
Reliability-Aware Placement in SRAM-Based FPGA
for Voltage Scaling Realization in the Presence

of Process Variations

Shahin Golshan, Amin Khajeh, Houman Homayoun, Eli Bozorgzadeh,

Ahmed Eltawil, Fadi J. Kurdahi
Center of Embedded Computer Systems

University of California, Irvine CA, 92697, USA
{golshans, akhajed, hhoumayou, eli, aeltawil, kurdahi}@uci.edu

1Abstract
With advances in technology scaling, the configuration memory in
SRAM-based FPGA is contributing a large portion of power
consumption. Voltage scaling has been widely used to address the
increases in power consumption in submicron regimes. However,
with the advent of process variation in the configuration SRAMs,
voltage scaling can undermine the integrity of a design
implemented on the FPGA device as the design’s functionality is
determined by the contents of the configuration SRAMs. In this
paper, we propose to exploit the abundance of homogenous
resources on FPGA, in order to realize voltage scaling in the
presence of process variation. Depending on the design to be
implemented on FPGA, we select the minimal voltage that sustains
a reliable placement. We then introduce a novel 2-phase placement
algorithm that maximizes the reliability of the implemented design
when voltage scaling is applied to the configuration memory. In the
first phase, pre-deployment placement, we maximize the reliability
of the implemented designs considering the a priori distribution of
SRAM failures due to process variation and voltage scaling. The
second phase, post-deployment placement, is performed once the
device is fabricated in order to determine a fault-free placement of
the design for the FPGA device. Our results indicate significant
leakage power reduction (more than 50%) in the configuration
memory when our placement technique is combined with voltage
scaling with little delay degradation.

Categories and Subject Descriptors:
J.6 [Computer Aided Design (CAD)]
General Terms:
Algorithms, Design, Reliability

Keywords:
FPGA, Process Variation, Voltage Scaling, Placement, Computer
Aided Design

The work in this paper is partially supported by the NSF under the award
CNS-CAREER #0846129.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CODES+ISSS '11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0715-4/11/10...$10.00.

1. Introduction
Field Programmable Gate Arrays (FPGA) are widely used in

many application domains as they offer high performance, high
flexibility and fast time-to-market. The ever-increasing demand
for more computations as well as technology scaling is increasing
the power densities of FPGA devices. While technology scaling
impacts the dynamic power and the leakage power of FPGA
devices, the consequences of aggressive technology scaling is
more acute for leakage power. As predicted by the ITRS [1],
leakage power grows rapidly with technology scaling. In FPGA
devices, the configuration memory is the major contributor of
leakage power in the system. In fact as much as 45% of the total
leakage power is consumed by the configuration memory bits [2].
This ratio becomes even larger as FPGA systems grow more
complex. Therefore, in order to cope with the growth of leakage
power in the newer generations of FPGA devices, power
management solutions must be provided for the configuration bits
in FPGA.

Voltage scaling is one of the most effective means of reducing
the leakage and dynamic power in digital integrated circuits. In
FPGAs, Static Random Access Memory (SRAM) is the dominant
technology used for the configuration bits. Therefore, voltage
scaling on the SRAMs can be an effective solution for lowering
the power consumption in the configuration memories of FPGAs.
However, aggressive voltage scaling causes process-variation-
induced failures in the SRAM cells such as read access failures,
destructive read failures, hold failures, and write failures [3,4].
Concerns on failures due to process variation in SRAMs become
more prominent for submicron regimes. Such failures in the
configuration SRAMs undermine the functionality and the
connectivity of the implemented designs.

The distinctive feature of FPGA architectures is that it provides
a large array of logic resources. The inherent redundancy and the
reconfigurable nature of FPGA systems provide a unique
opportunity to implement the design in the presence of failures in
the configuration SRAMs. Fault tolerance can be maintained
when the fault-free unutilized resources are used. A judicial
placement around the faulty resources can realize the
implementation of the design when the configuration SRAMs are
operating at lower voltages. By utilizing the spare resources of the
FPGA device and using the a priori distribution of SRAM failures
due to process variation, we calculate the minimal supply voltage
that sustains a fault-free placement. In this paper, we study the
potential of power saving by voltage scaling in the configuration

257

memory when coupled with placement, in order to address the
failures due to process variation.

Since the exact locations failures due to process variation can
only be determined after the FPGA has been manufactured and
deployed, the final fault-free placement has to be determined after
the deployment of the FPGA system. Due to within-die and die-
to-die variations, the final fault-free placements are also unique
for a particular FPGA chip. Therefore, the performance (dictated
by the critical path delay and the wire length) of the
implementation of the same design on different FPGA chips will
vary. Such uncertainty in the performance metrics might not be
tolerated for performance-critical applications. Furthermore, since
the placement of the design is done after the system is deployed, it
is important that the run-time of the placement algorithm be fast,
or otherwise, the design cannot be efficiently used in time-
constrained applications.

In our work, we split the task of placement into two phases: pre-
deployment placement (Sec. 5.2) and post-deployment placement
(Sec. 5.3). We first optimize the reliability of the designs
implemented on FPGA in conjunction with the critical path delay
and wire length using the a priori probability distribution of
SRAM failures due to process variation and voltage scaling. It is
important to note that we define reliability here as attempting to
ensure a fault free post-deployment placement. The relative
locations of the resources are determined in the pre-deployment
placement. The main idea is to increase the chances that the faulty
resources be locally replaced by the spare ones after deployment.
Once the FPGA device is deployed and the fault map of the
resources is determined, post-deployment placement is
performed. Since the resources are already placed in such a way
that faulty resources could be replaced with the spare ones locally,
the execution time of our post-deployment placement is very fast.
In addition, as the relative locations of the resources are
determined once during the pre-deployment placement and the
faults are resolved locally by using the spare resources in the
vicinity of the faults, the performance metrics of the resultant
implementation are very close to the ones obtained in the pre-
deployment placement.

