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Abstract 
 

Reliability-based design optimization (RBDO) of the NASA stage 37 axial compressor is performed using an uncertainty model for 

stall margin in order to guarantee stable operation of the compressor. The main characteristics of RBDO for the axial compressor are 

summarized as follows: First, the values of mass flow rate and pressure ratio in stall margin calculation are defined as statistical models 

with normal distribution for consideration of the uncertainty in stall margin. Second, Monte Carlo Simulation is used in the RBDO proc-

ess to calculate failure probability of stall margin accurately. Third, an approximation model that is constructed by an artificial neural 

network is adopted to reduce the time cost of RBDO. The present method is applied to the NASA stage 37 compressor to improve the 

reliability of stall margin with both maximized efficiency and minimized weight. The RBDO result is compared with the deterministic 

optimization (DO) result which does not include an uncertainty model. In the DO case, stall margin is slightly higher than the reference 

value of the required constraint, but the probability of stall is 43%. This is unacceptable risk for an aircraft engine, which requires abso-

lutely stable operation in flight. However, stall margin obtained in RBDO is 2.7% higher than the reference value, and the probability of 

success increases to 95% with the improved efficiency and weight. Therefore, RBDO of the axial compressor for aircraft engine can be a 

reliable design optimization method through consideration of unexpected disturbance of the flow conditions. 
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1. Introduction 

For many years, various compressor design optimization 

technologies have been researched to improve performance of 

the compressors. In the early stages, these researches focused 

on a specific discipline and were performed by adopting ob-

jective functions limited to aerodynamic design [1-7], struc-

tural design [8], etc. However, a compressor is a very complex 

system, and various design factors of several disciplines need 

to be satisfied in compressor design at the same time. There-

fore, multidisciplinary design optimization (MDO), which can 

allow different disciplines of entire system to be considered 

simultaneously, has been introduced to the compressor design 

optimization. The MDO technologies have been applied to the 

compressor design optimizations while mostly combining two 

disciplines; aerodynamics and structure [9-13]. These re-

searches have successfully combined disciplines and improve 

each factor of the performance simultaneously. Nevertheless, 

there are many factors to consider in the compressor MDO, 

such as efficiency (η), weight (W), pressure ratio (PR), stall 

margin (SM), and safety factor (SF) of the compressor. 

Stall margin is an especially important factor for stable op-

eration of the aircraft compressor when the aircraft is in flight, 

but it has complex characteristics. Keskin and Bestle [6], Choi 

[7] and Chen et al. [11] adopted stall margin as a factor of the 

multiobjective function. And they assumed that the pressure 

ratio and the mass flow rate at the stall point could be calcu-

lated by the computational fluid dynamics analysis or via 

commercial programs. However, stall margin is influenced by 

both the flow conditions at the stall point and the initial point. 

And it is difficult to detect these conditions accurately by the 

unstable properties of the stall state according to compressor 

operation. The accurate flow conditions at the stall point, such 

as mass flow rate and pressure ratio, should be determined by 

experiments in comparison with numerical analyses. However, 

the results of the numerical analysis include margin of error, 

which is an uncertainty; thus it is necessary to consider the 
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uncertainty in numerical analysis. In previous researches, the 

uncertainty for stall margin of the compressor has not been 

considered, while the uncertainty for safety factor of the com-

pressor was considered by Lian and Kim [10]. Therefore, 

uncertainties are considered in the flow conditions of stall 

margin calculation for a realistic and stable design result, 

while reliability-based design optimization (RBDO) is 

adopted in this study. 

RBDO has been adapted in various areas of aerospace engi-

neering to consider the uncertainty of design optimization, 

including compressor design optimization [14] and aircraft 

wing MDO problems [15, 16]. In this study, RBDO has been 

used to investigate the uncertainty in the compressor design 

optimization with an uncertainty model of the flow conditions 

in the stall margin calculation. RBDO is carried out based on 

the NASA stage 37 compressor [17], which has been used in 

the various compressor design researches. Monte Carlo Simu-

lation [14, 16] is used to estimate accurately the reliability of 

stall margin in this study. For an efficient design optimization 

process, an approximation model in the RBDO process is 

required to represent the given design space. And the artificial 

neural network (ANN) [16, 18-20] is adopted to formulate the 

approximation model because ANN is efficient to simulate 

nonlinear problems like to the compressor design. Design 

points which are required to compose the approximation 

model are extracted using the D-optimal design of experiment 

(DOE) method [13, 21]. These design optimization techniques 

are applied to the compressor RBDO process, and the results 

are compared with the results of conventional deterministic 

optimization without consideration of the stall margin uncer-

tainty. Finally, improvements of efficiency and weight by 

RBDO with uncertainty model are analyzed. 

