean of the distribution with minimal 
effect on its standard deviation. 

In the absence of process variation, the threshold voltage is 
considered to be a fixed number. However, in the presence of the 
process variation, V  will follow a distribution which is assumed 
to be Gaussian with a mean μ V  and a standard deviation 
which can be calculated as [19,20]: 

 ∗  (1)  

Where 	  is the for a minimum sized transistor and is 
given by:                    

 ∗
3

 (2)  

where Na is the effective channel doping,  is the depletion 
region width,  is the oxide thickness,  and 	are the 
minimum channel length and width respectively. To factor in 
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process variations, one needs to consider the effect of RDF, oxide 
thickness ( ) variation, and effective length ( ) variation on 
the threshold voltage variation. In advanced technology nodes, the 
number of the atoms in the channel reduces from a few thousands 
to a few hundreds. While it is possible to control the average 
number of the atoms in the channel, , it is almost impossible 
to assign the exact same number of atoms to each device in the 
same location. In fact, the number of the atoms in the channel, , 
follows a Poisson distribution and can be represented as [21]: 

 ;
!

 (3)  

Where  is the average number of the atoms in the channel.  
On the other hand, the variation of   and  can be 
represented as a Gaussian distribution and are given by [20]:  

 
∼ ,  

∼ ,  
(4)  

The variation in these three parameters, results in a Gaussian 
distribution for the threshold voltage , which can be expressed 
in terms of the nominal  with the effects of the supply voltage 

 and the source-to-body voltage  reflected through the 
drain induced barrier lowering (DIBL) and body effects, as shown 
in the following equation: 

Φ Φ Δ   (5) 

where  is the zero-bias threshold voltage,  represent 
the DIBL effect,  is the body voltage, Δ  models the 
narrow width effect,  is the body effect coefficient and Φ  is the 
surface potential. 

From these fundamental equations it can be shown that the first 
and second moments of the Gaussian distribution for the threshold 
voltage are a linear function of V  and can be expressed as 
follows: 

 

∼ ,   

	 

 
(6) 

The constants , ,	and  are fixed for a given technology and 
only need to be found once by either Monte Carlo simulations or 
polynomial fitting. For example, for a 32nm technology (using 
PTM [22]), the following data set can be generated: 

∈ 0, 1.0  
0.116, 0.453                             (7) 

0.04 

      In order to find the probability of failure for the SRAM cell, 
the distribution of access time,  , write time,  and the 
storing node voltage, V / 	 needs to be calculated as a function of 
supply voltage , V .  To do so, one can represent the access time 
as: 

∼ ,
∀ 	

 (8) 
∼ . ,  

For a given maximum allowed access time, , according to 
the failure definitions, we will have: 

 ,
|  

(9)  

Where  

  (10) 

and ∙ 	is the Gaussian Error Integral or function and is 
given by: 

 
√

. (11) 

For this study, we assume the write operation is performed at 
the nominal voltage and therefore we exclude the write failure 
from the total probability of failure. Similar analysis can be done 
for storing node voltage distribution and the hold failure and 
destructive read failure can be calculated accordingly. Thus, the 
total probability of failure can be calculated as  

∪ ∪        (12) 

5. Reliability-aware voltage scaling and 
placement in the presence of process variation 

So far, we have studied the impact of voltage scaling on the 
reliability of SRAM cells in the presence of process variation. In 
this section, we first study the impact of voltage scaling on the 
reliability of the implemented design across the whole FPGA 
area. Depending on the design to be implemented on FPGA, we 
select the proper voltage range that sustains the reliability 
constraints. Once the proper voltage has been selected, we attempt 
to maintain the high reliability through placement, so that CLB 
faults due to process variation can be confined locally. Once the 
FPGA device is deployed and the fault map is generated for the 
FPGA device, the local placements can be modified and the 
updated placement can be reconfigured on FPGA. In this section, 
we will study our framework in details. Since the operating 
condition (such as supply voltage) dependent failure in SRAMs 
are due to mismatches in the device strength and only intra-die 
variation causes mismatch, we assume that the faults caused by 
reducing the supply voltage are independent. This means that the 
probability of failure for all SRAMs for a given supply voltage 

, is equal to  and are independent of each other. 