To the best of our knowledge, this is the first framework that
proposes aggressive voltage scaling of the configuration bits in
conjunction with reliability-aware placement to provide drastic
leakage savings in the configuration memory of FPGA in the
presence of failures due to process variation. Our experiments
indicate that by employing voltage scaling, more than 50%
improvement in the leakage power consumption of the
configuration memory can be achieved, while the implemented
designs suffer little, if any, performance degradation. The results
also suggest that not only is our proposed algorithm very efficient,
but it also generates placements that are more robust against
variations in the performance metrics, while the delay degradation
is insignificant.

The paper is organized as follows: In Sec. 2 we study the related
work. In Sec. 3, we explain the architecture of configuration
memory in SRAM-based FPGA. We study the sources of failure
in SRAM due to process variation in Sec. 4. In Sec. 5.1, we
elaborate on our reliability-aware voltage selection for the
configuration SRAMs. In Sec. 5.2(5.3) we study the reliability
aware-placement before(after) the deployment of the FPGA
system. The experimental results are provided in Sec. 6. We
conclude the paper in Sec. 7.

2. Related Work
Voltage scaling has been widely used to lower the power

consumption in FPGA logic and routing resources. Dual-Vdd has
been used in FPGAs to reduce the power of the resources which
are not on the critical paths in the design in order to lower the
overall power consumption [5,6]. High-Vth SRAMs have been
used to lower the leakage power [6,7], however, such a solution
will not reduce the gate leakage, which in low temperatures can
account for more than 50% of the total leakage power. In order to
effectively reduce leakage power in the configuration memory,
our work explores the impact of voltage scaling in the presence of
process variation and provides a voltage selection and a
placement technique to maintain reliability.

The impact of process variation on timing yield at different
stages of the synthesis flow has been studied and optimized in [8].
Novel placement techniques to enhance the timing yield in the
presence of process variation have been proposed in [9,10]. In our
paper, the main target is to address the reliability aspects of
voltage scaling in the presence of process variation for leakage
savings in FPGA.

Fault tolerant aggressive voltage scaling on the of SRAM cells
has been studied in [3,4] and applied in memory designs in [11].
Our work tries to take advantage of the unique features of FPGA
(redundancy and reconfigurability) through placement in order to
realize voltage scaling in the presence of process variation.

Fault tolerant placement for FPGA has received a lot of
attention in the past decade. These methods usually try to place
the design on the fault-free resources using reconfiguration
[12,13]. In our work, we provide a novel framework that performs
fault-tolerant placement to sustain faults in the configuration
SRAMs due to aggressive voltage scaling.

3. Configuration Memory Architecture in
SRAM-based FPGA

Modern FPGA devices in general provide an array of logic
resources, which may be interconnected, and configured for
specific functions. Functionality and connectivity are
implemented by Clustered Logic blocks (CLB) and routing
blocks. Each CLB contains a number of Block Logic Elements
(BLE). Figure 1 depicts the generic structure of a BLE and a
CLB. The BLEs implement the logic using N-input Look-up
Tables (LUTs). The outputs of the LUTs can be programmed to
be latched in a flip-flop.

Figure 1: BLE (left) and CLB (right) structure in FPGA architecture

 All CLBs and routing blocks are controlled by SRAM cells.
Such SRAMs that define the functionality and the connectivity of
the implemented designs are referred to as the configuration
SRAMs. Throughout this work, we use the terminologies and the
features of Xilinx-based FPGA architecture. However, all the

D-FFLUT

BLE

258

concepts provided in this work can be applied to other SRAM-
based FPGA architectures (i.e. Altera FPGA devices).

The configuration SRAMs have to be loaded on power-on. If
needed, the configuration SRAMs can be reloaded with new
values to reflect the changes in the implemented design.

The configuration SRAMs lie close to the CLBs or routing
blocks they control and are organized in a regular pattern. The
smallest unit of configuration (read/write) is a data frame, which
is a 1-bit segment of the configuration SRAMs. A CLB frame
controls a portion of a CLB. Figure 2 depicts a CLB frame in the
configuration SRAMs. Note that frames lie in a single column of
configuration SRAMs.

Figure 2: CLB Frame in Xilinx FPGA

The number of CLB frames depends on the device size. The
same is true for the number of bits of a CLB frame itself [14].

As mentioned earlier, when voltage scaling is applied, some of
the configuration SRAMs might become faulty. In order to detect
the faulty SRAMs within the configuration memory, several
techniques based on readback feature and dynamic
reconfiguration of FPGAs [14,15] have been developed in
industry as well as academia. The diagnosis developed in
[16,17,18] can be applied to obtain the fault map of the
configuration SRAMs. In this paper, we assume that a single error
in the configuration bits in a CLB will cause the entire CLB to
become erroneous.

4. Impact of Process Variation/Voltage
Scaling in Reliability/Power Saving in SRAM

Figure 3 shows the typical six-transistor cell used for CMOS
SRAM. The cell consists of two cross-coupled CMOS inverters
(NL-PL and NR-PR) that store one bit of information, and two N-
type transistors (SL and SR) that connect the cell to the bitlines
(BLC and BLT). Process variation-induced failures can be
categorized in four major types: Read Access Failure, Write
Failure, Destructive Read Failure and Hold Failure (the voltages
at node L and R are referred to as and respectively)

Read Access Failure (RAF): Reading the cell storing `0′
and `1′, begins with precharging BLT and BLC to .
Then the wordline, WL, will be set to which results in turning
on SL and SR. The ideal case in reading is that NL sinks the
current from BLT and in the time (where is
the maximum allowed time to load), a sufficient difference on the
bitlines appears which triggers the sense amplifiers to detect the
value of the cell. An increase in the access time of the cell during
read operation such that is defined as the Read

Access Failure. It has been shown in [11,4] that
principally depends on of SL and NL and increases
with an increase in and/or .

Write Failure (WF): In writing a `0′ to the node storing `1′ (for
example, node L in Figure 3), the voltage at node L () has to
reduce to a value below the trip-voltage of the PR-NR inverter
within the time that the wordline is high (). An increase in
the of the cell such that is defined as the
Write Failure. increases if the strength of SL reduces
(increases) and/or if that of PL increases (decreases)
[11,4].