 

2. Numerical approaches 

2.1 Reliability- based design optimization 

RBDO has been carried out by assessment of the limit-state 

function with a mathematically integrated form of the joint 

probability density function. To do this, design methods such 

as the reliability index approach (RIA), performance measure 

approach (PMA), approximate moment approach (AMA), and 

Monte Carlo simulation (MCS) have been introduced and 

researched. In the RBDO procedure, the safety index or most 

probable point (MPP) was explored. This exploration enables 

design optimization to be done while preventing violations of 

constraints through the introduction of uncertainty. Generally, 

the fundamental formula of RBDO is defined as follows [16]: 

 

( )minimize F x    

( ) 0f j jsubject to P P G X p⎡ ⎤= ≤ ≤⎣ ⎦ ,   (1) 

 

where F (X) is an objective function to minimize and G (X) is 

a limit-state function which is transformed from the con-

straints of the design requirements. Failure of the problem 

may occur when the value of G (X) is below zero, and pj is a 

target failure possibility. The reliability or the failure probabil-

ity (Pf) is the probability that the designed result satisfies or 

does not satisfy the design requirements of the problem. Pf is 

an important factor of RBDO as it takes into account the un-

certainty of the given design problem. The mathematical for-

mula of Pf is given like to Eq. (2) [14, 16]. 

 

( )( ) ( )
( ) 0

0f j

G X

P P G X f x dx
≤

= ≤ = ∫ .   (2) 

 

In Eq. (2), f (x) is a joint probability density function and Pf 

is calculated by an integral form of the f (x). Unfortunately, f 

(x) is not usually defined clearly, and even when it is defined, 

it typically takes a very complex form of the direct analysis. In 

addition, if there are large numbers of cycles in complicated 

RBDO problems, it may be difficult to calculate the reliability 

numerically. Therefore, Pf is calculated by alternative methods 

such as an analytical method and a directive method. The 

integral form of f (x) in Eq. (2) may be approximated to first- 

or second-order equation using the Taylor approximation as 

the analytical method. This method can improve the efficiency 

of calculation for a complicated integral equation, but it can-

not guarantee the accuracy of the solution. The directive me-

thod (e.g., MCS) can obtain a feasible solution by calculation 

of the mean value or the degree of deviation from many sam-

ples without a limit on the complexity of the problem. There-

fore, MCS is adapted as the sampling method of RBDO in this 

study and ANN which will be explained in next section, is 

chosen to calculate Pf via MCS. 
 

2.2 Artificial neural network 

The approximation model has been usually applied to de-

sign optimization problems using numerical analysis data, and 

it is similar to a correlation formula from experimental results. 

There are many approximation models such as response sur-

face model (RSM) [13, 21-24], ANN, or Kriging model [16]. 

RSM has a good advantage in that it can construct an ap-

proximation model for the design optimization efficiently 

using second-order polynomial. However, by the same token, 

it may have a drawback in complex design optimization prob-

lems with strong nonlinear characteristics in the relationship 

between the design variables and the objective function. The 

relationships between the design variables and the objective 

functions are sometimes nonlinear in compressor design opti-

mization problems [10, 13]. Hence, RSM has limited success 

in constructing the approximation model in compressor design 

optimization problems, and ANN is adopted in this study to 

replace RSM in the effort to overcome this limitation. 

Jun et al. [16] researched the characteristics of three ap-

proximation models in order to choose a most suitable meta-

model for the RBDO of the aircraft wing. They were polyno-

mial regression (e.g., RSM), Kriging model and ANN. The 

advantages and disadvantages were determined by a compara-

tive analysis of three properties: rapid response, nonlinearity 
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and the generating efficiency. The rapid response property 

refers to how quickly responses can be gained with examples 

of the constructed approximation model, and the nonlinearity 

refers to the ability to represent the nonlinearity of design 

space. 