5.1 Reliability-aware application-based 
voltage Selection for maximum power saving 

As mentioned in Sec. 4, voltage scaling can save a significant 
amount of power at the expense of reliability in the presence of 
process variation in SRAM cells. In the context of CLB 
configuration SRAM cells, such faults will manifest themselves 
as functional errors of the implemented design. Therefore, it is 
desirable to formulate the extent of such faults based on the 
supply voltage applied to the SRAM cells. Throughout this 
section, we refer to the probability of errors in a single SRAM cell 
due to process variation for a certain supply voltage (V) as 
Pe

bit(V). 
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Given the number of configuration SRAM cells (n) used to 
program a single CLB, we can calculate the probability of error 
for a single CLB as: 

1 1 ≅ .   (13) 

In the equation above, we count a fault in a single SRAM cell as 
an error in the whole CLB. Since the probability of error for a 
single SRAM cell is minute in comparison to the number of 
configuration bits for the CLB, we can use a first-order 
approximation to simplify Eq. (13). 

The implemented designs on FPGA rarely occupy the whole 
resources available on chip. Since FPGA architecture comprises a 
large array of CLBs, it is very likely that faults in the 
configuration SRAMs due to process variation  could be 
prevented from emerging as errors in the design through 
relocation of the faulty CLBs (reconfiguration) to the spare 
resources. Of course, the opportunities for having an error-free 
design on FPGA depends on the number of available CLBs on the 
FPGA dedicated to the design (NR), the number of erroneous 
CLBs (NE), the number of CLBs utilized by the design (NU) and 
the number of spare CLBs (NS = NR – NU). The following equation 
formulates the reliability of the implemented design against 
process variation: 

Pr  

																∑ . . 1   (14) 

We refer to the probability derived above as the global 
reliability. In Eq. (14), we have applied the binomial expansion to 
calculate the reliability. Note that Eq. (14) enumerates all the 
cases in which the errors in CLBs can be recovered through 
reconfiguration. In order to find the proper supply voltage range 
for the configuration SRAM cells for a given global reliability, we 
take the inverse of Eq. (14):  

  , ,      (15) 

Using Eq. (15), we find the lower bound of the supply voltage 
that can sustain the design with the given global reliability value. 
We use Vmin to eliminate the voltages resulting in intolerable 
faults in the design. 

Global reliability indicates the probability of recovery when all 
the CLBs in the designated area on FPGA are for granted.  It does 
not discriminate on where to place the faulty CLBs. However, the 
replacement of CLBs can increase the critical path delays in the 
design. In order to consider the connectivities between CLBs in 
the implementation, we introduce a pre-deployment placement 
method to plan the placement in such a way that minimal 
increases in delay will be incurred in case relocations are needed. 

5.2 Reliability-aware pre-deployment 
placement in the presence of process variation 

Conventionally, the main objective of placement optimization 
algorithms has been the reduction of the wire length and/or the 
critical path delay of the implemented design [23]. These 
algorithms do not take into consideration the potentials of faults 
in CLB configuration SRAMs. In this section, we present a 
reliability-aware placement of the CLBs on FPGA based on the a 

priori fault distribution due to process variation. We refer to this 
placement as the pre-deployment placement as the actual fault 
locations on the FPGA fabric has yet to be determined. 

As mentioned earlier, global reliability (Eq. (14)) is used to 
determine the reliability of the implemented design when all the 
spare CLBs can be reconfigured to avoid the faulty ones. 
However, the critical path delay of the fault-free design might 
become unacceptable. Note that we are interested in local 
relocations with minimal changes to the placement once the 
system is deployed. Therefore, we introduce the concept of 
detailed reliability, which indicates the potentials to replace the 
faulty CLBs with the fault-free ones in the close vicinity of the 
fault. A simple example is depicted in Figure 4. The CLBs of the 
design are labeled as A, B, C and D. In this example, we assume 
that A has a direct connection with B and C and there is a 
connection between C and D. Since the number of spare CLBs 
and the number of utilized CLBs are the same for the two 
placements, the global reliability values for the two placements 
are the same. However, once the faulty CLB is discovered, the 
relocation of A will incur an increase in the critical path delay in 
Figure 4 (a), whereas in Figure 4 (b), there is no delay penalty in 
relocating A. 