Destructive Read Failure (DRF): While reading the cell (e.g.
	 `0′ and 	 `1′) due to voltage divider action between SL

and NL the voltage at node L () will increase to . If due
to random variations in the threshold voltages of SL and/or NL,

 becomes greater than the trip-voltage of PR-NR inverter, the
value that the cell is storing will flip and the Read-upset or
Destructive Read Failure (DRF) will occur [11].

Hold Failure (HF): Inability to hold the cell value at lower
voltages than nominal is defined as Hold failure. As a result of
hold failure, the cell content will be destroyed.

Figure 3: 6T SRAM cell

It is important to note that technology scaling strongly impacts
power consumption and delay, while its impact on threshold
voltage is a shift in the mean of the distribution with minimal
effect on its standard deviation.

In the absence of process variation, the threshold voltage is
considered to be a fixed number. However, in the presence of the
process variation, V will follow a distribution which is assumed
to be Gaussian with a mean μ V and a standard deviation
which can be calculated as [19,20]:

 ∗ (1)

Where 	 is the for a minimum sized transistor and is
given by:

 ∗
3

 (2)

where Na is the effective channel doping, is the depletion
region width, is the oxide thickness, and 	are the
minimum channel length and width respectively. To factor in

259

process variations, one needs to consider the effect of RDF, oxide
thickness () variation, and effective length () variation on
the threshold voltage variation. In advanced technology nodes, the
number of the atoms in the channel reduces from a few thousands
to a few hundreds. While it is possible to control the average
number of the atoms in the channel, , it is almost impossible
to assign the exact same number of atoms to each device in the
same location. In fact, the number of the atoms in the channel, ,
follows a Poisson distribution and can be represented as [21]:

 ;
!

 (3)

Where is the average number of the atoms in the channel.
On the other hand, the variation of and can be
represented as a Gaussian distribution and are given by [20]:

∼ ,

∼ ,
(4)

The variation in these three parameters, results in a Gaussian
distribution for the threshold voltage , which can be expressed
in terms of the nominal with the effects of the supply voltage

 and the source-to-body voltage reflected through the
drain induced barrier lowering (DIBL) and body effects, as shown
in the following equation:

Φ Φ Δ (5)

where is the zero-bias threshold voltage, represent
the DIBL effect, is the body voltage, Δ models the
narrow width effect, is the body effect coefficient and Φ is the
surface potential.

From these fundamental equations it can be shown that the first
and second moments of the Gaussian distribution for the threshold
voltage are a linear function of V and can be expressed as
follows:

∼ ,

	

(6)

The constants , ,	and are fixed for a given technology and
only need to be found once by either Monte Carlo simulations or
polynomial fitting. For example, for a 32nm technology (using
PTM [22]), the following data set can be generated:

∈ 0, 1.0
0.116, 0.453 (7)

0.04

 In order to find the probability of failure for the SRAM cell,
the distribution of access time, , write time, and the
storing node voltage, V / 	 needs to be calculated as a function of
supply voltage , V . To do so, one can represent the access time
as:

∼ ,
∀ 	

 (8)
∼ . ,

For a given maximum allowed access time, , according to
the failure definitions, we will have:

 ,
|

(9)

Where

 (10)

and ∙ 	is the Gaussian Error Integral or function and is
given by:

√

. (11)

For this study, we assume the write operation is performed at
the nominal voltage and therefore we exclude the write failure
from the total probability of failure. Similar analysis can be done
for storing node voltage distribution and the hold failure and
destructive read failure can be calculated accordingly. Thus, the
total probability of failure can be calculated as

∪ ∪ (12)

5. Reliability-aware voltage scaling and
placement in the presence of process variation

So far, we have studied the impact of voltage scaling on the
reliability of SRAM cells in the presence of process variation. In
this section, we first study the impact of voltage scaling on the
reliability of the implemented design across the whole FPGA
area. Depending on the design to be implemented on FPGA, we
select the proper voltage range that sustains the reliability
constraints. Once the proper voltage has been selected, we attempt
to maintain the high reliability through placement, so that CLB
faults due to process variation can be confined locally. Once the
FPGA device is deployed and the fault map is generated for the
FPGA device, the local placements can be modified and the
updated placement can be reconfigured on FPGA. In this section,
we will study our framework in details. Since the operating
condition (such as supply voltage) dependent failure in SRAMs
are due to mismatches in the device strength and only intra-die
variation causes mismatch, we assume that the faults caused by
reducing the supply voltage are independent. This means that the
probability of failure for all SRAMs for a given supply voltage

, is equal to and are independent of each other.

5.1 Reliability-aware application-based
voltage Selection for maximum power saving

As mentioned in Sec. 4, voltage scaling can save a significant
amount of power at the expense of reliability in the presence of
process variation in SRAM cells. In the context of CLB
configuration SRAM cells, such faults will manifest themselves
as functional errors of the implemented design. Therefore, it is
desirable to formulate the extent of such faults based on the
supply voltage applied to the SRAM cells. Throughout this
section, we refer to the probability of errors in a single SRAM cell
due to process variation for a certain supply voltage (V) as
Pe

bit(V).

260

Given the number of configuration SRAM cells (n) used to
program a single CLB, we can calculate the probability of error
for a single CLB as:

1 1 ≅ . (13)

In the equation above, we count a fault in a single SRAM cell as
an error in the whole CLB. Since the probability of error for a
single SRAM cell is minute in comparison to the number of
configuration bits for the CLB, we can use a first-order
approximation to simplify Eq. (13).

The implemented designs on FPGA rarely occupy the whole
resources available on chip. Since FPGA architecture comprises a
large array of CLBs, it is very likely that faults in the
configuration SRAMs due to process variation could be
prevented from emerging as errors in the design through
relocation of the faulty CLBs (reconfiguration) to the spare
resources. Of course, the opportunities for having an error-free
design on FPGA depends on the number of available CLBs on the
FPGA dedicated to the design (NR), the number of erroneous
CLBs (NE), the number of CLBs utilized by the design (NU) and
the number of spare CLBs (NS = NR – NU). The following equation
formulates the reliability of the implemented design against
process variation:

Pr

																∑ . . 1 (14)

We refer to the probability derived above as the global
reliability. In Eq. (14), we have applied the binomial expansion to
calculate the reliability. Note that Eq. (14) enumerates all the
cases in which the errors in CLBs can be recovered through
reconfiguration. In order to find the proper supply voltage range
for the configuration SRAM cells for a given global reliability, we
take the inverse of Eq. (14):

 , , (15)

Using Eq. (15), we find the lower bound of the supply voltage
that can sustain the design with the given global reliability value.
We use Vmin to eliminate the voltages resulting in intolerable
faults in the design.