The last property, the generating efficiency, considers the 

required time to construct the approximation model. These 

properties of each approximation model are compared and 

displayed in Fig. 1. ANN shows excellent capability of captur-

ing the nonlinearity of performances, providing the response 

rapidly. Thus, the use of ANN is feasible to compute the fail-

ure probability of the stall margin of a compressor via MCS. 
 

2.3 Monte Carlo simulation 

MCS has been used in many RBDO researches to calculate 

reliability or failure probability when it is impossible to obtain 

an analytical solution numerically or when the failure domain 

cannot be approximated in analytical form [14, 16]. In other 

words, RBDO problems which need to adopt MCS are usually 

complicated design problems with large numbers of design 

variables to apply other RBDO analysis methods. The mathe-

matical formulation method of MCS is simple, and it can han-

dle very complicated RBDO problems. However, as the num-

ber of samples for MCS is increased to acquire an improved 

result, the calculation cost of MCS may also increase expo-

nentially. Therefore, as mentioned, many sampling methods, 

known as variance reduction techniques, have been introduced 

for efficient calculations with a reduced number of samples. In 

this manner, Eq. (2) can be simplified in according with a 

nonbiased assumption as expressed in Eq. (3) [24]. 
 

( )( ) ( )
( ) 0

0 .f
f j

G X

N
P P G X f x dx

N
≤

= ≤ = ≅∫
 

 (3) 

 

In Eq. (3), N is the total number of simulation cases and Nf 

is the number of cases where failure occurs. The ANN ap-

proximation model can improve the efficiency of MCS be-

cause it simplifies the relationships between the design vari-

ables and the objective function not defined from the entire set 

of data at all design points but by the approximation model. 

 

3. RBDO of the NASA stage 37 compressor 

The NASA stage 37 compressor is used as the baseline for 

the RBDO with an uncertainty model of stall margin. This is a 

transonic axial compressor that was introduced in a technical 

paper by Reid and Moore [17]. It has been used in various 

researches of the compressor design optimization, such as 

Benini [3], Samad and Kim [4]. The design specifications of 

the NASA stage 37 compressor are listed in Table 1, and this 

chapter presents the RBDO procedure using these specifica-

tions. The flow chart of RBDO for the NASA stage 37 tran-

sonic axial compressor is represented in Fig. 2. A brief outline 

of the RBDO procedure is listed as follows: 

 

1. Sample design points based on the selected design vari-

ables with the D-optimal method. 

2. Evaluate the objectives at the design points with analysis 

tools of each discipline. 

3. Construct an ANN approximation model of the objective 

function. 

4. Carry out MCS to generate the probability density func-

tion. 

5. Reconstruct an uncertainty model for the stall margin 

while varying the parameters. 

6. Perform multiobjective RBDO by Pareto-optimal analy-

sis. 

 
 

Fig. 1. Comparison of approximation models [16]. 

Table 1. Design specifications of the NASA stage 37 compressor [17].
 

Specification Value 

Mass flow rate, kg/s 20.1 

Rotational speed, rpm 17185.7 

Stage pressure ratio 2.05 

Rotor aspect ratio 1.19 

Stator aspect ratio 1.28 

Number of rotor blades 36 

Number of stator blades 46 

 

 
 

Fig. 2. Flow chart of the RBDO process. 
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7. Obtain an optimal compressor design shape. 

8. Compare the objectives of RBDO with the results of the 

initial shape. 
 

3.1 Objective function and constraints 

To construct an objective function for compressor RBDO 

considering its aerodynamics and structure, the features of 

each discipline are required to be combined. Therefore, the 

objective function is made up of multiobjective function that 

consists of two factors from the aerodynamics and the struc-

ture. The factor from the aerodynamic discipline is η of the 

entire compressor system, and the factor from the structural 

discipline is W of the rotors and the stators. This multiobjec-

tive function is set to maximize the efficiency and minimize 

the weight. It is defined as Eq. (4). 
 