Instead of formulating the reliability for the entire FPGA as a 
whole, we introduce a model which captures the reliability 
locally. We use a grid to divide the CLBs into several grid cells. 
Note that the grid has no actual hardware implications and it is 
only used for the purpose of reliability computation. The detailed 
reliability of the FPGA is then defined as the combination of the 
reliabilities of the individual grid cells: 

∑ . . 1 	  (16) 

∏ _      (17) 

In Eq. (16), we calculate the reliability of a single grid cell 
based on the number of erroneous CLBs (NE

K), the number of 
total CLBs within the grid cell (NR

K), the number of utilized CLBs 
in the grid cell (NU

K) and the number of spare CLBs (NS
K = NR

K – 
NU

K), provided that all the CLB relocations have to take place 
within the same grid cell. In Eq. (17), we calculate the total 
reliability of the design implemented on the FPGA. It is easy to 
verify that the local reliability value for Figure 4 (b) is greater 
than that of Figure 4 (a). Accordingly, the faulty CLB at the 
bottom-right CLB can be relocated within the same grid cell as 
depicted in Figure 4 (b). The main advantage of the detailed 
reliability formulation is that it can be easily incorporated into the 
conventional placement tools, which are based on simulated 
annealing. In order to simplify Eq. (17), we rewrite it as: 

ln ∑ ln     (18) 

Note that the minimization of RD′ will in fact maximize the 
detailed reliability. Eq. (18) is easier to be implemented into the 
simulated annealing engine. The fundamental move performed on 
the CLBs in simulated annealing engines is swapping. Based on 
the cost function associated which each move, the annealing 
engine decides whether to reject or accept the swapping. It is 
crucial that the cost function used to evaluation the benefit of the 
move be calculated very efficiently, or otherwise it would take a 
long time to obtain the final placement. Interestingly, detailed 
reliability computation (Eq. (18)), can be performed in O(1) time: 
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Theorem I. The time complexity of the calculation of the 
detailed reliability upon CLB swapping is O(1). 

Proof. The two CLBs to be swapped either lie on the same grid 
cell (e.g. CLBs C and D in Figure 4 (a)), or they belong to two 
different grid cells (e.g. CLBs C and D in Figure 4 (b)). In case the 
swapping does not change the utilization of the grid cells, the 
detailed reliability remains the same. Also, when we swap the 
contents of two occupied CLBs in two different grid cells, the 
detailed reliability stays unchanged. The only time there is an 
increase/decrease in the detailed reliability is when we relocate a 
CLB in one grid cell (denoted by i) to a spare location in another 
grid cell (denoted by j). In this case, we can calculate the detailed 
reliability difference (i-new and i-old refer to the grid cells i after 
and before the swapping, respectively) as: 

)ln()ln()ln()ln( oldj
D

oldi
D

NEWj
D

NEWi
DD RRRRR    (19) 

Figure 4: (a) sample placements when detailed reliability is not used (b) 
when detailed reliability is used 

Rather than recalculating the detailed reliability for each grid 
cell at every swap, we calculate the detailed reliability of each 
grid cell once for all the possible utilizations, from 0 up to the 
number of CLBs in the grid cell (i.e. 4 for the grid cells in Figure 
4), given the a priori probabilities of CLB reliability. Assuming 
that the detailed reliability for the initial placements has been 
calculated at the beginning, it takes O(1) to calculate the 
difference in the detailed reliability □ 

We have developed a simulated annealing search engine which 
simultaneously optimizes the critical path delay, wire length and 
the detailed reliability. In our annealing engine, we have adopted 
the adaptive annealing schedule of VPR, the state-of-art FPGA 
placement tool. Features of VPR adaptive annealing schedule are 
explained in details in [23]. We used the following cost function 
for our simulated annealing engine: 

))1()(1(
PREVPREVPREV

D

D

wl

wl

Delay

Delay

R

R
cost










  (20) 

Where α is the coefficient denoting the tradeoff between the 
combination of the critical path delay, the wire length, and the 
detailed reliability. Details on critical path delay calculation and 
wire length computation inside the simulated annealing engine 
have been provided in [23]. 

5.3 Reliability-aware post-deployment 
placement in the presence of process variation 

In order to have an error-free design on the FPGA once the 
FPGA device is deployed, the fault map for the CLBs must be 
determined. For the remainder of this section, we assume that 
fault diagnosis techniques have been applied on the FPGA 
[16,17,18] and the fault map is available.  