Global reliability indicates the probability of recovery when all
the CLBs in the designated area on FPGA are for granted. It does
not discriminate on where to place the faulty CLBs. However, the
replacement of CLBs can increase the critical path delays in the
design. In order to consider the connectivities between CLBs in
the implementation, we introduce a pre-deployment placement
method to plan the placement in such a way that minimal
increases in delay will be incurred in case relocations are needed.

5.2 Reliability-aware pre-deployment
placement in the presence of process variation

Conventionally, the main objective of placement optimization
algorithms has been the reduction of the wire length and/or the
critical path delay of the implemented design [23]. These
algorithms do not take into consideration the potentials of faults
in CLB configuration SRAMs. In this section, we present a
reliability-aware placement of the CLBs on FPGA based on the a

priori fault distribution due to process variation. We refer to this
placement as the pre-deployment placement as the actual fault
locations on the FPGA fabric has yet to be determined.

As mentioned earlier, global reliability (Eq. (14)) is used to
determine the reliability of the implemented design when all the
spare CLBs can be reconfigured to avoid the faulty ones.
However, the critical path delay of the fault-free design might
become unacceptable. Note that we are interested in local
relocations with minimal changes to the placement once the
system is deployed. Therefore, we introduce the concept of
detailed reliability, which indicates the potentials to replace the
faulty CLBs with the fault-free ones in the close vicinity of the
fault. A simple example is depicted in Figure 4. The CLBs of the
design are labeled as A, B, C and D. In this example, we assume
that A has a direct connection with B and C and there is a
connection between C and D. Since the number of spare CLBs
and the number of utilized CLBs are the same for the two
placements, the global reliability values for the two placements
are the same. However, once the faulty CLB is discovered, the
relocation of A will incur an increase in the critical path delay in
Figure 4 (a), whereas in Figure 4 (b), there is no delay penalty in
relocating A.

Instead of formulating the reliability for the entire FPGA as a
whole, we introduce a model which captures the reliability
locally. We use a grid to divide the CLBs into several grid cells.
Note that the grid has no actual hardware implications and it is
only used for the purpose of reliability computation. The detailed
reliability of the FPGA is then defined as the combination of the
reliabilities of the individual grid cells:

∑ . . 1 	 (16)

∏ _ (17)

In Eq. (16), we calculate the reliability of a single grid cell
based on the number of erroneous CLBs (NE

K), the number of
total CLBs within the grid cell (NR

K), the number of utilized CLBs
in the grid cell (NU

K) and the number of spare CLBs (NS
K = NR

K –
NU

K), provided that all the CLB relocations have to take place
within the same grid cell. In Eq. (17), we calculate the total
reliability of the design implemented on the FPGA. It is easy to
verify that the local reliability value for Figure 4 (b) is greater
than that of Figure 4 (a). Accordingly, the faulty CLB at the
bottom-right CLB can be relocated within the same grid cell as
depicted in Figure 4 (b). The main advantage of the detailed
reliability formulation is that it can be easily incorporated into the
conventional placement tools, which are based on simulated
annealing. In order to simplify Eq. (17), we rewrite it as:

ln ∑ ln (18)

Note that the minimization of RD′ will in fact maximize the
detailed reliability. Eq. (18) is easier to be implemented into the
simulated annealing engine. The fundamental move performed on
the CLBs in simulated annealing engines is swapping. Based on
the cost function associated which each move, the annealing
engine decides whether to reject or accept the swapping. It is
crucial that the cost function used to evaluation the benefit of the
move be calculated very efficiently, or otherwise it would take a
long time to obtain the final placement. Interestingly, detailed
reliability computation (Eq. (18)), can be performed in O(1) time:

261

Theorem I. The time complexity of the calculation of the
detailed reliability upon CLB swapping is O(1).

Proof. The two CLBs to be swapped either lie on the same grid
cell (e.g. CLBs C and D in Figure 4 (a)), or they belong to two
different grid cells (e.g. CLBs C and D in Figure 4 (b)). In case the
swapping does not change the utilization of the grid cells, the
detailed reliability remains the same. Also, when we swap the
contents of two occupied CLBs in two different grid cells, the
detailed reliability stays unchanged. The only time there is an
increase/decrease in the detailed reliability is when we relocate a
CLB in one grid cell (denoted by i) to a spare location in another
grid cell (denoted by j). In this case, we can calculate the detailed
reliability difference (i-new and i-old refer to the grid cells i after
and before the swapping, respectively) as:

)ln()ln()ln()ln(oldj
D

oldi
D

NEWj
D

NEWi
DD RRRRR (19)

Figure 4: (a) sample placements when detailed reliability is not used (b)
when detailed reliability is used

Rather than recalculating the detailed reliability for each grid
cell at every swap, we calculate the detailed reliability of each
grid cell once for all the possible utilizations, from 0 up to the
number of CLBs in the grid cell (i.e. 4 for the grid cells in Figure
4), given the a priori probabilities of CLB reliability. Assuming
that the detailed reliability for the initial placements has been
calculated at the beginning, it takes O(1) to calculate the
difference in the detailed reliability □

We have developed a simulated annealing search engine which
simultaneously optimizes the critical path delay, wire length and
the detailed reliability. In our annealing engine, we have adopted
the adaptive annealing schedule of VPR, the state-of-art FPGA
placement tool. Features of VPR adaptive annealing schedule are
explained in details in [23]. We used the following cost function
for our simulated annealing engine:

))1()(1(
PREVPREVPREV

D

D

wl

wl

Delay

Delay

R

R
cost

 (20)

Where α is the coefficient denoting the tradeoff between the
combination of the critical path delay, the wire length, and the
detailed reliability. Details on critical path delay calculation and
wire length computation inside the simulated annealing engine
have been provided in [23].