( ) 0
1 2

0

,
W

f f W w w
W

ηη
η

= = ⋅ + ⋅ ,

 

 (4) 

where 1 2 1w w+ = .   

 

In this equation, W takes a contrasting reciprocal form to 

maximize the objective function and w1 and w2 are weighting 

factors of η and W. 

There are three constraints in this problem (Table 2). Safety 

factor is defined as the ratio of a maximum yield stress (σY) 

and a calculated maximum stress (σ) as shown in Eq. (5) [13-

14] and has to be more than 1.50 [27]. 

 

YSF
σ
σ

= .

 

 (5) 

 

In Eq. (5), minimization of the stress is equivalent to maxi-

mization of the safety factor. Stall margin is defined by calcu-

lation of the mass flow rate and the pressure ratio at the stall 

point and the initial point [17, 28]. The stall margin must ex-

ceed 1.10 and it is defined as [17]: 

 

1 100
stall ref

ref stall

PR m
SM

PR m

⎡ ⎤×
= − ×⎢ ⎥

×⎢ ⎥⎣ ⎦
,

 

 (6) 

 

where the subscript, ref, means the value of the initial point. 

Finally, the pressure ratio of the operation condition is set to 

be more than 1.82 [17]. These multiobjective functions and 

the three constraints are used in RBDO of the given compres-

sor. 

Aerodynamic analysis is performed using a commercial 

turbomachinery design and analysis tool Axial™ [29, 30]. 

Axial™ is a part of the agile engineering design systems from 

Concepts NREC. Developed for nearly 20 years, it can be 

applied to calculate efficiency, pressure ratio and flow condi-

tions of the operation point and the stall point.  

Structural analyses of the compressor such as calculation of 

weight and safety factor are performed using the commercial 

tool ANSYS. 

3.2 Definition of design variables and sensitivity analysis 

Generally, the blade shape of the rotor and stator has a deci-

sive effect on the performance and the weight of the compres-

sor. Therefore, the majority of adopted design variables are 

universally concerned with the geometry of the blade of the 

rotor and stator. The geometry variables of the rotor and stator 

itself (e.g., the lean angle) are also important in the design of 

the compressor. Fig. 3 shows the design variables applied in 

this study: the inlet angle, the outlet angle, the chord length, 

the maximum thickness and the blade lean angle of the rotor 

and stator. The chord length and the maximum thickness ratio 

are divided into three sections: the tip, the hub and the mean-

line. Additionally, the solidity of the rotor and stator is 

adopted in the design optimization process. As a result, there 

are 22 design variables. The initial value of the design vari-

ables originated from the NASA stage 37 compressor.  

In this study, experiment points for DOE are extracted in 

ANN process. However, the number of experiment points can 

increase with the number of design variables, and it requires 

additional calculation time. Therefore, it is necessary to select 

some major design variables that have a great effect on the 

objective function for the efficient RBDO of compressor. This 

process is known as sensitivity analysis of the design variables. 

Sensitivity analysis is done by confirming the tendency of the 

objective function according to the changes of each design 

variable. The initial values of the design variables are set from 

the NASA stage 37 compressor. The gaps between the mini-

mum and the maximum values of the design variables are 

termed the design space. It is essential to verify the influence 

of each design variable on the objective function in the design 

space for the sensitivity analysis. This is done for 22 design 

variables as suggested in the early stage of this paper using the 

commercial process integration and design optimization 

(PIDO) tool PIAnO [31]. 

Table 2. Constraints of the compressor MDO. 
 

Safety Factor (SF) ≥ 1.50 [27] 

Stall Margin (SM) ≥ 1.10 [17] Constraint 

Pressure Ratio (PR) ≥ 1.82 [17] 

 

 

Fig. 3. Design variables of the rotor and stator. 
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According to the result of the sensitivity analysis, five major 

design variables are verified, compiled in Table 3, to affect the 

multiobjective function more than 2% with more than 1% 

influence of each factor of the objective function at the same 

time. They are the inlet angle of the rotor/stator, the outlet 

angle of the rotor and the maximum thickness ratio of the 

rotor/stator. Table 3 represents details of these variables. 
 