The basic idea underlying our solution is to obtain new 
placements for each grid cell on the FPGA rather than trying new 
placements for the entire FPGA chip. Since we have already 
planned and optimized the placements in the pre-deployment 
placement phase of our proposed solution, we are able to modify 
the placement in a finer granularity. We can avoid the faulty 
CLBs by changing the placement of the grid cell in which the 
faulty CLB lies on. As the relative locations of the CLBs have 
been planned during the pre-deployment phase, replacing CLBs 
within a grid cell will have negligible impact on the performance 
of the design. On the other hand, we can save a great deal of time 
optimizing the placements for individual grid cells on the FPGA 
as opposed to optimizing the placement on the FPGA as a whole. 
Therefore, in our post-deployment placement technique, we 
perform placements on the individual grid cells independently to 
obtain fault-free placements with optimized performance (wire 
length and critical path delay). An alternative to our proposed 
solution is to apply the conventional placement techniques (e.g. 
simulated-annealing based) to obtain the fault-free placements, 
once the fault map of the FPGA device is known. However, as we 
demonstrate later in the section, our solution will always find the 
fault-free placement more efficiently (faster convergence). 

The highlights of our reliability-aware post-deployment 
placement in the presence of process variations are shown in 
Figure 5. The solution starts by finding the minimal dimensions of 
the grid cells that can sustain a fault free placement, given the 
initial placement (obtained by pre-deployment placement) 
(FMGCD) and the fault map. Then, for each individual grid cell, 
we place the CLBs using the simulated annealing engine in such a 
way that no CLB designated within the grid cell is assigned to a 
faulty resource (PDP).  

In order to clarify how the size of the grid cells influence the 
behavior of the post-deployment placement, refer back to the 
example in Figure 4. As depicted in Figure 4(a), a 2  2 grid cell 
cannot sustain a fault-free placement. The reason is that all the 
four CLBs in the 2  2 grid cell on the left are utilized and there is 
a faulty CLB to be avoided. Therefore, no arrangement of CLBs 
within the grid cell will yield a fault-free placement. However, as 
depicted in Figure 4(b), a 2  2 grid cells can sustain a fault-free 
placement. In this case, there will be two 2  2 grid cells: one on 
the left with four available CLBs, three utilized and one faulty 
and another on the right with four available CLBs, one utilized 
and no faulty one.  

The function FMGCD (Figure 5) starts with 2  2 grid cells and 
given the initial placement and the fault map, examines each grid 
cell to figure out whether a fault-free placement can be sustained 
depending on the number of available CLBs in the grid cell, the 
number of erroneous CLBs and the number of CLBs utilized 
within the grid cell (line 11). If 2  2 grid cells cannot sustain a 
fault-free placement, the algorithm tries 3  3 grid cells and 
eventually if no smaller grid cell size can sustain a fault-free 
placement, the whole FPGA is treated as a single M  M grid cell 
(without loss of generality, the FPGA is assumed to be an M  M 
array of CLBs). The boundaries of each grid cell are computed in 
lines 4-11. The function outputs the minimal grid cell dimensions 
(line 14) or returns M (line 15).  
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Our post-deployment placement (function PDP in Figure 5) first 
calls FMGCD to find the minimal grid cell dimensions (line 16). 
Then, once the boundaries of the grid cells are determined (lines 
19-22), the fault-free placements of the CLBs within a grid cell 
are calculated using a simulated annealing-based placement 
algorithm. Our simulated annealing search engine simultaneously 
optimizes the critical path delay and the wire length. In our 
annealing engine, we have adopted the adaptive annealing 
schedule of VPR [23]. The distinctive feature of our annealing 
engine is that we only try the legal moves within the grid cells. A 
legal move is a move (CLB swapping) that does not utilize a 
faulty CLB in case a CLB is moving from a location to a new one. 
The cost function to be minimized is the same as the one used in 
VPR [23]: 
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Note that since we have performed the preprocessing in 
FMGCD and found the minimal grid cell dimensions, we always 
obtain a fault-free placement. Our post-deployment placement in 
fact tries to optimize the performance by trying new placements 
locally (within grid cells), rather than considering the whole 
FPGA. The main advantage of modularizing the problem of fault-
free post-deployment placement can be determined through the 
mathematical analysis provided in the rest of this section. 