5.3 Reliability-aware post-deployment
placement in the presence of process variation

In order to have an error-free design on the FPGA once the
FPGA device is deployed, the fault map for the CLBs must be
determined. For the remainder of this section, we assume that
fault diagnosis techniques have been applied on the FPGA
[16,17,18] and the fault map is available.

The basic idea underlying our solution is to obtain new
placements for each grid cell on the FPGA rather than trying new
placements for the entire FPGA chip. Since we have already
planned and optimized the placements in the pre-deployment
placement phase of our proposed solution, we are able to modify
the placement in a finer granularity. We can avoid the faulty
CLBs by changing the placement of the grid cell in which the
faulty CLB lies on. As the relative locations of the CLBs have
been planned during the pre-deployment phase, replacing CLBs
within a grid cell will have negligible impact on the performance
of the design. On the other hand, we can save a great deal of time
optimizing the placements for individual grid cells on the FPGA
as opposed to optimizing the placement on the FPGA as a whole.
Therefore, in our post-deployment placement technique, we
perform placements on the individual grid cells independently to
obtain fault-free placements with optimized performance (wire
length and critical path delay). An alternative to our proposed
solution is to apply the conventional placement techniques (e.g.
simulated-annealing based) to obtain the fault-free placements,
once the fault map of the FPGA device is known. However, as we
demonstrate later in the section, our solution will always find the
fault-free placement more efficiently (faster convergence).

The highlights of our reliability-aware post-deployment
placement in the presence of process variations are shown in
Figure 5. The solution starts by finding the minimal dimensions of
the grid cells that can sustain a fault free placement, given the
initial placement (obtained by pre-deployment placement)
(FMGCD) and the fault map. Then, for each individual grid cell,
we place the CLBs using the simulated annealing engine in such a
way that no CLB designated within the grid cell is assigned to a
faulty resource (PDP).

In order to clarify how the size of the grid cells influence the
behavior of the post-deployment placement, refer back to the
example in Figure 4. As depicted in Figure 4(a), a 2 2 grid cell
cannot sustain a fault-free placement. The reason is that all the
four CLBs in the 2 2 grid cell on the left are utilized and there is
a faulty CLB to be avoided. Therefore, no arrangement of CLBs
within the grid cell will yield a fault-free placement. However, as
depicted in Figure 4(b), a 2 2 grid cells can sustain a fault-free
placement. In this case, there will be two 2 2 grid cells: one on
the left with four available CLBs, three utilized and one faulty
and another on the right with four available CLBs, one utilized
and no faulty one.

The function FMGCD (Figure 5) starts with 2 2 grid cells and
given the initial placement and the fault map, examines each grid
cell to figure out whether a fault-free placement can be sustained
depending on the number of available CLBs in the grid cell, the
number of erroneous CLBs and the number of CLBs utilized
within the grid cell (line 11). If 2 2 grid cells cannot sustain a
fault-free placement, the algorithm tries 3 3 grid cells and
eventually if no smaller grid cell size can sustain a fault-free
placement, the whole FPGA is treated as a single M M grid cell
(without loss of generality, the FPGA is assumed to be an M M
array of CLBs). The boundaries of each grid cell are computed in
lines 4-11. The function outputs the minimal grid cell dimensions
(line 14) or returns M (line 15).

262

Our post-deployment placement (function PDP in Figure 5) first
calls FMGCD to find the minimal grid cell dimensions (line 16).
Then, once the boundaries of the grid cells are determined (lines
19-22), the fault-free placements of the CLBs within a grid cell
are calculated using a simulated annealing-based placement
algorithm. Our simulated annealing search engine simultaneously
optimizes the critical path delay and the wire length. In our
annealing engine, we have adopted the adaptive annealing
schedule of VPR [23]. The distinctive feature of our annealing
engine is that we only try the legal moves within the grid cells. A
legal move is a move (CLB swapping) that does not utilize a
faulty CLB in case a CLB is moving from a location to a new one.
The cost function to be minimized is the same as the one used in
VPR [23]:

PREVPREV wl

wl

Delay

Delay
cost

)1((21)

Note that since we have performed the preprocessing in
FMGCD and found the minimal grid cell dimensions, we always
obtain a fault-free placement. Our post-deployment placement in
fact tries to optimize the performance by trying new placements
locally (within grid cells), rather than considering the whole
FPGA. The main advantage of modularizing the problem of fault-
free post-deployment placement can be determined through the
mathematical analysis provided in the rest of this section.

Theorem II. The worst case time complexity of FMGCD is
O(n3/2), where n refers to the number of CLBs in the design.

Proof. As shown in Figure 5, in the worst case, we need to
examine the grid cells with all the possible sizes (line 1) to find
out the minimal grid cell size. Therefore, we can formulate the
run-time of FMGCD as:

)()(.)/(2/33

2

2

2

22 nOMOMiiM
M

i

M

i

 (22)

In the equation above, since we need to check every CLB
within the grid cell to determine if it is faulty or not, and there are
M 2/i2 grid cells of size i i, we can conclude that the time
complexity of the algorithm is O(M 3). Since the number of CLBs
is often comparable to the area of the FPGA device (M2), we can
equate the formulation above to O(n3/2) □

It is important to note that the average time complexity of
FMGCD depends on the detailed reliability of the placement (Eq.
(17)) and the grid cell size (k k) used to calculate the detailed
reliability in the pre-placement algorithm. In fact, the probability
that the grid cell sizes returned by FMGCD be equal to the grid
cell size (k) used in the pre-placement algorithm is equal to the
detailed reliability. 	
 Pr FMGCD , , (23)

For example, if the detailed reliability of the pre-deployment
placement is 0.9 and the grid cell sizes used to compute the
detailed reliability is 2 2, then for 90% of the time, FMGCD
will return 2, which is much faster than the worst case. Using the
equation above, we can rewrite Eq. (22) as:

).().(.)/(2

2

2

2

22 nkOkMOMiiM
k

i

k

i

 (24)

Note that the probability that the run time of FCMGD is as
expressed in Eq. (24) is equal to the detailed reliability (RD).
Given that the detailed reliability is maximized in pre-deployment
placement, the run-time of FMGCD is almost a linear function of
n.

