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Abstract This paper focuses on Deterministic and Reliability Based Design Opti-
mization (DO and RBDO) of composite stiffened panels considering post-buckling
regime and progressive failure analysis. The ultimate load that a post-buckled
panel can hold is to be maximised by changing the stacking sequence of both skin
and stringers composite layups. The RBDO problem looks for a design that col-
lapses beyond the shortening of failure obtained in the DO phase with a target
reliability while considering uncertainty in the elastic properties of the composite
material. The RBDO algorithm proposed is decoupled and hence separates the
Reliability Analysis (RA) from the deterministic optimization. The main code to
drive both the DO and RBDO approaches is written in MATLAB and employs Ge-
netic Algorithms (GA) to solve the DO loops because discrete design variables and
highly nonlinear response functions are expected. The code is linked with Abaqus
to perform parallel explicit nonlinear finite element analyses in order to obtain
the structural responses at each generation. The RA is solved through an inverse
Most Probable failure Point (MPP) search algorithm that benefits from a Poly-
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nomial Chaos Expansion with Latin Hypercube Sampling (PCE-LHS) metamodel
when the structural responses are required. The results led to small reductions in
the maximum load that the panels can bear but otherwise assure that they will
collapse beyond the shortening of failure imposed with a high reliability.

Keywords Reliability · optimization · composites · stiffened panel · progressive
failure

1 Introduction

Aerospace companies are increasingly demanding lighter, safer and cleaner air-
crafts, being at the spearhead of innovation in the use of composite materials. They
are already playing a major role in the construction of aeronautical components
that takes part of larger structures like the fuselage, the wings or both the vertical
and horizontal tail plane (VTP-HTP). For example, the Boeing 787 Dreamliner
has a 50% of its structure built of composite materials (Hawk (2005)), whereas the
new Airbus A350 XWB reaches the 52% (Marsh (2007)). These percentages do
nothing but grow as they maximise weight reduction (typically 20% lighter than
aluminum), add strength, increase the lifespan of the aircraft thanks to a superior
durability and reduce maintenance costs as they require a lower number of inspec-
tions during service. By constrast, composite materials lack the well-established
industrial manufacture processes of the traditional metals and alloys, which involve
a higher uncertainty when dealing with their mechanical properties in structural
tests or analyses.

Moreover, besides the uncertainty associated to the composite mechanical
properties there may be other sources of error in load values, structural sizes or
manufacturing processes. In the design of an aircraft engineers need to take into
account this uncertainty in order to meet the severe design conditions imposed by
international regulations. Traditionally this was accomplished by imposing safety
factors during the design process that are usually based on experience. The novel
approach to consider uncertainty in aeronautical structures is to perform Reliabil-
ity Analysis (RA) and Reliability-Based Design Optimization (RBDO) during the
design process.

It is usual that aerospace companies try to produce derivatives from previous
products, namely aircrafts, trying to increase their efficiency by evaluating how
they can endure higher values of loads. The main structures of an aircraft are usu-
ally made of stiffened panels, which are designed for maximum strength, stiffness
and buckling load. However, it is well-known that the buckling load does not rep-
resent the maximum load that the structure can bear, indeed it may hold several
times the first buckling load withouth any damage (Stevens et al (1995), Zimmer-
mann and Rolfes (2006), Degenhardt et al (2006)). Consequently some panels are
designed to work in the post-buckling regime due to their high slenderness and
that the post-buckling extra strength has potential to achieve lighter and more
economic designs.

The widespread use of stiffened panels as structural components leads to use
Deterministic Optimization (DO) processes to achieve the best possible design.
Performing an optimization problem for the design of stiffened composite pan-
els may be troublesome given that several variables of different natures may be
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involved, as geometric dimensions or stacking sequences of the composite layup.
In addition, the behavior of the structure is highly nonlinear being largely con-
ditioned by the buckling phenomenon and the demanding aeronautical industry
advocates the study of post-buckling regime, where the nonlinearities are even of
higher order. For those reasons Genetic Algorithms (GA) are commonly used to
deal with these problems since they can handle discrete, continuous and mixed
design variables and are effective with nonlinear and non-convex functions. GAs
are based on the Darwin’s “natural selection” principle (Goldberg (1989), Holland
(1992)) and are translated to mathematical terminology through the creation of
a population of individuals that evolve and improve thanks to the operators of
crossover, mutation and selection. Some other population-based algorithms such
as the particle swarm algorithm have shown effectiveness in the optimization of
composite materials with high nonlinearities (Xu et al (2012), Xu and You (2013),
Shabana and Elsawaf (2015)).

In engineering, the evaluation of the objective function and constraints is usu-
ally performed through a nonlinear Finite Element (FE) analysis. Since the GA
are population-based methods that require a large number of evaluations of the
objective function and constraints before reaching the optimum, the solution of the
optimization problem involves a high computational effort that may become pro-
hibitive for industrial applications. Otherwise dealing with several discrete design
variables increases the number of possible configurations, making the whole de-
sign space almost boundless. For example, Faggiani and Falzon (2007) minimized
the damage between the skin and stiffeners of a composite panel in post-buckling,
which required 18 generations of 40 individuals (720 FE analyses). Badalló et al
(2013) made a comparative study of three different GAs in a multiobjective opti-
mization problem that required 25 generations of 16 individuals (400 FE analyses)
for each case.

To overcome the computational difficulties associated with this kind of opti-
mization problems, another strategy increasingly used is based on global approx-
imation techniques or metamodel regressions (Kriging models, Artificial Neural
Networks, Radial Basis Functions, Polynomial Chaos Expansion or Multivariate
Adaptative Regression Splines are some examples). There are several studies where
different metamodel regression methods are compared for a wide range of appli-
cations (Jin et al (2001), Acar and Rais-Rohani (2009), Simpson et al (2014)).
From a limited number of FE simulation samples they build a metamodel that
captures the behavior of the overall design region. Then the GA is performed over
the metamodel instead of running the FE analyses required for each generation.
Some examples of these strategies to optimize stiffened panels in both buckling
and post-buckling regime are presented in Todoroki and Sekishiro (2008), Bisagni
and Lanzi (2002), Lanzi and Giavotto (2006), Irisarri et al (2011) or Marín et al
(2012). One of the main limitations of global approximation methods is that it
is impossible to identify a priori which approximation technique is the best (Jin
et al (2001)). Moreover, in some cases the number of FE simulations required to
obtain a good approximation may be elevated and therefore the computational
effort saving with respect to GA with FE analyses is reduced.