Theorem II. The worst case time complexity of FMGCD is 
O(n3/2), where n refers to the number of CLBs in the design. 

Proof. As shown in Figure 5, in the worst case, we need to 
examine the grid cells with all the possible sizes (line 1) to find 
out the minimal grid cell size. Therefore, we can formulate the 
run-time of FMGCD as: 
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In the equation above, since we need to check every CLB 
within the grid cell to determine if it is faulty or not, and there are 
M 2/i2 grid cells of size i  i, we can conclude that the time 
complexity of the algorithm is O(M 3). Since the number of CLBs 
is often comparable to the area of the FPGA device (M2), we can 
equate the formulation above to O(n3/2) □ 

It is important to note that the average time complexity of 
FMGCD depends on the detailed reliability of the placement (Eq. 
(17)) and the grid cell size (k  k) used to calculate the detailed 
reliability in the pre-placement algorithm. In fact, the probability 
that the grid cell sizes returned by FMGCD be equal to the grid 
cell size (k) used in the pre-placement algorithm is equal to the 
detailed reliability. 	
 Pr FMGCD , ,   (23) 

For example, if the detailed reliability of the pre-deployment 
placement is 0.9 and the grid cell sizes used to compute the 
detailed reliability is 2  2, then for 90% of the time, FMGCD 
will return 2, which is much faster than the worst case. Using the 
equation above, we can rewrite Eq. (22) as: 
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Note that the probability that the run time of FCMGD is as 
expressed in Eq. (24)  is equal to the detailed reliability (RD). 
Given that the detailed reliability is maximized in pre-deployment 
placement, the run-time of FMGCD is almost a linear function of 
n. 

Our post-deployment fault-free placement algorithm (Figure 5) 
uses simulated annealing in order to find the fault-free placements 
within each grid cell. The time complexity of simulated annealing 
search algorithms generally depends on the annealing schedule. 
The annealing schedule specifies the number of moves to attempt 
per temperature, how annealing temperature varies throughout the 
annealing, and when the annealing should terminate. In our post-
deployment placement algorithm, we adopted the same annealing 
schedule as the one described in [23]. The number of moves per 
each annealing temperature is in the order of O(n4/3), where n is 
the number of CLBs in the design. In order to compare and 
contrast our post-deployment placement with the alternative 
placement which uses simulated annealing on the whole FPGA 
device, we provide the following theorem: 

Theorem III. The number of moves per annealing temperature 
in the PDP solution is asymptotically smaller than the number of 
moves per temperature in conventional simulated annealing 
placements. 

Proof. The number of moves per temperature can be formulated 
as O(n4/3). Now, since we are confining our algorithm to find the 
placements within the grid cells, and the area of each cell is ii 
(line 16 in Figure 5), the number of utilized CLBs within the grid 
cells are at most i2. The number of grid cells in the FPGA is 
proportional to (M 2/ i 2), therefore we can formulate the number 
of moves per temperature for the post-deployment placement as: 

/ .	 / . / ≪ /   (25) 

Note that in the worst case when the whole FPGA becomes one 
grid cell (i = M), the number of moves per temperature for the 

Function Find-Minimal-Grid-Cell-Dimension (FMGCD) 
Input: Initial Placement(IP), fault map (F), FPGA dimensions (M  M) 
Output: Minimal grid cell dimensions (i  i) 

[1] for i ← 2 to M { 
[2]    g.area ← i  i 
[3]    minimal-grid-cell-dimension  ← true 
[4]    for x ← 1 to M / i  
[5]       for y ← 1 to M / i { 
[6]           g.x_min ← x  ((M / i)-1) + 1 
[7]           g.y_min ← y  ((M / i)-1) + 1 
[8]           g.x_max ← g.x_min + M / i  - 1 
[9]           g.y_max ← g.y_min + M /i  - 1 
[10]           g ← IP(g.x_min ,g. y_min ,g. x_max, g.y_max) 
[11]           if  g.num-faults > g.area  - g.num-utilized-CLBs 
[12]               minimal-grid-cell-dimension  ← false} 
[13]     if  minimal-grid-cell-dimension == true 
[14]         return i} 
[15]  return M 