Our post-deployment fault-free placement algorithm (Figure 5)
uses simulated annealing in order to find the fault-free placements
within each grid cell. The time complexity of simulated annealing
search algorithms generally depends on the annealing schedule.
The annealing schedule specifies the number of moves to attempt
per temperature, how annealing temperature varies throughout the
annealing, and when the annealing should terminate. In our post-
deployment placement algorithm, we adopted the same annealing
schedule as the one described in [23]. The number of moves per
each annealing temperature is in the order of O(n4/3), where n is
the number of CLBs in the design. In order to compare and
contrast our post-deployment placement with the alternative
placement which uses simulated annealing on the whole FPGA
device, we provide the following theorem:

Theorem III. The number of moves per annealing temperature
in the PDP solution is asymptotically smaller than the number of
moves per temperature in conventional simulated annealing
placements.

Proof. The number of moves per temperature can be formulated
as O(n4/3). Now, since we are confining our algorithm to find the
placements within the grid cells, and the area of each cell is ii
(line 16 in Figure 5), the number of utilized CLBs within the grid
cells are at most i2. The number of grid cells in the FPGA is
proportional to (M 2/ i 2), therefore we can formulate the number
of moves per temperature for the post-deployment placement as:

/ .	 / . / ≪ / (25)

Note that in the worst case when the whole FPGA becomes one
grid cell (i = M), the number of moves per temperature for the

Function Find-Minimal-Grid-Cell-Dimension (FMGCD)
Input: Initial Placement(IP), fault map (F), FPGA dimensions (M M)
Output: Minimal grid cell dimensions (i i)

[1] for i ← 2 to M {
[2] g.area ← i i
[3] minimal-grid-cell-dimension ← true
[4] for x ← 1 to M / i
[5] for y ← 1 to M / i {
[6] g.x_min ← x ((M / i)-1) + 1
[7] g.y_min ← y ((M / i)-1) + 1
[8] g.x_max ← g.x_min + M / i - 1
[9] g.y_max ← g.y_min + M /i - 1
[10] g ← IP(g.x_min ,g. y_min ,g. x_max, g.y_max)
[11] if g.num-faults > g.area - g.num-utilized-CLBs
[12] minimal-grid-cell-dimension ← false}
[13] if minimal-grid-cell-dimension == true
[14] return i}
[15] return M

Function Post-Deployment Placement (PDP)
Input: Initial Placement(IP) , fault map (F), FPGA dimensions (M M)
Output: Fault-free placement (P)

[16] i ← FMGCD(IP, F, M)
[17] for x ← 1 to M / i
[18] for y ← 1 to M / i {
[19] g.x_min ← x ((M / i)-1) + 1
[20] g.y_min ← y ((M / i)-1) + 1
[21] g.x_max ← g.x_min + M / i - 1
[22] g.y_max ← g.y_min + M /i - 1
[23] P.g ← fault-free-simulated-annealer(g) }
[24] return P

Figure 5: Outline of reliability-aware post-deployment placement in the
presence of process variation

263

two techniques become the same. However, since in our pre-
deployment placement (Sec. 5.2), we have already planned the
relative locations of CLBs and have considered the potentials of
faults in the neighborhood of CLBs, the dimensions of the grid
cells (i) is much smaller than the dimensions of the FPGA itself
(M). Therefore, our post-deployment placement always performs
faster than the conventional placement □

It is worth mentioning that not only does our post-deployment
placement reduce the number of moves per annealing
temperature, it also drastically reduces the range of moves in the
simulated annealing. Since the relative locations of the CLBs
have already been planned in the pre-deployment placement, our
post-deployment placement only fine-tunes the locations of the
CLBs within the grid cells. Therefore, the simulated annealing
engine used in our post-deployment placement tends to converge
faster to the fault-free solution.

Figure 6: Simulated annealing moves in (a) the conventional placement

and (b) post-deployment placement

Figure 6 demonstrates the difference in the range of moves
attempted in our framework in comparison to conventional
placements. As shown in Figure 6(a), the moves range across the
FPGA when conventional simulated annealing placements are
used. However, the moves in our post-deployment placement are
confined to the grid cells. Therefore, post-deployment placement
reaches the final solution faster. Note that the relative locations of
CLBs are planned during pre-deployment placement.

6. Experimental Results
In this section we first explain the experimental flow used to

evaluate our reliability-aware placement solution for voltage
scaling in the presence of process variation. Then, we present the
results of our proposed technique in details.

6.1 Experimental Flow
The experimental flow used in this work is depicted in Figure 7.

As the first step, we generate the libraries which contain
information about the reliability of the SRAM used in the
configuration bits in FPGA. In this work, we ran Monte-Carlo
simulations on 32nm SRAM technology to obtain the distribution
functions for different SRAM failures due to process variation.
Predictive Technology Models (PTM [22]) are used for the device
models in HSPICE simulation. Then the distribution of read time,
hold time and storing node voltage is obtained. For each Monte
Carlo run, 5000 points are simulated to find the distributions.
Then the probability of failure is calculated based on the
equations presented in Sec. 4.

Fault Injection

SRAM Error
Probability Library

Voltage Selection

Pre-Deployment
Placement

Post-Deployment
Placement

VPR Placement
(Faulty CLBs excluded)

Input NetList

Figure 7: Experimental Flow

Once the libraries are ready, depending on the number of
utilized CLBs for the FPGA device and the yield point (reliability
probability) of desire, the minimal supply voltage for the
configuration SRAMs is selected. In our experiments, the
architecture of the configuration bits is assumed to be similar to
architecture of Virtex II devices (128 bits for CLBs). We used
MCNC benchmarks for the experiments. In order to keep the
utilization of the FPGA high, in our experiments, for each
benchmark, the FPGA area is assumed to only accommodate 10%
and 30% more CLBs than the number of CLBs utilized by the
benchmark.