3.3 Design of experiment and approximation model 

The approximation model needs data that can reproduce the 

behaviors of the objective functions and the constraints in the 

entire given design space. It is necessary to calculate the ob-

jective function at properly distributed experiment points in 

the design space to acquire the data for a reproduction of the 

design space. This process is known as the abstraction of the 

experiment points in design optimization, as this is similar to 

the correcting process with data from real experiments in what 

is known as DOE method. The simplest method of DOE is a 

full factorial method that extracts a large number of experi-

ment points to make the reproduction of the actual design 

space more likely. If the full factorial method is adapted in the 

design optimization with five design variables, the number of 

experiment points required for DOE is 2
5 
(2k full factorial) or 

3
5
 (3k full factorial). It may be difficult to obtain data of hun-

dreds of experiment points due to the increased computational 

cost. Thus, the D-Optimal method is applied to the approxi-

mation model of ANN with fewer experiment points [13]. 

The D-Optimal method requires experiment points that ex-

ceed (n+1) (n+2)/2 to construct an approximation model for n 

design variables. Therefore, the number of experiment points 

required for five design variables must exceed only 21. In 

accordance with this requirement of the D-Optimal method, 

33 experiment points are chosen for the construction of the 

more accurate and efficient approximation model. The ap-

proximate model of ANN for RBDO is formulated by apply-

ing experiment points which are extruded by the D-Optimal 

method. The approximation model of ANN consists of an 

input layer with five chosen design variables, a hidden layer 

with 20 nodes and an output layer with seven responses (effi-

ciency, weight, pressure ratio, safety factor, and pressure ratio 

at the operating point, mass flow rate, and pressure ratio at the 

stall point). The accuracy of the approximation model can be 

determined by calculating of the coefficient of determination 

(R
2
) and the root mean square error (RMSE) [16]. 

These results are presented in Table 4. As shown, all values 

of R
2
 exceed 0.999; therefore, the approximation model in this 

study accurately represents the actual design space of the 

compressor, highlighting its reliability. 
 

3.4 RBDO procedure with uncertainty model 

An uncertainty model for the stall margin calculation is ap-

plied to RBDO. It is necessary to detect the stall point and 

determine the flow conditions at the stall point to calculate 

stall margin as shown in Eq. (6). The flow conditions at the 

stall point for the stall margin calculation are computed by 

Axial™. The mass flow rate and the pressure ratio at the stall 

point are calculated using an iterative method with the mass 

flow rate decreasing from the design point to the stall point in 

Axial™. As a result, the value of the mass flow rate and the 

pressure ratio at the stall point in Axial™ is not a deterministic 

solution but is a highly adjacent value of the exact solution. 

By the same token, the pressure ratio at the initial design point 

is also computed using the iterative method in Axial™. More-

over, as in most commercial tools, Axial™ supplies a conser-

vative stable design or analysis result, and the margin values 

tend to be calculated as smaller value than the experiment 

result or the analytic solution. This property enables more 

stable design of the compressor, but it may have some limita-

tions if it is used to determine the exact performance metrics 

of the compressor. Therefore, it is possible to overdesign. For 

this reason, the uncertainty model for stall margin is adopted 

for the mass flow rate and pressure ratio at the stall point and 

the mass flow rate at the operating point to minimize differ-

ence between the experimental result and the numerical result. 

To construct the uncertainty model for stall margin, it is as-

sumed that the stall margin can be influenced by changing the 

variables in Eq. (6). It is assumed that values of the pressure 

ratio and the mass flow rate in Eq. (6) are statistical models 

with a normal distribution and that variations of these values 

are calculated by deviations of them. The propagated values of 

each variable for the uncertainty model are listed in Table 5. 

The Pf of stall margin can be calculated by the integral of the 

joint probability functions in Eq. (2), like Eq. (7). 

 ( )( ) ( )
( ) 1.1

1.1f

SM X

P P SM X f x dx
≤

= ≤ = ∫ .

 

 (7) 

 

The requirement of pj in Eq. (1) is set to 5%, implying reli-

ability of 2σ for the stall margin calculation. The results of Pf 

Table 3. Design space of the selected design variable. 
 