Function Post-Deployment Placement (PDP) 
Input: Initial Placement(IP) , fault map (F), FPGA dimensions (M  M) 
Output: Fault-free placement (P) 

[16] i ← FMGCD(IP, F, M) 
[17] for x ← 1 to M / i  
[18]    for y ← 1 to M / i { 
[19]        g.x_min ← x  ((M / i)-1) + 1 
[20]        g.y_min ← y  ((M / i)-1) + 1 
[21]        g.x_max ← g.x_min + M / i  - 1 
[22]        g.y_max ← g.y_min + M /i  - 1 
[23]        P.g ← fault-free-simulated-annealer(g) } 
[24] return P 

Figure 5: Outline of reliability-aware post-deployment placement in the 
presence of process variation 
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two techniques become the same. However, since in our pre-
deployment placement (Sec. 5.2), we have already planned the 
relative locations of CLBs and have considered the potentials of 
faults in the neighborhood of CLBs, the dimensions of the grid 
cells (i) is much smaller than the dimensions of the FPGA itself 
(M). Therefore, our post-deployment placement always performs 
faster than the conventional placement □ 

It is worth mentioning that not only does our post-deployment 
placement reduce the number of moves per annealing 
temperature, it also drastically reduces the range of moves in the 
simulated annealing. Since the relative locations of the CLBs 
have already been planned in the pre-deployment placement, our 
post-deployment placement only fine-tunes the locations of the 
CLBs within the grid cells. Therefore, the simulated annealing 
engine used in our post-deployment placement tends to converge 
faster to the fault-free solution.  

 
Figure 6: Simulated annealing moves in (a) the conventional placement 

and (b) post-deployment placement 

Figure 6 demonstrates the difference in the range of moves 
attempted in our framework in comparison to conventional 
placements. As shown in Figure 6(a), the moves range across the 
FPGA when conventional simulated annealing placements are 
used. However, the moves in our post-deployment placement are 
confined to the grid cells. Therefore, post-deployment placement 
reaches the final solution faster. Note that the relative locations of 
CLBs are planned during pre-deployment placement. 

6. Experimental Results 
In this section we first explain the experimental flow used to 

evaluate our reliability-aware placement solution for voltage 
scaling in the presence of process variation. Then, we present the 
results of our proposed technique in details. 

6.1 Experimental Flow 
The experimental flow used in this work is depicted in Figure 7. 

As the first step, we generate the libraries which contain 
information about the reliability of the SRAM used in the 
configuration bits in FPGA. In this work, we ran Monte-Carlo 
simulations on 32nm SRAM technology to obtain the distribution 
functions for different SRAM failures due to process variation. 
Predictive Technology Models (PTM [22]) are used for the device 
models in HSPICE simulation. Then the distribution of read time, 
hold time and storing node voltage is obtained. For each Monte 
Carlo run, 5000 points are simulated to find the distributions. 
Then the probability of failure is calculated based on the 
equations presented in Sec. 4. 

Fault Injection

SRAM Error 
Probability Library

Voltage Selection

Pre-Deployment 
Placement

Post-Deployment
Placement

VPR Placement 
(Faulty CLBs excluded)

Input NetList

 
Figure 7: Experimental Flow 

Once the libraries are ready, depending on the number of 
utilized CLBs for the FPGA device and the yield point (reliability 
probability) of desire, the minimal supply voltage for the 
configuration SRAMs is selected. In our experiments, the 
architecture of the configuration bits is assumed to be similar to 
architecture of Virtex II devices (128 bits for CLBs). We  used 
MCNC benchmarks for the experiments. In order to keep the 
utilization of the FPGA high, in our experiments, for each 
benchmark, the FPGA area is assumed to only accommodate 10% 
and 30% more CLBs than the number of CLBs utilized by the 
benchmark. 

Based on the number of available CLBs in the FPGA the yield 
point and the number of utilized CLBs, the minimal permissible 
supply voltage is selected for the configuration bits (Sec. 5.1.). 