Based on the number of available CLBs in the FPGA the yield
point and the number of utilized CLBs, the minimal permissible
supply voltage is selected for the configuration bits (Sec. 5.1.).

Once the minimal safe supply voltage is selected based on the
global reliability constraints (Sec. 5.1.), we use the detailed
reliability metric, expressed in Eq. (19) inside our reliability-
aware pre-deployment placement algorithm (Sec. 5.2). In the cost
function used in our pre-deployment placement algorithm, we set
the weights α and β to be 0.5 (Eq. (20)). We used 2 2 grid cells
to compute the detailed reliability metric for our pre-deployment
placement algorithm.

Our reliability-aware post-deployment placement is applied
once the FPGA device is deployed and the actual fault map is
present. We generated 100 fault maps based on the SRAM error
probabilities for the configuration bits on the design. Note that in
our fault map, we mark a CLB as faulty if it contains at least a
faulty bit in its CLB frame.

In order to measure the performance of our reliability-aware
post-deployment placement technique, we run post-deployment
placement for each fault map and record the performance metrics
(wire length and delay), the leakage power savings, the number of
successful placements as well as the execution time of the post-
deployment placement technique. In order to highlight the
benefits of our framework, we use a modified version of VPR
[23], which only tries fault-free CLBs for the moves inside the
simulated annealing engine. All the placement techniques are
carried out on the same machine, a 2.99 GHz Pentium IV with 1
GB of RAM running Microsoft Windows XP.

6.2 Experimental Results
In the first set of experiments, we find the minimal supply

voltage permissible for a given reliability constraint. The nominal
supply voltage is set to be 1 v. We reduce the supply voltage by

Grid 1 Grid 2

Grid 3 Grid 4

Grid 1 Grid 2

Grid 3 Grid 4

(a) (b)

264

increments of 0.05. For each supply voltage, we measured the
probability of error due to process variation for SRAM, CLB, and
the whole design when the FPGA is accommodating 10% and
30% extra CLBs for the design. In order to calculate the
probability of error for the whole design, we used the formulation
of global reliability Eq. (14) and complemented the probability to
obtain the probability of error for the design. Figure 8 presents the
results obtained for the benchmark ALU4 from the MCNC suite.
The same trend is seen for all the other MCNC benchmarks.

The minimal safe supply voltage is calculated based on the
extra area available for the benchmarks. As mentioned in Sec. 5.1,
we use our model as formulated in Eq. (15) to calculate the
minimal safe voltage for the given reliability constraint. The
maximum probability of error for the designs is assumed to be 10-

2. As shown in Figure 8, we highlighted the limit of 10-2 with a
dashed line. The results in Figure 8 indicate that 0.8 v is a suitable
supply voltage that realizes the design with a probability of error
of 10-2. Note that when we have more spare CLBs in our design,
the design becomes more reliable.

Figure 8: The impact of voltage scaling on the probability of errors due

to process variation for SRAM, CLB and the whole design

In Figure 9, we report the leakage power consumed by ALU4
for different supply voltages and different FPGA areas. The
leakage reported in Figure 9 is relative to the leakage of the
FPGA accommodating the benchmark with the minimal area. We
observe the same trend for all the other MCNC benchmarks. The
results indicate that by using voltage scaling, we drastically save
on leakage. The leakage power savings are more for the case with
10% extra area, since more configuration bits are used in the
FPGA. On the other hand, more spare CLBs will allow more
supply voltage reduction. Therefore, in order to find the right
combination of area, reliability and power saving, all the
parameters have to be considered simultaneously.

Once the supply voltage for the configuration bits is
determined, we use our pre-deployment placement (Sec. 5.2). We
then inject faults in the CLBs according to the probability of
errors in our library for specific supply voltages. We perform two
placement methods to obtain fault-free placements: our post-
deployment placement (Sec. 5.3) and a variant of VPR which
excludes faulty CLBs in the random moves. For each benchmark,
we generate 100 fault maps and evaluate the performance of the
two techniques. In Table 1 we report the averages and the
standard deviations of the performance metrics obtained by
running the placement techniques on the 100 fault maps generated
for each benchmark. Note that all the values reported in Table 1
are relative to the results obtained by VPR under the same
conditions, when the FPGA is fault-free. The third and fifth rows
of Table 1 report the relative average critical path delay and the

relative wire length respectively. These numbers are gathered for
all the MCNC benchmarks and they are averaged out. We also
report the standard deviation of the critical path delay and the
wire length related to the average values (the fourth and sixth row
in Table 1).

0

0.5

1

1.5

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

R
e
la
ti
ve

 L
e
ak
ag
e

Supply Voltage

Leakage Vs Supply Voltage

Relative Leakage (10% Extra Area)
Relative Leakage (30% Extra Area)

Figure 9: Relative Leakage for different supply voltages for SRAM

As shown in Table 1, there is a little degradation in the delay
(D) and the wire length (WR) of the pre-deployment placement
when compared with VPR. The main reason is that in our pre-
deployment placement we also try to maximize the detailed
reliability (Sec. 5.2) in the cost function. However, such little
degradation is justified when we compare the results of our post-
deployment placement with the results obtained from the VPR
with faulty CLBs excluded. The average critical path delays and
the wire lengths are very close for the two techniques. However,
as the standard deviations reported for the critical path delays and
the wire lengths suggest, the critical path delays and the wire
length are more predictable when our post-deployment placement
is used. The main reason is that in our post-deployment
placement, we only try to resolve the CLB faults by replacing
CLBs within grid cells, rather than drastically change the
placement globally (as done in VPR when faulty CLBs are
excluded). Therefore, we expect to see that the results obtained by
our post-deployment placement to be closer to the average values
of the critical path delay and the wire length, which makes our
proposed framework more robust and much faster when
compared to the other placement solution (VPR when faulty
CLBs excluded).