Otherwise, RA predicts the probability of failure of a determined limit-state of
a structure by considering the real distribution functions of the uncertain data as-
suming that they are random variables. Several techniques for performing RA have
been developed including moment-based methods, sampling methods or approxi-
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mation techniques (Choi et al (2007), Zhao and Ono (2001), Eldred et al (2007)
or Choi et al (2004)). There is some research on RA applied to stiffened panels.
Akula (2014) performs a multiscale reliability analysis of a composite stiffened
panels considering microscale and macroscale design parameters. The probability
of failure is predicted using the Monte Carlo method in combination with approx-
imation models. Rognin et al (2010) develops a simulation approach to enhance
the reliability of complex damaged composite structures. Chen and Soares (2007)
presents a method that couples FE analyses with an enhanced first-order reliabil-
ity algorithm for reliability estimation of the post-buckling compressive strength
of panels under compression loads.

RBDO aims to address the best possible design through optimization while tak-
ing into account the uncertain data in some parameters that affect the structural
responses, seeking for the best compromise between cost and safety. This discipline
requires high computational effort since it combines DO and RA and has been ap-
plied to several multidisciplinary areas as automotive (Sinha (2007), Youn et al
(2004) or Cid Montoya et al (2015)), naval (Leheta and Mansour (1997)) or civil
engineering (Karadeniz et al (2009) or Kusano et al (2015)). Talking about RBDO
applied to aeronautical stiffened panels, Hernandez et al (2013) draws a compari-
son of three RBDO methods in a metallic panel under buckling constraints, Qu and
Haftka (2003) performs RBDO using Monte Carlo Simulations (MCS) and a De-
sign Response Surface (DRS) in order to compute the reliability constraints while
Díaz et al (2016) compares stochastic expansions with moment-based methods in
the RA and genetic with gradient-based algorithms in the DO phase.

The goal of this research is to perform the RBDO of a composite stiffened
panel focusing on maximizing its bearing capacity for a prefixed geometry and
setting the shortening of failure as the probabilistic constraint. For that, the design
variables are the orientation of the plies while the random parameters are the
elastic properties of the composite. In order to predict the collapse load properly,
post-buckling and progressive damage analyses are considered as an intrinsic part
of the problem. In this study the reference panel employed is obtained from the
preliminary design optimization phase performed in Bacarreza et al (2015), where
the number of plies, number of stiffeners and geometry dimensions were considered
as design variables, being the targets to minimize the mass and the Tsai-Wu index
and maximize the reaction force.

2 Definition of the Reliability-Based Design Optimization problem

2.1 Description of the stiffened panel and physics of the problem

This research employs the stiffened composite panel presented in Figure 1, which
is defined by a flat skin with three stringers. These kind of panels are part of more
complex aircraft structures like the wings or the fuselage. The panel is fixed at
one of the transversal edges and loaded under compression in the opposite edge by
a uniform increasing displacement that is applied in both the skin and stringers.
The longitudinal edges are constrained in all degrees of freedom except in the
x-direction (Figure 1). The overall dimensions of the panel are L =1196.0mm
length and W =618.4mm width, while the geometric dimensions of the stringers
are given in Figure 2 and Table 1.
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Fig. 1: Overall dimensions of the stiffened panel and scheme of the numerical
experiment.

Fig. 2: Geometric dimensions of the stringers.

Table 1: Geometric dimensions of the stringers.

Dimension Description Value

SH [mm] Stringer Height 37.46
SL1 [mm] Stringer Length 1 19.57
SL2 [mm] Stringer Length 2 22.77
SL3 [mm] Stringer Length 3 26.33

The skin and stringers of the panel are built as separate composite pieces and a
cohesive material is modelled as the interface between them. The densities of both
materials are of 1550 kg/m3 and 1600 kg/m3 respectively, being their mechanical
properties presented in Table 2.

The skin of the panel is an 8-ply symmetric and balanced laminate with stack-
ing sequence [45, -45, 0, 90]s, whereas the stringers are constituted by a 10-ply
symmetric and balanced laminate [45, 0, -45, 0, 90]s. The thickness of a single
layer of the skin is Tsk =0.276mm, while in the stringers it is Tst =0.186mm.
This means that the total thicknesses of the skin and the stringers are 2.208mm
and 1.86mm, respectively.
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Table 2: Material properties.

Property Value Description

1. Elastic properties of the composite material
E11 [MPa] 159000.0 Longitudinal modulus of elasticity
E22 = E33 [MPa] 10000.0 Transversal modulus of elasticity
G23 [MPa] 5000.0 Longitudinal shear modulus
G12 = G13 [MPa] 3000.0 Transversal shear modulus
ν12 = ν13 0.3 Longitudinal Poisson’s ratio
ν23 0.52 Transversal Poisson’s ratio
2. Damage initiation parameters of the composite material
σ0t
1 [MPa] 2413.0 Maximum longitudinal tensile stress
σ0t
2 = σ0t

3 [MPa] 59.0 Maximum transversal tensile stress
σ0c
1 [MPa] 1655.0 Maximum longitudinal compressive stress
σ0c
2 = σ0c

3 [MPa] 186.0 Maximum transversal compressive stress
τ012 = τ012 [MPa] 121.0 Maximum longitudinal shear stress
τ023 [MPa] 85.0 Maximum transversal shear stress
Gt

c1 [N/mm] 110.0 Longitudinal tensile fracture energy
Gt

c2 = Gt
c3 [N/mm] 0.25 Transversal tensile fracture energy

Gc
c1 [N/mm] 90.0 Longitudinal compressive fracture energy

Gc
c2 = Gc

c3 [N/mm] 0.80 Transversal tensile fracture energy
3. Elastic properties of the cohesive material
Em [MPa] 4350.0 Modulus of elasticity
νm 0.36 Poisson’s ration
4. Damage initiation parameters of the cohesive material
σ0
m [MPa] 69.0 Maximum nominal normal stress
τ0m [MPa] 80.0 Maximum nominal shear stress
Gt

m [N/mm] 0.13 Normal fracture energy
Gs

m [N/mm] 0.65 Shear fracture energy

As exposed in Section 1, the post-buckling extra strength has potential in order
to achieve safer and more economic designs. Nowadays the tendency in industry
is to perform virtual testings (Ostergaard et al (2011)) of FE models and then
calibrate them with a low number of experiments instead of carrying out a high
number of experiments in order to save costs and resources. Virtual testing allows
to predict the behaviour of the panel in service and extreme conditions with the
idea of gradually starting to certify certain structural components based on the
FE model behavior without the need of carrying out experimental tests. For this
reason, detailed FE models need to be constructed and increasingly advanced FE
analyses are required. In this research nonlinear explicit dynamic FE analyses are
used for modelling the post-buckling behaviour and the progressive failure of the
composite stiffened panel.

