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Abstract In this work a second order approach for reliability-

based design optimization (RBDO) with mixtures of uncorre-

lated non-Gaussian variables is derived by applying second

order reliability methods (SORM) and sequential quadratic

programming (SQP). The derivation is performed by intro-

ducing intermediate variables defined by the incremental

iso-probabilistic transformation at the most probable point

(MPP). By using these variables in the Taylor expansions

of the constraints, a corresponding general first order relia-

bility method (FORM) based quadratic programming (QP)

problem is formulated and solved in the standard normal

space. The MPP is found in the physical space in the met-

ric of Hasofer-Lind by using a Newton algorithm, where the

efficiency of the Newton method is obtained by introduc-

ing an inexact Jacobian and a line-search of Armijo type.

The FORM-based SQP approach is then corrected by apply-

ing four SORM approaches: Breitung, Hohenbichler, Tvedt

and a recent suggested formula. The proposed SORM-

based SQP approach for RBDO is accurate, efficient and

robust. This is demonstrated by solving several established

benchmarks, with values on the target of reliability that

are considerable higher than what is commonly used, for

mixtures of five different distributions (normal, lognormal,

Gumbel, gamma and Weibull). Established benchmarks are

also generalized in order to study problems with large num-

ber of variables and several constraints. For instance, it is
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shown that the proposed approach efficiently solves a prob-

lem with 300 variables and 240 constraints within less than

20 CPU minutes on a laptop. Finally, a most well-know

deterministic benchmark of a welded beam is treated as

a RBDO problem using the proposed SORM-based SQP

approach.

Keywords RBDO · FORM · SORM · SQP

1 Introduction

The first order reliability method by Hasofer and Lind

(1974) is based on two key ingredients in the case of

uncorrelated variables; the iso-probabilistic transformation

(IsoT) and the most probable point. The invariance of the

approach is obtained by the IsoT, in such manner the reli-

ability index is established for normal distributed variables

Y with zero means and unit standard deviations. Let �(Yi)

be the cumulative distribution function for the standard nor-

mal distribution and F(Xi; θ) be the cumulative distribution

function for the original variable Xi with some distribution

parameters collected in θ , then the IsoT is defined by

Yi = �−1(F (Xi; θ)).

The Hasofer-Lind reliability index βHL is then defined by

the distance from the origin to the closest point, denoted

the MPP, on the failure surface h(Y ). This is established by

solving

{

min
Y

√
Y T Y

s.t. h(Y ) = 0.
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In FORM the probability of failure is obtained by tak-

ing the standard cumulative distribution of the Hasofer-Lind

reliability index in the following way:

Pr[h(Y ) < 0] ≈ �(−βHL).

This is a direct result of including only the linear terms in

the Taylor expansion of the failure constraint at the MPP.

Second order reliability methods are obtained by also

including second order terms in the Taylor expansion of

the failure surface. Based on these higher order terms the

first order approximation of the reliability is corrected.

The most established SORM correction is probably Bre-

itung’s formula (Breitung 1984) which utilize the curvature

of the constraint function at the MPP. In such manner the

relationship above is corrected according to

Pr[h(Y ) < 0] ≈ χSORM�(−βHL),

where χSORM is a correction factor depending on the curva-

ture of the corresponding hyperbolic approximation of the

limit state function at the MPP. Other established SORM

corrections are proposed by Hohenbichler et al. (1987) and

Tvedt (1983). These corrections are also implemented and

studied in the paper. A detailed presentation of different

SORM approaches can be found in the excellent textbook

by Lemaire (2009). Examples of other useful textbooks are

Halder and Mahadevan (2000) and Choi et al. (2010). In

addition, a recent second order formula presented by Man-

sour and Olsson (2014) is also implemented and investigated.

Fig. 1 illustrates the concepts of MPP, FORM and SORM.

A review of different RBDO approaches can be

found in Valdebenito and Schuëller (2010). Most RBDO

approaches are based on FORM and RBDO including

SORM appears less freqently. However, RBDO using SORM

is discussed already in the paper by Shetty et al. (1998),

Fig. 1 Illustration of MPP, FORM and SORM. The established rota-

tion of the normal space axes shown here is discussed in detail in

Section 3

where fire safety of offshore structures was optimized.