Design variable 
Lower 

Boundary 

Baseline 

(Initial value) 

Upper 

Boundary 

β1R -58.3361 -57.6361 -56.2361 

β2R -44.8185 -43.3185 -41.8185 

tR 0.0342 0.0518 0.0647 

β1S 40.2020 44.6689 48.2424 

tS 0.0400 0.0606 0.0758 

Table 4. Accuracy of the ANN approximation model. 
 

 η W SF SM PR 

R2 0.9999 0.9999 0.9999 0.9998 0.9999 

RMSE 0.004028 0.001498 0.004405 0.005437 0.001234

 
Table 5. Propagated values of variations for the uncertainty model. 
 

Propagated variables PRinitial PRstall ṁstall 

Variation value 0.0249 0.0109 0.0136 



736 S. Hong et al. / Journal of Mechanical Science and Technology 25 (3) (2011) 731~740 

 

 

in DO and RBDO are compared in the next chapter. 

 

4. Results and dscussion 

First, the Pareto fronts of deterministic optimization (DO) 

and RBDO are analyzed and compared to confirm the tenden-

cies of the factors objective function. The Pareto fronts of the 

factors which provide variety to the weighting factors in the 

DO process are presented in Fig. 4. The weighting factor w1 is 

oriented to η, and the weighting factor of W, which is w2, is 1- 

w1. The Pareto solutions change according to the change of w1 

from 0 to 1 and w2 from 1 to 0 at the same time. The values of 

the axis are non-dimensional values of the each factor of the 

objective function about the initial value. As shown in Fig. 4, 

there is an inverse proportion between η and W. The weighting 

factor of W, w2, increases toward the left side of the graph and 

there is a weight-minimized region. In contrast, the weighting 

factor of η, w1, increases toward the right side and there is 

efficiency-maximized region.  

The feasible region of this Pareto front is comprised of the 

regions where the non-dimensional value of η is higher than 

1.0 and where those of W are lower than 1.0. However, all 

values of W in this figure do not exceed 1.0; therefore, the 

constraint is limited to η. When selecting the optimal point, 

bias of the improvement to one side of the objective function 

cannot be allowed, and the improvement in the factors of the 

objective function can be achieved simultaneously. The opti-

mal point of DO is selected at the point where the weighting 

factors of η and W are 0.9 and 0.1, respectively. The efficiency 

of this point is set as close to the optimal result of RBDO. 

The Pareto front of RBDO is represented in Fig. 5. Similar 

to the Pareto front of DO, the left side is the weight-minimized 

region, and the right side is the efficiency-maximized region. 

The values of axis are also non-dimensional values about the 

initial values. The infeasible regions are those that are less 

than 1.0 for efficiency and over 1.0 for weight and they are 

drawn in the graph. The detected tendency of the Pareto front 

is that efficiency and weight are in inverse proportion to each 

other and that the optimal point is located in the feasible re-

gion of both factors. The weighting factors of the multiobjec-

tive function are 0.88 for efficiency and 0.12 for weight, 

which are the similar values noted with the DO results. This 

indicates that weight is a more oscillatory factor than effi-

ciency. Therefore, as suggested by Fig. 4 and Fig. 5, the re-

sults of DO and RBDO show a good tendency for MDO with 

interdependence in the compressor design optimization. 

The approximation model of RBDO by ANN is constructed 

to define the relationship between the design variables and the 

objective function. This approximation model is applied to 

DO that excludes consideration of the uncertainty in the com-

pressor design process. These results are then compared with 

the results of RBDO, which includes the uncertainty of the 

stall calculation. The comparison of the initial values and each 

optimized design results is listed in Table 6. As shown in Ta-

ble 6, the values of η, W, f and pressure ratio by DO are im-

proved in comparison with the results of the initial shape. 

However, stall margin is calculated as 1.1001, indicating a 

10.01% margin of the stall point by DO.  

This is slightly higher than the reference value of 1.10 in 

Table 2. In addition, Pf for stall margin by DO is surprisingly 

at 43.03%; this is too high to apply to the design of compres-

sor. Therefore, some supplementations are necessary to im-

prove the reliability of the DO result. According to this re-

 
 

Fig. 4. Pareto front of DO. 

 

 
 

Fig. 5. Pareto front of RBDO. 

Table 6. Comparison of design optimization results. 