During post-buckling, the shape of the buckling waves does not remain constant
when increasing the compressive load. Indeed abrupt changes may occur at certain
load levels, which are known as mode-switchs. These phenomena are dynamic
instabilities that cause numerical difficulties when using quasi-static analyses. For
a better performance, explicit FE analyses can be used (Bisagni (2000)). Predicting
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the collapse load of the design is difficult because of the sensitivity of composites
to the effect of through-thickness stresses and the variety of damage mechanisms
that can arise in several locations of the panel and which could lead to collapse.

The intralaminar failure is modelled through cohesive elements and is analysed
based on continuum damage mechanics, taking into account all the possible failure
modes including tension or compression failure of the fibres, and cracking, crushing
or shear failure of the matrix. The definition of the damage initiation criteria is
based on the Hashin criteria (Hashin and Rotem (1973) and Hashin (1980)), while
the damage propagation laws are driven by the amount of energy dissipated during
the damage process (Lapczyk and Hurtado (2007)). The Hashin initiation criteria
are expressed as:

Fiber tension (σ̂11 ≥ 0) : F t
f = (

σ̂11
XT

)2 + α(
τ̂12
SL

)2. (1a)

Fiber compression (σ̂11 < 0) : F c
f = (

σ̂11
XC

)2. (1b)

Matrix tension (σ̂22 ≥ 0) : F t
m = (

σ̂22
Y T

)2 + (
τ̂12
SL

)2. (1c)

Matrix comp (σ̂22 < 0) : F c
m = (

σ̂22
2ST

)2 +

[
(
Y C

2ST
)2 − 1

]
σ̂22
Y C

+ (
τ̂12
SL

)2. (1d)

where XT and XC are the longitudinal tensile and compressive strengths, Y T

and Y C are the transverse tensile and compressive strengths, SL and ST the
longitudinal and transverse shear strength, α is a coefficient that determines the
contribution of the shear stress to the fiber tensile initiation criteria and σ̂11, σ̂22
and τ̂12 are the components of the effective stress tensor σ̂, which is employed to
evaluate the initiation criteria and is expressed as:

σ̂ = Mσ (2)

where σ is the true stress and M is the damage operator:

M =




1
1−df

0 0

0 1
1−dm

0

0 0 1
1−ds


 (3)

where df , dm and ds are the internal damage variables that characterize fiber,
matrix and shear damage. When the damage has happened, the behaviour of the
damaged material includes stiffness degradation and is computed as:

σ = Cdε (4)

being ε the strain and Cd the damaged elasticity matrix, which is expressed
as follows:

Cd =
1

D




(1− df )E1 (1− df )(1− dm)ν12E1 0
(1− df )(1− dm)ν12E1 (1− dm)E2 0

0 0 (1− ds)GD


 (5)
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where D = 1− (1− df ) · (1− dm) · ν12 · ν21. Prior to any damage initiation and
evolution, the damage operator M is equal to the identity matrix, so σ̂ = σ.

In this study the FE model considering post-buckling analysis, progressive
damage and failure is built and calculated using Abaqus Explicit 6.14.2 (Abaqus
(2014)), where both the Hashin damage initiation criteria and damage evolution
laws are already internally implemented. When any of the expressions of equation 1
is accomplished in a certain finite element, the internal damage variables df , dm
and ds are activated leading to the damage initiation stage. These parameters
change the damage operator M of equation 3, which becomes different than the
identity matrix, and the damaged elasticity matrix Cd in order to simulate the
response of the damaged material. The damage evolution process is determined
by the energy dissipated in the failure event (fracture energy) since the initiation
of damage has occurred.

In this software, if α = 0 and ST = YC/2 the initiation criteria is the one pro-
posed in Hashin and Rotem (1973), while if α = 1 it is the one presented in Hashin
(1980). As exposed in Abaqus (2014) once the damage initiation and evolution has
occurred for at least one mode, the damage operator becomes significant in the
criteria for damage initiation of other modes. Figure 3a and Figure 3b show the
deformed shape of the panel during the post-buckling regime and after failure.

(a) Post-buckling (b) After collapse

Fig. 3: Deformed shape of the panel in post-buckling regime (a) and after collapse
(b).

Setting an optimization strategy for complex structures such as stiffened panels
is a ticklish task, as there are several design variables of different nature involved
(number of plies, number of stiffeners, thickness, dimensions of the panel and
stiffeners, stacking orientations...) and several structural properties prone to be
set as objective function and design constraints (mass, reaction force, buckling
factor, shortening of collapse, Tsai-Wu index...). Some strategies tend to split
the optimization process in several phases because including all that information
in a single optimization problem may make it ungovernable. For instance, the
optimization strategy proposed in Bacarreza et al (2015) divides the optimization
process in two stages: a preliminary design optimization and a detailed design
optimization.

The preliminary design optimization consists in performing an optimization
where the mass and Tsai-Wu index try to be minimized and the reaction force
maximized. In this phase the design variables considered are the number of plies,
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number of stiffeners and in general all the dimensions of the panel, being the
material considered as linear elastic in order to shorten the FE simulation time.

Otherwise, the detailed design optimization takes the panel obtained in the
previous phase and tries to maximize the bearing capacity considering as design
variables the stacking orientations of the composite material, keeping the geometry
and consequently the mass of the panel unaltered. In this stage, the post-buckling
behaviour and progressive damage of the composite materials are considered in
order to predict correctly the collapse load of the panel. These phenomena are
influenced, among others, by the elastic properties of the materials. Since such
properties are more prone to variations in composites than in other materiales, in
this research they are considered as uncertain parameters.

It is important to highlight that the reference panel employed comes from the
preliminary design optimization performed in Bacarreza et al (2015). Therefore the
number of plies, thicknesses, number of stiffeners and geometry dimensions of the
panel are optimum values already obtained from a previous optimization process
aimed to minimize the mass of the structure. The motivation of this research is to
carry out a RBDO of the detailed design optimization phase, assuming as design
variables the stacking orientations of the plies, as random variables the elastic
properties of the composites and considering the shortening of failure of the panel,
which involves advanced FE simulations, as the probabilistic constraint. In other
words, the target is to maximize the reaction force that the panel can support
before collapse and at the same time assure with a target reliability that the
collapse will happen beyond a certain value of shortening, which is obtained from
a preliminary DO phase.

2.2 Formulation of the deterministic optimization problem

In the DO problem proposed, the geometry of the skin and stringers of the panel
are fixed to the nominal configurations reported in Figure 1, Figure 2 and Table 1.
The design variables of the problem are the stacking orientations of the layers
that build the skin and stringers of the panel. Both layups are symmetric, which
is usual in aerospace industry, so the number of design variables considered is 9
(4 in the skin and 5 in the stringers, which is half the number of layers affected).
Each layer can take the orientation values of −45◦, 0◦, 45◦ or 90◦ with respect
to the longitunal axis of the panel, meaning that the design space is formed by
49 = 262144 different designs. These orientation values are the guidelines employed
in aerospace industry.