Another early paper on RBDO using SORM is by Choi

et al. (2001). More recently, Lim et al. (2014) proposed

a SORM-based RBDO approach using approximations of

the Hessian. Yoo et al. (2014) performed sensitivity anal-

ysis of SORM at the MPP for RBDO. Gu et al. (2015)

presented a practical approach for RBDO using SORM

for vehicle occupant systems, which was further devel-

oped in Gu et al. (2016). RBDO using Breitung’s for-

mula and non-Gaussian variables was demonstrated in Lim

et al. (2016). Mansour and Olsson (2016) demonstrated the

importance of using SORM-based methods for non-linear

problems by solving a problem with a quadratic objec-

tive and quadratic constraints taken from Lee et al. (2015).

The same conclusion is also drawn in this work by solv-

ing the same problem with our proposed SORM-based SQP

method.

An early paper on RBDO using SQP is presented by Ahn

and Kwon (2006). Karadeniz et al. (2009) optimized off-

shore towers using SQP and FORM. A filter-based SQP

algorithm to solve RBDO problems with highly nonlin-

ear constraints was proposed by Hsu and Chan (2010).

Sampling-based RBDO of ship hull structures by SQP was

performed by Choi et al. (2015). Recently, RBDO under

mixed probability and interval uncertainties was done by

SQP in Zhou et al. (2016).

The SORM-based SQP approach for RBDO presented in

this paper is proven to be efficient for solving large prob-

lem sizes with mixtures of non-Gaussian variables and high

targets of reliability. For instance, this is demonstrated for

a benchmark studied by Cho and Lee (2011) with 10 vari-

ables and 8 constraints, where the overall CPU-time for the

SORM-based SQP approach is less than 12 seconds. This

should be compared to the CPU-time for the correspond-

ing crude Monte Carlo simulations which is 1767 seconds.

Furthermore, this benchmark is also generalized and solved

for 300 variables and 240 constraints. It is shown that

our proposed approach treats this problem size efficiently

for five different distributions (normal, lognormal, Gumbel,

gamma and Weibull). The density distributions, cumulative

distributions and the gradients of these density distribution

functions are depicted in Fig. 2. Another most well-known

benchmark for RBDO with two variables and three con-

straints are expanded to 10 variables with mixtures of the

five distributions and 15 constraints with high targets of reli-

ability. This problem is also solved for 50 variables and 75

constraints.

The outline of the paper is as follows: in Section 2 the

FORM-based SQP is derived by using the MPP and the

IsoT, in the next section we introduce the four SORM-

based corrections, in Section 4 the suggested second order

approach for RBDO is evaluated for several benchmarks,

and, finally, we present some concluding remarks.
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Fig. 2 The density, cumulative

and gradient of the density

distribution functions for the

normal, lognormal, Gumbel,

gamma and Weibull

distributions, see further details

in Appendix A
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2 FORM-based SQP

Most recently, in Strömberg (2016), a FORM-based sequen-

tially linear programming (SLP) approach for RBDO was

obtained by introducing Taylor expansions of the limit state

function at the MPP by using intermediate variables defined

by the IsoT. In this work, those ideas are further devel-

oped for deriving a second order approach for RBDO by

using SQP and SORM. First, in this section, a FORM-based

SQP approach for RBDO is derived by adopting the IsoT

and the MPP. At a current iterate, an approximative QP-

problem of our RBDO problem is derived by performing

Taylor expansions at the MPP and by using intermediate

variables defined by the IsoT. In such manner, a QP-problem

including a target reliability index is obtained in the standard

normal space. The idea of intermediate variables is used fre-

quently in optimization, see e.g. the early works by (Fleury

1979; Fleury and Braibant 1986). The reciprocal approach

of Fleury and Braibant was e.g. utilized by Cho and Lee

(2011) for solving RBDO problems. Secondly, in the next

section, the FORM-based target reliability index is adjusted

by four SORM formulas. In such manner a SORM-based

SQP methodology for RBDO as illustrated by the flowchart

in Fig. 3 is obtained.

Let us consider a RBDO problem for one objective f =
f (X) and a constraint g = g(X), where X is consid-

ered to be a vector of NVAR uncorrelated random variables

with mean values μi which are collected in µ. The distri-

bution of each variable is defined by a probability density

function ρi = ρi(x; θ i), where θ i = θ i(μi) represents dis-

tribution parameters that depend on the mean value. The

corresponding cumulative distribution function is defined by

Fi(x; θ i) =
∫ x

−∞
ρi dx. (1)

For simplicity and clarity we only consider one con-

straint. However, it is straight-forward to extend the formu-

lation such that several constraints are treated simultane-

ously. This is done in the numerical implementation. Our

RBDO problem reads

{

min
μ

f (µ)

s.t. Pr[g(X) ≤ 0] ≥ Ps

(2)
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Fig. 3 Flowchart of the proposed SORM-based SQP methodology for

RBDO

where Pr[·] is the probability of the constraint g ≤ 0 being

true. Ps is the target of reliability that must be satisfied.