Once the minimal safe supply voltage is selected based on the 
global reliability constraints (Sec. 5.1.), we use the detailed 
reliability metric, expressed in Eq. (19) inside our reliability-
aware pre-deployment placement algorithm (Sec. 5.2). In the cost 
function used in our pre-deployment placement algorithm, we set 
the weights α and β to be 0.5 (Eq. (20)). We used 2  2 grid cells 
to compute the detailed reliability metric for our pre-deployment 
placement algorithm. 

Our reliability-aware post-deployment placement is applied 
once the FPGA device is deployed and the actual fault map is 
present. We generated 100 fault maps based on the SRAM error 
probabilities for the configuration bits on the design. Note that in 
our fault map, we mark a CLB as faulty if it contains at least a 
faulty bit in its CLB frame.  

In order to measure the performance of our reliability-aware 
post-deployment placement technique, we run post-deployment 
placement for each fault map and record the performance metrics 
(wire length and delay), the leakage power savings, the number of 
successful placements as well as the execution time of the post-
deployment placement technique. In order to highlight the 
benefits of our framework, we use a modified version of VPR 
[23], which only tries fault-free CLBs for the moves inside the 
simulated annealing engine. All the placement techniques are 
carried out on the same machine, a 2.99 GHz Pentium IV with 1 
GB of RAM running Microsoft Windows XP. 

6.2 Experimental Results 
In the first set of experiments, we find the minimal supply 

voltage permissible for a given reliability constraint. The nominal 
supply voltage is set to be 1 v. We reduce the supply voltage by 

Grid 1 Grid 2

Grid 3 Grid 4

Grid 1 Grid 2

Grid 3 Grid 4

(a) (b)
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increments of 0.05. For each supply voltage, we measured the 
probability of error due to process variation for SRAM, CLB, and 
the whole design when the FPGA is accommodating 10% and 
30% extra CLBs for the design. In order to calculate the 
probability of error for the whole design, we used the formulation 
of global reliability Eq. (14) and complemented the probability to 
obtain the probability of error for the design. Figure 8 presents the 
results obtained for the benchmark ALU4 from the MCNC suite. 
The same trend is seen for all the other MCNC benchmarks. 

The minimal safe supply voltage is calculated based on the 
extra area available for the benchmarks. As mentioned in Sec. 5.1, 
we use our model as formulated in Eq. (15) to calculate the 
minimal safe voltage for the given reliability constraint. The 
maximum probability of error for the designs is assumed to be 10-

2. As shown in Figure 8, we highlighted the limit of 10-2 with a 
dashed line. The results in Figure 8 indicate that 0.8 v is a suitable 
supply voltage that realizes the design with a probability of error 
of 10-2. Note that when we have more spare CLBs in our design, 
the design becomes more reliable.  

 
Figure 8: The impact of voltage scaling on the probability of errors due 

to process variation for SRAM, CLB and the whole design 

In Figure 9, we report the leakage power consumed by ALU4 
for different supply voltages and different FPGA areas. The 
leakage reported in Figure 9 is relative to the leakage of the 
FPGA accommodating the benchmark with the minimal area.  We 
observe the same trend for all the other MCNC benchmarks. The 
results indicate that by using voltage scaling, we drastically save 
on leakage. The leakage power savings are more for the case with 
10% extra area, since more configuration bits are used in the 
FPGA. On the other hand, more spare CLBs will allow more 
supply voltage reduction. Therefore, in order to find the right 
combination of area, reliability and power saving, all the 
parameters have to be considered simultaneously. 

Once the supply voltage for the configuration bits is 
determined, we use our pre-deployment placement (Sec. 5.2). We 
then inject faults in the CLBs according to the probability of 
errors in our library for specific supply voltages. We perform two 
placement methods to obtain fault-free placements: our post-
deployment placement (Sec. 5.3) and a variant of VPR which 
excludes faulty CLBs in the random moves. For each benchmark, 
we generate 100 fault maps and evaluate the performance of the 
two techniques. In Table 1 we report the averages and the 
standard deviations of the performance metrics obtained by 
running the placement techniques on the 100 fault maps generated 
for each benchmark. Note that all the values reported in Table 1 
are relative to the results obtained by VPR under the same 
conditions, when the FPGA is fault-free. The third and fifth rows 
of Table 1 report the relative average critical path delay and the 

relative wire length respectively. These numbers are gathered for 
all the MCNC benchmarks and they are averaged out. We also 
report the standard deviation of the critical path delay and the 
wire length related to the average values (the fourth and sixth row 
in Table 1). 
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Figure 9: Relative Leakage for different supply voltages for SRAM 