The fact that all the design variables are discrete and the FE model takes
a long time to run a single FE analysis (parallelization is highly recommended)
advocates the use of Genetic Algorithms (GA) to solve the optimization problem.
GA excel in these two issues (dealing with integer or mixed design variables and
parallelisation), although they are more design improvers rather than proper op-
timizers as they do not assure that the design obtained is an optimum. Besides,
the convergence and performance of GA may depend on the parameters (number
of individuals, number of generations) and operators of the algorithm.

In Bacarreza et al (2015) the problem was initially defined as a multi-objective
optimization aimed to maximize both the reaction force Rf and the internal energy
En, subject to the fulfillment of a certain value of the reaction force Rf =655.0 kN.
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The optimization was carried out through the NGSA-II algorithm (Deb et al
(2002)) and showed that the constraint was inactive and that the two objective
functions followed a quasi linear relation. Afterwards in this research the DO prob-
lem was slightly modified turning it into unconstrained and mono-objective with
the objective of just maximizing the reaction force Rf that the panel can hold be-
fore collapse, being the mathematical formulation of the problem presented below:

max Rf (6)

As exposed in subsection 2.1, Rf is obtained through nonlinear explicit FE
analyses performed in Abaqus 6.14.2 that involve using the damage initiation
criteria and damage propagation laws of Eq. 1-5 within each simulation. Once
the DO is completed the values of both the reaction force Rf and the internal
energy En of the optimum panel are obtained. In this research three different
configurations with a different number of generations (gen.) and individuals in the
population (ind.) are tested for the same GA (10gen./30ind., 20gen./20ind. and
16gen./20ind.) and two different designs were found (Table 3 and Figure 4).

Table 3: Optimization results for different number of generations and individuals.

Description Opt. des. 10gen./30ind. Opt. des. 20gen./20ind. Opt. des. 16gen./20ind.

Rf [kN] 903.47 965.95 965.95
Shf [mm] 6.04 6.32 6.32
En [J] 3081.40 3402.21 3402.21
Skin layup [90, 0, 0, 0]s [0, 0, 0, 90]s [0, 0, 0, 90]s
Stringers layup [90, -45, 0, 90, 0]s [45, 0, -45, 0, 0]s [45, 0, -45, 0, 0]s

In both 20gen./20ind. and 16gen./20ind. the convergence of the GA is clear
since the value of the objective function from the 10th generation does not change,
as exposed in Figure 4. The 16gen./20ind. case was run in order to check that
the results are the same than in the 20gen./20ind. case, justifying the number of
gen./ind. used and consequently reducing the computational effort in the upcoming
RBDO problem, which is very time consuming because it requires to perform
several DO phases.

As can be seen, it was proven that reducing the number of individuals in this
particular problem does not worsen the results whereas increasing the number of
generations helps the convergence to a better optimum and consequently leads to
improvements in the objective function. This gives an idea of the characteristics
of the problem, which by nature has several local minima and causes that the
GA can converge to different optimal designs depending on the parameters of the
algorithm.

Furthermore, as the stiffened panel is pushed until collapse, the shortening
when the panel fails Shf,0 can be obtained. It is important that the values of Shf,0
from the FE analyses are coherent with those of the experimental tests in order
to validate the FE model for virtual testing. Moreover, Shf,0 is critical because it
marks the hard barrier that the design can reach, making interesting to consider it
as a probabilistic constraint in order to accomplish that the probability of collapse
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Fig. 4: Convergence of the objective function in the DO.

before Shf,0 is very low. The shortening of failure Shf,0 and the optimum layups
obtained from all the DO cases are presented in Table 3.

2.3 Formulation of the reliability-based design optimization problem

The main difference between RBDO and DO is that the former includes within
the optimization problem the uncertainty of some variables that influence the
structural responses by considering them as random variables instead of fixed pa-
rameters. As a consequence some of the constraints of the optimization problem
become probabilistic. A design obtained from a RBDO process assures the ful-
fillment of the probabilistic constraints with a desired target reliability level βT

when some of the parameters involved in the structural responses are random. In
contrast, a design obtained from a DO process cannot ensure the fulfillment of the
constraints if some degree of uncertainty exists in the problem. Figure 5 shows an
illustrative scheme where the essence of DO and RBDO can be clearly appreciated.

The general RBDO problem can be expressed mathematically as:

min F (d) (7a)

subject to:

gj(d) ≤ 0 (j = 1, ..., n) (7b)

P [Gi(d,x) ≤ 0] ≤ Pf,i (i = 1, ...,m) (7c)

where F is the objective function, gj is the j deterministic constraint, Gi is the
i probabilistic constraint, d are the design variables and x the random variables.
Additionally, P [−] denotes the probability operator and Pf is the probability of
failure of the probabilistic constraint.

According to Aoues and Chateauneuf (2010), the methods employed to solve
RBDO problems can be classified in three groups:
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Fig. 5: Illustrative scheme of DO vs. RBDO.

1. Two level methods (i.e. Enevoldsen and Sorensen (1994), Tu et al (1999)).
2. Mono level methods (i.e. Chen et al (1997), Kuschel and Rackwitz (2000).
3. Decoupled methods (i.e. Du and Chen (2004), Cheng et al (2006)).

In this research a decoupled method based on the Sequential Optimization
and Reliability Assessment (SORA, Du and Chen (2004)) is employed, being the
main difference that the RA is performed relying in a global approximation model.
The election of a decoupled RBDO algorithm is based on the lower computational
effort when compared to other methods as they transform the RBDO problem into
a sequence of DO and RA that are repeated until convergence, and particularly
the SORA over other decoupled methods mainly for its robustness and accuracy
(Aoues and Chateauneuf (2010)).

The objective of this research is to obtain the maximum reaction force Rf of
a composite stiffened panel while being sure that the failure will happen beyond
a specified value of shortening Shf,0 = 6.32mm when considering the uncertainty
associated to the elastic properties of the composite material.