 

Variable Initial DO RBDO 

β1R -57.6361 -57.8737 -57.5404 

β2R -43.3185 -44.1446 -44.6944 

tR 0.0518 0.0390 0.0508 

β1S 44.6689 48.1345 45.5895 

tS 0.0606 0.0729 0.0664 

η 0.8403 0.8730 0.8711 

W 2.0003 1.0907 1.6428 

PR 2.0504 2.0713 1.9958 

SM 1.0792 1.1001 1.1272 

Pf of SM n/a 43.03% 5.00% 



 S. Hong et al. / Journal of Mechanical Science and Technology 25 (3) (2011) 731~740 737 

 

  

quirement, RBDO, which enables reliable design optimization, 

is conducted in this study. It is carried out with an uncertainty 

model with flow condition variables which appear as random 

variables in the stall margin calculation. 

RBDO of the compressor is done up to the point of the stall 

margin convergence by MCS for data gathering using the 

approximation model in DO process. RBDO is carried out 

while applying the uncertainty model with three random vari-

ables: the pressure ratio and the mass flow rate at the stall 

point and the pressure ratio at the initial point. The reliability 

of RBDO is set to k=2, indicating 2σ (95%) reliability. In 

other words, the Pf value of stall margin is set to be lower than 

5% by RBDO. As a result of the RBDO process, stall margin 

is 1.1272, signifying a 12.72% margin with 5% Pf , as shown 

in Table 6. This value is sufficiently higher than the reference 

value of 10%. The Pf distributions of stall margin by DO and 

RBDO are presented in Fig. 6. The horizontal axis is the cal-

culated stall margin and the vertical axis is the Pf values. The 

graphs of Pf show normal distributions with a constraint at 

1.10, and the feasible region of RBDO is much larger than that 

of DO. This figure shows that the reliability of stall margin is 

improved by RBDO in comparison with DO due to the de-

crease of Pf from 43.03% in DO to 5.00% in RBDO. This is 

considerable improvement, and stall margin of RBDO can 

satisfy the constraint value with more than 95% success. 

Therefore, RBDO with the uncertainty model using random 

variables for the stall margin calculation can provide a more 

reliable result in the design optimization of the compressor by 

improving both the value of stall margin and the probability of 

failure for stall margin. This may be a proper supplementation 

of the commercial compressor design program Axial™. 

Performances of the NASA stage 37 compressor and the 

optimally designed compressors are compared in a perform-

ance map according to the mass flow rate in Fig. 7. In this 

case, the rotational speed is set to 100% rpm of the operating 

rotational speed in Table 1, and the pressure ratios (PR) de-

termined by Axial
TM

 according to the mass flow rates are pre-

sented. As shown in Fig. 7, the DO and RBDO results show a 

similar tendency to the initial shape. It is verified that the 

surge lines of both DO and RBDO rise from the initial value 

as shown in Fig. 7. The operating point is set to the mass flow 

rate at 20.1 kg/s, and the pressure ratios of the results at this 

point are located in the order of size: DO, the initial values and 

RBDO, representing an identical result to that shown in Table 

6. Moreover, in the RBDO case, the length of the performance 

curve from the operating point to the stall point is the longest. 

This is related to the value of stall margin in RBDO and 

proved by the stall margin results in Table 6. 

As shown in Table 6, the stall margin of RBDO is very 

good compared with not only the initial point but also DO. 

However, η, W and pressure ratio values of RBDO show dete-

riorating results in comparison with the result of DO. Never-

theless, the decrease of η is only 0.22%, which may be man-

ageable for the compressor design optimization with a signifi-

cant improvement in its stall margin reliability. 

And W of RBDO is much improved in comparison with the 

initial value, though it is worse than DO. Additionally, the 

pressure ratio of RBDO is higher than 1.5, the reference value 

in Table 2, though it is lower than DO. The factors of objec-

tive function, η and W of the initial shape, DO, and RBDO are 

compared in Fig. 8. The result of DO shows a considerable 

improvement of both η and W. However, the probability of 

failure for stall margin in DO is over 40%, which is much 

greater than that in RBDO. It means that these results can be 

certain under only 60% of the operating conditions. Therefore, 

 
 

Fig. 6. Probability of the failure distribution of stall margin. 