As shown in Table 1, there is a little degradation in the delay 
(D) and the wire length (WR) of the pre-deployment placement 
when compared with VPR. The main reason is that in our pre-
deployment placement we also try to maximize the detailed 
reliability (Sec. 5.2) in the cost function. However, such little 
degradation is justified when we compare the results of our post-
deployment placement with the results obtained from the VPR 
with faulty CLBs excluded. The average critical path delays and 
the wire lengths are very close for the two techniques. However, 
as the standard deviations reported for the critical path delays and 
the wire lengths suggest, the critical path delays and the wire 
length are more predictable when our post-deployment placement 
is used. The main reason is that in our post-deployment 
placement, we only try to resolve the CLB faults by replacing 
CLBs within grid cells, rather than drastically change the 
placement globally (as done in VPR when faulty CLBs are 
excluded). Therefore, we expect to see that the results obtained by 
our post-deployment placement to be closer to the average values 
of the critical path delay and the wire length, which makes our 
proposed framework more robust and much faster when 
compared to the other placement solution (VPR when faulty 
CLBs excluded). 

We reported the run time of our proposed framework in Table 
1. There is degradation in the run time of our pre-deployment 
placement compared to VPR. However, when our pre-deployment 
placement is coupled with our post-deployment placement, the 
main speed-up advantage of our proposed framework is clear. 
While the variant of VPR which excludes faulty CLBs takes more 
time to execute, our post-deployment placement technique is very 
fast. Note that post-deployment placement is run for each 
deployed system, and therefore the run time of the post-
deployment placement is critical to ensure an acceptable 
performance for the applications running on the deployed system. 
The drastic improvement in the run time of our post-deployment 
placement is in fact in compliance with the mathematical analysis 
provided in 5.3. As the designs become larger and more complex, 
the improvement in run time becomes even more prominent. 

We also estimated the leakage savings realized by voltage 
scaling. Since there is a significant number of SRAMs in the 
design, the variations in the leakage power due to process 
variations for the SRAMs fade away. The leakage savings are 
close to the nominal leakage saving as reported in Figure 9. We 
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observe that more than 55% and 50% improvement in the leakage 
power is reached when the FPGA accommodates 10% and 30% 
more CLBs. The results indicate that voltage scaling can be used 
as a useful means to lower the increase of leakage power in new 
technologies for FPGA devices. While process variation is an 
inherent barrier against effective voltage scaling in SRAMs, due 
to the high levels of redundancy in FPGA, the extra resources can 
compensate for the higher probabilities of errors incurred by 
voltage scaling. Our proposed placement framework will realize 
fault-free designs in the presence of process variation with voltage 
scaling.  

Table 1. Comparison of different placement techniques, relative to VPR 

 
Pre-

Deployment 
Post-

Deployment 

VPR 
(faulty CLBs 

excluded) 
10% 30% 10% 30% 10% 30% 

D 
μ(%) 8.7 10.1 11.5 11.3 10.2 11.7 
σ/ μ N/A N/A 1.2 1.1 1.9 1.7 

WR 
μ(%) 5.6 8.9 7.8 10.4 8.5 10.3 
σ/ μ N/A N/A 1.4 1.3 1.6 1.8 

Run Time 
(%) 23.2 32.3 -65.3 -76.2 12.7 15.3 

7. Conclusion 
In FPGA devices, the configuration memory is contributing a 

significant amount of leakage power consumption. In this paper, 
we propose to exploit the abundance of homogenous resources on 
FPGA, in order to realize voltage scaling in the presence of 
process variation. We introduce a novel 2-phase placement 
algorithm that maximizes the reliability of implemented design. In 
the first phase, we maximize the reliability of the designs 
implemented on the design considering the a priori distribution of 
SRAM failures due to process variation and voltage scaling. The 
second phase is performed once the device is fabricated. The 
second phase determines a fault-free placement of the design for 
the FPGA device. Our results indicate significant leakage power 
reduction (more than 50%) in the configuration memory when 
voltage selection is combined with our placement technique, 
while the integrity of the design is maintained, with little delay 
degradation. 
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