Considering this, the Reliability-Based Design Optimization (RBDO) problem
can be defined as exposed in Eq. 8:

max Rf (8a)

subject to:

P [G ≤ 0] ≤ Pf (8b)

The limit-state function is defined asG = 1−Shf,0

Shf
, where Shf is the shortening

when the panel fails in the RBDO process and Shf,0 = 6.32mm is the shortening
when the DO design collapses. By convention, if G > 0 the design is safe and if
G < 0 fails, hence the design is safe when Shf > Shf,0 = 6.32mm.
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The design variables are the orientation of the layers that build the skin and
stringers, like in the DO problem. The random variables are all the elastic proper-
ties of the bulk composite (E11, E22, E33, G12, G13 and G23), following a truncated
Normal distribution in order to avoid the negative values of the distribution whose
statistical moments are defined in Table 4. The assumption of considering the elas-
tic material properties as normally distributed with a 5% coefficient of variation
is based on the literature (Yang et al (2013) or Akula (2014)).

Table 4: Statistical moments of the random variables.

Random Variable Distribution µ σ

E11 [MPa] Normal 159000.0 7950.0
E22 = E33 [MPa] Normal 10000.0 500.0
G23 [MPa] Normal 5000.0 250.0
G12 = G13 [MPa] Normal 3000.0 150.0

The RBDO problem provides a design that maximizes the Rf of the panel and
at the same time guarantees that it will withstand a shortening beyond Shf,0 =
6.32mm with a established reliability (1 − Pf ) when uncertainty is considered in
the elastic properties of the composite material. Indeed the probability that the
panel collapses before 6.32mm is the probability of failure Pf imposed by the
engineer.

3 Description of the methodology proposed

The solution of the RBDO problem exposed in Eq. 8 requires a high computa-
tional effort for the RBDO process since the values of the objective function and
constrains (both deterministic and probabilistic) are obtained through nonlinear
explicit dynamic FE analyses that are performed in Abaqus Explicit 6.14.2. As
stated in Section 2.1, these FE analyses include post-buckling behaviour and pro-
gressive failure considering all the possible failure modes of the fibres and the
matrix of the composite.

The RBDO problem is solved through a decoupled algorithm (SORA) pro-
grammed in MATLAB (MATLAB (2013)) and which is composed of two separate
steps that are performed sequentially until convergence, as shown in Figure 6.

The convergence criterion of the problem is defined as the relative difference
in the reaction force of the panel Rf within two consecutive RBDO iterations, as
expressed in Eq. 9.

RfK+1 −RfK

RfK
≤ ε (9)

where K and K+1 are two consecutive iterations of the RBDO algorithm and
ε is the maximum convergence criterion value, which is set to ε = 1 · 10−2. The
steps required to perform the decoupled RBDO method are discussed below:

1. Deterministic Optimization (DO), which is performed through a GA. The
values of the random variables in the first optimization cycle are the means
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Fig. 6: Flowchart of the decoupled algorithm employed in the RBDO.

of their probability distributions. In the subsequent optimization cycles, the
values of the random variables are the Most Probable failure Points (MPP)
obtained in the corresponding RA step.

2. Reliability Analysis (RA), performed using the Hybrid Mean Value (HMV,
Youn et al (2003)), which is an inverse MPP search algorithm that benefits
from a Polynomial Chaos Expansion with Latin Hypercube Sampling (PCE-
LHS) based metamodel (Choi et al (2004)) when the structural responses are
required.

3.1 Deterministic optimization phase

The flowchart of a general GA is presented in Figure 7. In this research the DO
problem is solved in MATLAB through the Integer ga Algorithm, which is included
in the Global Optimization Toolbox and is based on the algorithms presented in
Deb (2000) and Deep et al (2009). This GA attempts to minimize a penalty func-
tion instead of the objective function and employs a binary tournament selection
to select individuals for upcoming generations. When all the individuals of the
population are feasible the penalty function of a member is the objective func-
tion but otherwise the penalty function is the maximum objective function among
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the feasible members of the population plus a term that includes a sum of the
constraint violations of the infeasible member evaluated (MATLAB (2013)).
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Select best
individual

Final design

yes
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Fig. 7: Flowchart of the Genetic Algorithm (GA) employed in the Deterministic
Optimization in MATLAB.

The MATLAB code generates a random initial population and makes external
calls to Abaqus 6.14.2 to perform the FE simulations of the panel, which is a
parallelizable task. Then the objective function and constraints obtained from
those FE simulations are retrieved by MATLAB to execute the GA operators and
obtain the individuals of the upcoming generation. The population size is set to
20 individuals and the maximum number of generations is 16, which means to
perform 340 runs of the FE model, all of them considering explicit nonlinear FE
analyses.

3.2 Reliability analysis phase

3.2.1 Formulation of the reliability analysis

In this research the RA problem is solved by programming in MATLAB the Hy-
brid Mean Value (HMV, Youn et al (2003)) algorithm, which is an efficient inverse
MPP search method that uses the Advanced Mean Value (AMV) for convex func-
tions and the Conjugated Mean Value (CMV) for concave functions. The HMV
requires a previous transformation of the random variables x into uncorrelated
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and normalized variables u, and aims to obtain the MPP of the structure that will
take part in the next DO cycle of the SORA. The MPP is defined as the most
probable values that the random variables take when the limit-state function of
the structure G = 0 is reached. The distance from the MPP to the mean values
of the random variables in the standard and independent space u is the so-called
reliability index β, which is linked to the probability of failure by the following
expression when the random variables follow a Normal distribution.

Pf = Φ(−β) (10)

The HMV algorithm is an iterative process that is detailed below. First the ran-
dom variables x are transformed to the standard and independent space u through
the general Rosenblatt tranformation. Then the limit state function G(uk) and its
gradients with respect to the random variables ∇G(uk) need to be calculated in
order to obtain the normalized steepest direction αk of the limit state function
through the formula:

αk = − ∇uG(uk)

‖∇uG(uk)‖
(11)

being k the current iteration of the HMV algorihtm. Afterwards the upcoming
point of the HMV uk+1 is obtained after recognizing if the limit state function is
concave or convex. This is achieved by calculating the sign of ξ, which is defined
as:

ξ = (αk+1 − αk) · (αk − αk−1) (12)

If ξ > 0, the limit-state function is convex and the upcoming point is obtained
as:

uk+1 = βT · αk (13)

whereas if ξ < 0, the limit-state function is concave and the next point is
obtained as:

uk+1 = βT · αk + αk−1 + αk−2

‖αk + αk−1 + αk−2‖
(14)

During the first three iterations, the HMV calculates uk+1 through Eq. 13. This
iterative process is repeated until convergence in the value of u. After convergence
the final value of uk+1 is saved as the MPP of the limit state function uMPP . The
convergence of the HMV is reached when Eq. 15 is fulfilled:

G(uk+1)−G(uk)

G(uk)
≤ ǫ (15)

where k and k + 1 are two consecutive iterations of the HMV algorithm and ǫ
is the maximum convergence criterion value, which is set to ǫ = 5 · 10−3. Figure 8
clearly presents the steps followed by the HMV.
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Fig. 8: Flowchart of the Reliability Analysis algorithm.