 
 

Fig. 7. Performance of the three compressors. 

 

 
 

Fig. 8. Comparison of the objective functions of the three compressors.
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RBDO is applied to construct more realistic and efficient de-

sign optimization method of the compressor. 

Finally, the optimal design shapes of DO and RBDO are 

presented in Fig. 9 with the baseline shape of the NASA stage 

37 compressor. These three shapes of the compressor show 

little differences in terms of their meridional view, but the 

shapes at the tip show a notable difference, as shown in the 

enlarged section in the upper-right corner of Fig. 9. Five cross-

sections along the radial direction of the rotor and stator are 

drawn at the bottom of Fig. 9. The numbers (1~5) are given 

from the hub to the tip of the rotor, showing the twist of the 

rotor. As shown in Table 6 and Fig. 9, the rotor exit angle of 

DO is the smallest in the results. The efficiency of DO is 

greater than that of the baseline and RBDO because the shape 

of DO shows considerable change from the initial baseline 

shape that exceeds that of the RBDO result. The maximum 

thickness ratio of the rotor is related to the weight of compres-

sor; the DO and RBDO results have a lower value than the 

initial value, as shown in the expanded in the lower left area of 

the figure. In particular, the weight of the DO process shows 

the smallest value in Table 6, while the maximum thickness 

ratio of the rotor in the DO result is also the smallest. 

The full 3D shape of the compressor stage by RBDO is pre-

sented at the left side in Fig. 10, and blown-up images of the 

rotors and stators are drawn on the right using the meridional 

and cross-section views. 

 

5. Conclusions 

Reliability-based design optimization (RBDO) of the 

NASA stage 37 transonic axial compressor was performed 

by applying an uncertainty model to enhance the stall char-

acteristics. It was assumed that uncertainty models of the 

mass flow rate and the pressure ratio for the stall margin 

calculation are statistical models with normal distributions. 

Monte Carlo Simulation (MCS) was carried out to calculate 

the probability of failure (Pf) of stall margin. Artificial neu-

ral network was adopted to determine the efficient perform-

ance levels of MCS and RBDO. The result of RBDO for the 

NASA stage 37 compressor was compared with the result 

of deterministic optimization (DO) and the initial shape. As 

shown in the results of this study, RBDO can serve as a 

good approach for nonlinear and uncertain design problems 

like a compressor design optimization. Moreover, RBDO 

can improve the result from the initial shape and make up 

for the weak points of DO by considering the uncertainty 

property of the compressor design. The results can be sum-

marized as follows: 
 

(1) The result of DO may cause stall in operation of the 

compressor with 43.03% probability by disturbance, but the 

probability of RBDO is only 5%. In other words, RBDO can 

provide 95% reliability as regards the stall characteristic. 

(2) The value of stall margin by RBDO using the uncer-

tainty model is 12.72%, which is greater than both the initial 

value and DO. Additionally, this is enough marginal to the 

given constraint value, 10%. 

(3) RBDO for the compressor provides 3.67% increased ef-

ficiency and 17.87% decreased weight in comparison with the 

baseline compressor. This is advantageous for an aircraft en-

gine. 
 

In this manner, RBDO with an uncertainty model can be an 

one of efficient and realistic method of stall margin calculation 

for an aircraft compressor design. 
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Fig. 9. Configurations of the three compressors. 

 

 

Fig. 10. 3D view of RBDO result. 
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Nomenclature------------------------------------------------------------------------ 

k :  Sigma level 

Pf :  Probability of failure 

PR :  Pressure ratio 

SF :  Safety factor 

SM :  Stall margin 

tR :  Maximum thickness ratio of a rotor 

tS :  Maximum thickness ratio of a stator 

W  :  Weight 

W0 :  Weight of the initial shape (baseline) 

w1 :  Weighting factor of the efficiency 

w2 :  Weighting factor of the weight 

β1R  :  Inlet angle of a rotor 

β1S :  Inlet angle of a stator 

β2R  :  Outlet angle of a stator 

η :  Efficiency 

η0 :  Efficiency of the initial shape (baseline) 

λ :  Blade lean angle 

σ :  Calculated maximum stress of the compressor 

σY :  Yield stress of the compressor 
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