We reported the run time of our proposed framework in Table
1. There is degradation in the run time of our pre-deployment
placement compared to VPR. However, when our pre-deployment
placement is coupled with our post-deployment placement, the
main speed-up advantage of our proposed framework is clear.
While the variant of VPR which excludes faulty CLBs takes more
time to execute, our post-deployment placement technique is very
fast. Note that post-deployment placement is run for each
deployed system, and therefore the run time of the post-
deployment placement is critical to ensure an acceptable
performance for the applications running on the deployed system.
The drastic improvement in the run time of our post-deployment
placement is in fact in compliance with the mathematical analysis
provided in 5.3. As the designs become larger and more complex,
the improvement in run time becomes even more prominent.

We also estimated the leakage savings realized by voltage
scaling. Since there is a significant number of SRAMs in the
design, the variations in the leakage power due to process
variations for the SRAMs fade away. The leakage savings are
close to the nominal leakage saving as reported in Figure 9. We

265

observe that more than 55% and 50% improvement in the leakage
power is reached when the FPGA accommodates 10% and 30%
more CLBs. The results indicate that voltage scaling can be used
as a useful means to lower the increase of leakage power in new
technologies for FPGA devices. While process variation is an
inherent barrier against effective voltage scaling in SRAMs, due
to the high levels of redundancy in FPGA, the extra resources can
compensate for the higher probabilities of errors incurred by
voltage scaling. Our proposed placement framework will realize
fault-free designs in the presence of process variation with voltage
scaling.

Table 1. Comparison of different placement techniques, relative to VPR

Pre-

Deployment
Post-

Deployment

VPR
(faulty CLBs

excluded)
10% 30% 10% 30% 10% 30%

D
μ(%) 8.7 10.1 11.5 11.3 10.2 11.7
σ/ μ N/A N/A 1.2 1.1 1.9 1.7

WR
μ(%) 5.6 8.9 7.8 10.4 8.5 10.3
σ/ μ N/A N/A 1.4 1.3 1.6 1.8

Run Time
(%) 23.2 32.3 -65.3 -76.2 12.7 15.3

7. Conclusion
In FPGA devices, the configuration memory is contributing a

significant amount of leakage power consumption. In this paper,
we propose to exploit the abundance of homogenous resources on
FPGA, in order to realize voltage scaling in the presence of
process variation. We introduce a novel 2-phase placement
algorithm that maximizes the reliability of implemented design. In
the first phase, we maximize the reliability of the designs
implemented on the design considering the a priori distribution of
SRAM failures due to process variation and voltage scaling. The
second phase is performed once the device is fabricated. The
second phase determines a fault-free placement of the design for
the FPGA device. Our results indicate significant leakage power
reduction (more than 50%) in the configuration memory when
voltage selection is combined with our placement technique,
while the integrity of the design is maintained, with little delay
degradation.

References
[1] International Technology Roadmap for Semiconductors,

www.itrs.net. 2008.

[2] T. Tuan, et al., “A 90-nm Low-Power FPGA for Batery-
Powered Applications,” IEEE TCAD, vol. 26, no. 2, Feb.
2007.

[3] Q. Chen, et al., “Modeling and testing of SRAM for new
failure mechanisms due to process variations in nanoscale
CMOS,” in IEEE VTS, 2005.

[4] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling of
failure probability and statistical design of SRAM array for
yield enhancement in nanoscaled CMOS,” IEEE TCAD, vol.
24, no. 3, 2005.

[5] Fei Li, et al., “FPGA Power Reduction Using Configurable
DualVdd,” in DAC, 2004.

[6] Altera, White Paper, “Stratix III programmable Power”.

[7] A. Gayasen, et al., “Reducing leakage energy in FPGAs
using regionconstrained,” in Int. Symp. FPGA, 2004.

[8] S. Garg, et al., “System-level throughput analysis for process
variation aware multiple voltage-frequency island designs,”
ACM TODAES, vol. 13, no. 4, 2008.

[9] A. A. M. Bsoul, et al., “Reliability- and Process Variation-
Aware Placement for FPGAs,” in DATE, 2010.

[10] G. Locus, et al., “Variation-Aware Placement for FPGAs
with Multi-cycle Statistical Timing Analysis,” in ACM
FPGA, 2010.

[11] Khajeh, A., et al., “Cross Layer Error Exploitation for
Aggressive Voltage Scaling,” 8th International Symposium
on Quality Electronic Design, ISQED, pp. 192-197, Mar.
2007.

[12] A. Mathur, C. L. Liu, “Timing-Driven Placement
Reconfiguration for Fault Tolerance and Yield
Enhancementin FPGAs,” in DATE, 1996.

[13] Amit Agarwal, et al., “Fault Tolerant Placement and Defect
Reconfiguration for nano-FPGAs,” in ICCAD, 2008.

[14] XAPP151, Xilinx Application Note, “Virtex Configuration
Architecture Advanced Users' Guide”.

[15] XAPP093, Xilinx Application Note, “Dynamic
Reconfiguration,” 1997.

[16] E. Bareisa, et al., “Testing of FPGA Logic Cells,” in
Elektronika IR Elektrotechnica, 2004.

[17] S. Lu,et al., “Fault Detection and Fault Diagnosis
Techniques for LookupTable FPGAs,” in VLSI Design,
2002.

[18] C. Wu, et al., “Fault Detection and Location of Dynamic
Reconfigurable FPGAs,” in International Symposium on
VLSI Technology, Systems, and Applications, 1999.

[19] Kulkarni, S.H.; Sylvester, D.; Blaauw, D., “A Statistical
Framework for Post-Silicon Tuning through Body Bias
Clustering,” Computer-Aided Design, ICCAD, pp. 39-46,
2006.

[20] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI
Devices. Cambridge University Press, 1998.

[21] H. S. Wong, et al., “Discrete random dopant distribution
effects in nanometer-scale MOSFETs,” Microelectronics
and Reliability, vol. 38, no. 9, pp. 1447-1456, Sep. 1998.

[22] http://www.eas.asu.edu/~ptm. [Online]. Predictive
Technology Model (PTM)

[23] Vaughn Betz, et al., Architecture and CAD for Deep-
Submicron FPGAs. KLUWER Academic Publishers, 1999.

266