3.2.2 Metamodel building

When the HMV algorithm requires the evaluation of the structural responses
in order to build the limit-state function G, it benefits from a metamodel con-
structed through a PCE-LHS instead of running sequentially each FE simulation.
The PCE was originally derived for the spectral representation of stochastic re-
sponses in terms of Gaussian random variables in Wiener (1938). Later, other
researchs (Askey and Wilson (1985) or Xiu and Karniadakis (2003)) extended the
method to other non-Gaussian random variables. The PCE, whose details are ex-
posed profusely in literature (Choi et al (2004), Eldred (2009) or Hu and Youn
(2011)) is an effective choice to represent the structural responses for an uncer-
tainty analysis as they benefit from orthogonality properties that greatly simplify
the procedure of statistical calculations, such as moments (Choi et al (2007)).
Moreover, the weighting functions of these orthogonal polynomials known as the
Askey scheme correspond to the Probability Density Functions (PDF) of several
well-known distributions, as presented in Table 5.

Particularly, the Hermite PCE for a response R is an infinite polynomial ex-
pansion which in practice is truncated at a expansion order P as follows:

R ∼=
P∑

i=0

bi · Ψi(u) (16)
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Table 5: Correspondence between orthogonal polynomials and PDF

Orthogonal polynomial PDF Support range

Hermite Normal (−∞,+∞)
Legendre Uniform (a,b)
Laguerre Exponential (0,+∞)
Jacobi Beta (a,b)

where bi are the unknown coefficients and Ψi are the Hermite polynomials eval-
uated in the normalized random variable vector u. Usually, Ψi(u) are multivariate
polynomials that involve products of the one-dimensional Hermite polynomials
ψi(ui), and hence the PCE includes a complete basis of polynomials up to a fixed
total-order specification P . The one-dimensional Hermite polynomials ψi(u) are
generally defined as:

ψi(u) = (−1)i · [φ(i)(u)/φ(u)] (17)

where φ(i)(u) is the ith derivative of the PDF of the Normal distribution
N(0, 1), expressed as:

φ(u) = (1/
√
2π)exp(−u2/2) (18)

From Equation 17 the set of the ith order one-dimensional Hermite polynomials
can be easily derived as:

{ψi(u)} =
{
1, u, u2 − 1, u3 − 3u, u4 − 6u2 + 3, u5 − 10u3 + 15u, ...

}
(19)

As an example, the multidimensional basis polynomials for a second-order ex-
pansion over two random dimensions are:

Ψ0(u) = ψ0(u1)ψ0(u2) = 1
Ψ1(u) = ψ1(u1)ψ0(u2) = u1
Ψ2(u) = ψ0(u1)ψ1(u2) = u2
Ψ3(u) = ψ2(u1)ψ0(u2) = u21 − 1
Ψ4(u) = ψ1(u1)ψ1(u2) = u1u2
Ψ5(u) = ψ0(u1)ψ2(u2) = u22 − 1

The total number of coefficients Nc of the polynomial expansion is given by:

Nc = 1 + P =
(n+ p)!

n!p!
(20)

where n is the number of random variables and p is the maximum order of the
one-dimensional Hermite polynomials ψ. From this expression it can be noted that
increasing the number of random variables or the order of the polynomial will cause
a substantial growth in the number of terms Nc of the PCE. Hence this will imply
an appreciable increase in the sample size and consequently in the computational
burden associated for complex analyses (like in this case, where post-buckling and
progressive failure are involved). Therefore it is important to select carefully the
random variables involved in order to spend a reasonable computational time.
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Table 6: ANOVA table for test of signification

Source of Sum of Degrees of Mean
variance squares freedom square (MS) F0

Total Regression SSr dfr = Nc MSr = SSr/dfr MSr/MSe

Coeff. of the Regression SSc dfc = 1 MSc = SSc/dfc MSc/MSe

Residuals SSe dfe = Ns −Nc − 1 MSe = SSe/dfe
Total SSt dft = Ns − 1

The unknown coefficients bi are obtained through regression models also known
as stochastic response surfaces. The polynomial expansion of Eq. 16 can be ex-
pressed in matrix notation for Ns samples as follows:

R = Ψb + e (21)

where:

R =




R1

R2

...
RNs


 ,Ψ =




1 Ψ1(u1) Ψ2(u1) . . . Ψp(u1)
1 Ψ1(u2) Ψ2(u2) . . . Ψp(u2)
...

...
...

. . .
...

1 Ψ1(un) Ψ2(un) . . . Ψp(uNs
)


 ,b =




b1
b2
...
bNs


 , e =




e1
e2
...
eNs


 (22)

being e the residuals. Usually, these regression models use the method of least
squares to identify the unknown coefficients as follows:

b = (ΨT
Ψ)−1

Ψ
TR (23)

Once the coefficients are obtained, the fitted model R̂ and the residuals can
be expressed as:

R̂ = Ψb e = R − R̂ (24)

The set of Ns samples needed to identify the unknown coefficients b are ob-
tained through a LHS that requires Ns FE simulations to obtain the set of struc-
tural responses R. The LHS is the sampling scheme selected as it is far more
efficient than the MCS method and ensures a regular distribution of the samples
making that all portions of the random variables’ ranges are represented.

Metamodel fitness must be checked in each particular problem to ensure the
precision of the approximation (Corman and German (2010)). For PCE-based
metamodels, it is usual that the test of significance of the regression is performed
through ANOVA (ANalysis Of VAriance, described in Draper and Smith (1981),
Montgomery and Peck (1992) or Choi et al (2007)). The ANOVA test is usually
summarized in a table similar to Table 6, where SSt, SSr and SSe are given by:

SSt = RT · R SSr = R̂
T · R̂ SSe = eT · e (25)

The test statistic F0 shows if a coefficient has a significant effect on the re-
gression model. If F0 > Fα,1,dfe, where α denotes the 100(1 − α)th percentile of
the “F distribution” and dfe indicates the degrees of freedom of the error in the
regression, then the coefficient has a significant effect.
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In addition the metamodel fitness has been assessed through two well-known
statistical metrics as the R2 (coefficient of determination) and the RMSE (root
mean square error). The R2 is a statistic that applies a penalty for the sum of
squares of error in the regression in relation to the sum of squares of the response
distribution, as exposed in Eq. 26:

R2 = 1−
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − yi)

2
(26)

where y is the real response point obtained from the FE simulation, ŷ is the
response point obtained from the PCE-based regression and y is the mean of all
the sample response points. Therefore the range of R2 is (−∞, 1], where the value
of 1 denotes a perfect fit. The larger the R2 estimator becomes, the better the
accuracy of the metamodel is. On the other hand, the RMSE is the standard
deviation of the residual distribution providing an idea of the scale error of the
distribution and is inversely correlated with R2. The formulation of the RMSE is
shown in Eq. 27:

RMSE =

√√√√ 1

n

n∑

i=1

(
yi − ŷi
σy

)2 (27)

where σy is the standard deviation of the response distribution.
According to Choi et al (2004), the construction of a PCE-LHS metamodel

involves a reasonably low number of sample points Ns, so in this research we set
Ns = 100. The responses of the samples are obtained through nonlinear FE simula-
tions that are performed in parallel running Abaqus 6.14.2 in a High Performance
Cluster (HPC). Afterwards the metamodel is built using a PCE approximation.
Being all the 4 random variables (as E22 = E33 and G12 = G13, see Table 4)
normally distributed, in this research a 3rd order Hermite polynomial (Table 5) is
employed. Based on the ANOVA analysis performed, a 3rd order PCE is enough
to predict the structural response properly, driving to Nc = 35 coefficients in the
PCE regression. In this case for α = 0.05 it has been proven that only 7 terms
out of 35 are significant, hence raising the order of the PCE is not required (Choi
et al (2004)). Besides, including higher order polynomials may lead to infeasible
solutions or an excessive increase in the number of samples points without gaining
accuracy.

The generation of the Hermite polynomials is programmed in a MATLAB
subroutine and the regression coefficients are obtained through Eq 23. To end,
ANOVA is conducted to prove that no higher order polynomials are required, and
the metamodel fitness is assessed. The estimators obtained for the PCE-LHS based
metamodel are R2 = 0.9452 and RMSE = 0.041, therefore it can be concluded
that the approximation is accurate enough. Moreover, Figure 9 shows a plot of the
real vs. PCE estimated limit-state function G in order to demonstrate that the
correlation between both responses is good.

Figure 10 shows the estimated PCE response of the limit state function G with
respect to some pairs of random variables. From this figure it can be observed
that the structural response is highly influenced by the longitudinal modulus of
elasticity of the material E11 which guides the shape of the response, what is
expected since the panel is loaded in compression.
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Fig. 10: Approximation model of the limit state function with respect to some
pairs of random variables.

The flowchart of the whole RA process including sampling, metamodel build-
ing and the HMV algorithm benefiting from the PCE-LHS based metamodel is
presented in Figure 11.
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Fig. 11: Flowchart of the Reliability Analysis algorithm.

4 Optimization results and discussion

The DO problem defined in Eq. 6 was carried out. The results show that the GA
found a new layup for maximizing the panel’s reaction force Rf . The improvements
in the objective function are over a 30% compared to the initial design. Figure 12
shows the convergence of the GA.

Although the maximum number of generations was set to 16 the GA converges
from the 10th generation. The DO problem was performed in a HPC of 768 cores,
a physical memory of 1.8 TB and a theoretical peak performance of 5.1 TFLOP’s,
from where we reserved 100 cores. Each FE analysis was performed using 4 cores
with a global of 16 GB of memory. The computational effort required for solving the
DO problem was of 168 hours taking a single FE analysis a average computational
time of 8 hours to run. It should be noticeable that not all the simulations collapse
at the same shortening so the computational effort varies from one to another.
The authors have preferred not to use global approximation techniques to perform
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Fig. 12: Evolution of the Reaction Force (objective function) in the DO.

the DO as they are also employed in the RA step and using metamodels in both
steps can detract in excess the solution of the problem.

Table 7 shows the values of the reaction force (objective function), shortening
of failure, internal energy and stacking sequences of the skin and stringers before
and after the deterministic optimization (DO) process. These results highlight
that the optimal layup of the panel has a high number of layers oriented with
0◦ especially on the core of the laminates, what is expected as a consequence of
being loaded in the longitudinal direction and targeting to maximize the bearing
capacity of the panel. Moreover, this effect is more evident in the stringers since
they absorb more tensional load than the skin, as seen in figure 13.

Table 7: Optimization results Initial design vs. DO design.

Description Initial design DO design

Rf [kN] 734.95 965.95
Shf [mm] 6.60 6.32
En [J] 2602.35 3402.21
Skin layup [45, -45, 0, 90]s [0, 0, 90, 0]s
Stringers layup [45, 0, -45, 0, 90]s [90, 0, -45, 0, 0]s

From the DO design the shortening when the panel collapses, which is Shf,0 =
6.32mm, is obtained. This value is imposed as the probability constraint in the
RBDO problem defined in Eq. 8, whose target is to maximize the reaction force Rf
that the panel can withstand assuring that if the elastic properties of the composite
are uncertain it will collapse beyond 6.32mm with a established reliability (1−Pf ).
In this research two different RBDO cases were performed for reliability indexes
targets of βT = 3 and βT = 5, which corresponds to probabilities of failure of
Pf,βT=3 = 1.35 · 10−3 and Pf,βT=5 = 2.86 · 10−7 respectively. Figure 14 shows the
convergence of the whole RBDO process, while Figure 15 presents the convergence
of the second and third DO cycles of the SORA method.

From these figures it can be observed that the RA conducted between the
second and third DO cycles converges to a similar MPP than the RA between
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Fig. 13: Stress distribution in the stiffened panel.
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Fig. 14: Evolution of the Reaction Force (objective function) in the RBDO cases
βT=3 (left) and βT=5 (right).

the first and second cycle and thus the third cycle starts from a design very close
to the final optimum. Moreover from figure 15 it can be extracted that the GAs
performed on the 2nd and 3rd DO cycles converge from the 10th generation since
the values of Rf are the same. The RBDO cases were performed in the same HPC
with the same requirements for each FE analyses. Additionally, two samplings of
100 design points each were needed to perform the two RA required in the RBDO.
These samplings are run in parallel, but since the number of cores reserved is 100
and each FE simulation requires 4 cores, only 25 samples are allowed to run at a
time in the HPC and consequently 4 cycles of 25 samples each are required. Each
cycle takes an average computational time of 8 hours (the same that a single FE
simulation), so the estimated time for one RA loop is about 32 hours. In these cases
the computational effort required in both RBDOs was of 514 hours for βT = 3
and 432 hours for βT = 5.

Table 8 shows the values of the reaction force (objective function), shortening of
failure (probabilistic constraint), internal energy and stacking sequences of both
RBDO designs compared with those of the DO design, while figure 16 shows a
plot of the stacking sequence in all panels (Initial, DO and both RBDOs), where
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(a) RBDO βT =3
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(b) RBDO βT =5

Fig. 15: Evolution of the Reaction Force (objective function) in the second and
third DO cycle of the RBDO cases.

it can be remarked that as expected the 0◦ oriented layers are on the inside of
the stringer laminates while the 45◦ and −45◦ are on the outside. The results
obtained from the RBDO cases show lower values of Rf than the ones obtained
from the DO as a consequence of including uncertainty within the optimization
process, but in exchange both RBDO designs fail beyond Shf,0. Since the design
condition Shf > 6.32mm needs to be accomplished in both RBDO problems with
a target reliability, the RBDOs lead to designs that surpass this value of shortening
although the material properties are uncertain. In return, this causes that the Rfs
obtained from the RBDO problems are lower that the obtained from the DO
problem, which is logical. The worse values in the objective function are usual in
RBDO problems as they consider uncertainty in some parameters or variables,
forcing the design to meet the constraints taking into account such uncertainty in
the evaluation of the limit state function.

Besides it is noticeable that even though the load does not change, a significant
difference in the orientation of the layers was achieved. Contrary to the DO design,
the RBDO layups are more balanced as there are not too many 0◦ oriented layers.
Therefore it can be concluded that the presence of uncertainty in the material
properties alters the best stacking sequence in order to accomplish the shortening
limit state.



26 Carlos López et al.

Table 8: Optimization results RBDO designs vs. DO design.

Description DO design RBDO βT = 3 design RBDO βT = 5 design

Rf [kN] 965.95 936.01 859.24
Shf [mm] 6.32 6.41 6.67
En [J] 3402.21 3226.50 3050.20
Skin layup [0, 0, 90, 0]s [0, 0, 90, 45]s [90, 0, 45, 90]s
Stringers layup [90, 0, -45, 0, 0]s [90, -45, 45, 0, 0]s [90, -45, 45, 0, 0]s

Table 9: Value of the MPP of the random variables for the RBDO designs.

Random Variable DO design RBDO βT = 3 design RBDO βT = 5 design

E11 [MPa] 159000.0 182710.0 198690.0
E22 = E33 [MPa] 10000.0 10061.0 9929.4
G23 [MPa] 5000.0 5064.8 5037.3
G12 = G13 [MPa] 3000.0 3022.8 2974.2

Table 10: Responses of DO design vs. RBDO designs when considering the mean
values of the random variables.

Description DO design RBDO βT = 3 design RBDO βT = 5 design

Rf [kN] 965.95 883.35 801.72
Shf [mm] 6.32 7.05 7.95
En [J] 3402.21 3394.40 3443.99

Table 9 shows the MPPs obtained from the RBDO cases. The compressive
effect of the load evidences that the longitudinal modulus of elasticity E11 is the
random variable by far more away from its mean value becoming the dominant of
the problem.

The left side of figure 17 shows a comparison of the Rf responses in the initial
design, the DO design and both RBDO designs for reliability indexes of βT = 3
and βT = 5 when the MPP of the random variables is considered. From this
figure it can be extracted that the probabilistic constraint is somehow active in
all cases, as the collapse of the optimal designs occurs near the value imposed as
barrier, Shf,0 = 6.32mm. However a more appropiate comparison between the
DO and RBDO designs is carried out in the right side of figure 17. In this graph
the material properties of all the designs are set to the mean values of the random
variables. The values of the reaction force, shortening of failure and internal energy
of the DO design compared with those of the RBDO designs considering the mean
values of the random variables are shown in Table 10.

Moreover, from figure 17 it can be observed that if the material properties are
set to the mean values, the Shf of the RBDO designs reach approximately 7mm
(βT = 3) and 8mm (βT = 5), respectively. These values are much higher than
Shf,0 = 6.32mm as a consequence of the low value of the Pf imposed in the RBDO
problem. Indeed from the RBDO results we can state (with a reliability of 99.875%
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Fig. 16: Orientation of the layers in the Initial, DO and RBDO designs.
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Fig. 17: Response of the initial, DO, RBDO βT = 3 and RBDO βT = 5 designs
considering the MPP (left) and mean (right) values of the random variables.

for βT = 3 and 99.9999714% for βT = 5) that the panel will collapse beyond
6.32mm when considering uncertainty in the elastic properties of the composite.
In other words, the Rf values obtained from the RBDO cases are the maximum
that can be achieved if the uncertainty of the system is taken into account.

5 Conclusions

Composite stiffened panels are increasingly used for aeronautical applications
thanks to their superior features in terms of strength, durability and weight when
compared to traditional metallic or alloy panels. However, composite materials lack
the well-established industrial manufacture processes of the metallics involving
higher uncertainty when dealing with their mechanical properties. Thus the main
aim of this research is to develop a methodology that allows performing Reliability-
Based Design Optimization (RBDO) of composite panels in post-buckling regime
including progressive failure analysis and taking into account the uncertainty of
the elastic properties of the composite. First, a Deterministic Optimization (DO)
is performed in order to obtain the shortening of failure of the panel. This value is
set as the probabilistic constraint in order to obtain a RBDO design that collapses
beyond the shortening of failure. Two RBDO cases with reliability indexes βT = 3
and βT = 5 have been performed.

The DO required 340 nonlinear explicit FE analyses so as to consider the
postbuckling behavior and collapse of the panel. On the other hand, both RBDOs
needed to perform three DOs to converge, plus two Reliability Analyses (RA) for
each RBDO case to obtain the corresponding Most Probable Failure Points (MPP).
Each RA required 100 samples to construct the Polynomial Chaos Expansion
with Latin Hypercube Sampling (PCE-LHS) based metamodel. In total, 1220 FE
analyses were necessary to perform both RBDO problems, which gives an idea of
the high computational effort required. The authors have preferred to perform the
DO without using global approximation techniques as they are also employed in
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the RA and using approximations in both the DO and RA may excessively distort
the solution of the problem.

The results obtained from the RBDO show lower values of the objective func-
tion than those obtained from the DO. This is what is expected from this kind of
problems as the RBDO takes into account the uncertainty of some parameters that
influence the structural responses like material properties or loads, something that
the DO lacks. Furthermore the probabilistic constraints in the RBDO are fulfilled
and thus we can affirm that the RBDO design will meet the requirements imposed
by the engineer with a high reliability.

The DO led to a final layup where the fibers were mostly oriented to 0◦ espe-
cially on the inside of the laminate, which is expected as the load follows the same
direction and the objective of the problem is to maximize the loading capacity.
This fact becomes far more evident in the stringers since they absorb a larger rate
of load compared to the skin. Otherwise the RBDO designs have a low number of
0◦ oriented layers leading to a more balanced layup although the load does not
change. This is due to the presence of uncertainty in the material properties of
the panel. Moreover the RBDO layups assure that the design will collapse beyond
the shortening of failure imposed Shf,0 with the target reliability defined in the
RBDO problem.
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