Notice, that we formulate the problem by using f (µ) as a

representative of our objective and not the expected value of

f , i.e. E[f (X)] where E[·] designates the expected value of

the function f . In the FORM-based SLP approach presented

in Strömberg (2016), we use E[f (X)] as objective function.

In that latter work, we also let f and g be given as surrogate

models using a new approach for radial basis function net-

works recently suggested and evaluated in Amouzgar and

Strömberg (2016). In this work, we focus on the deriva-

tion and performance of the proposed second order RBDO

approach and therefore only consider explicit analytical

expressions on f and g. Surrogate model based RBDO can

e.g. be found in (Gomes et al. 2011; Duborg et al. 2011;

Qu et al. 2003; Youn and Choi 2004a; Song and Lee 2011;

Kang et al. 2010; Zhu and Du 1403; Ju and Lee 2008).

The QP-problem is solved in the standard normal space

instead of the physical space. This is obtained by map-

ping the problem in (2) from the physical space to the

normal space by using the iso-probabilistic transforma-

tion and the Taylor expansions. At an iterate k with mean

values collected in µk , the incremental iso-probabilistic

transformation1 reads

Yi = �−1
(

Fi(Xi; θ i(μ
k
i ))
)

, (3)

where �(x) is the cumulative distribution function of the

standard normal distribution with zero mean and a unit stan-

dard deviation. We also recognize, by taking the derivative,

that (3) implies

φ(Yi)dYi = ρi(Xi; θ i(μ
k
i ))dXi . (4)

In this relationship, we have also introduced the probability

density function φ = φ(x) of the standard normal distribu-

tion. Equation (3) is not defined numerically for �−1(0) =
−∞ and �−1(1) = ∞. In the numerical implementation,

when this happens, we replace (3) by

Yi = Xi − μi

σi

, (5)

where σi is the standard deviation. Equation (5) is of course

the explicit expression of the IsoT when the random vari-

ables are Gaussian. Furthermore, by taking the mean of (4),

we arrive at

φ(Yi)E[dYi] = ρi(Xi; θ i(μ
k
i ))E[dXi]. (6)

The Taylor expansions of f and g, at an iterate k, are

performed for increments dYi = Yi − Y k
i and dXi = Xi −

Xk
i . By taking the means of these increments, we get

E[dYi] = ηi − 0, E[dXi] = μi − μk
i , (7)

where ηi = E[Yi], E[Y k
i ] = 0 by the definition of the iso-

probabilistic transformation in (3), μi = E[Xi] and μk
i =

E[Xk
i ]. By inserting (7) in (6), one obtains that

μi ≈ μk
i +

φ(Y k
i )

ρi(μ
k
i ; θk

i )
ηi (8)

is valid in a neighborhood of μk
i . Equation (6) holds

for infinitesimal increments, but (8) is written for finite

increments and therefore becomes an approximation. Equa-

tion (8) is crucial for the mapping back from the normal

space to the physical space at the end of the sequential

step since (3) is no longer valid at this stage, see (20) and

Fig. 4. Furthermore, (8) is also used to transform the objec-

tive function to the standard normal space, see (9) and (11).

In (8), the notation θk
i = θ i(μ

k
i ) was also introduced, which

will be used in the following.

1Notice that in the next iteration k + 1 we have a new IsoT defined

by Yi = �−1
(

Fi(Xi; θ i(μ
k+1
i ))
)

, implying that E[Yi ] ≈ 0 and

VAR[Yi ] ≈ 1 during the sequential step starting at exact zero and one,

respectively, see also Fig. 4.
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Fig. 4 Illustration of the

procedure of the SQP approach

by mapping from the physical

space to the standard normal

space and vice versa. The MPP

is established in the physical

space and the QP problem is

solved in the standard normal

space

A second-order Taylor expansion of f is performed at

μk
i , when f is considered to be a function of μi as in (2).

This can be written as

f (µ) ≈ f (µk) +
NVAR
∑

i=1

∂f

∂Xi

(μi − μk
i )

+ 1

2

NVAR
∑

i=1

NVAR
∑

j=1

Hij (μi −μk
i )(μj − μk

j ), (9)

where

Hij = ∂2f

∂Xi∂Xj

. (10)

By utilizing (8), (9) can also be written as a function of η,

i.e.

f (η) ≈ f (µk) +
NVAR
∑

i=1

∂f

∂Xi

∣

∣

∣

∣

X=µk

φ(Y k
i )

ρi(μ
k
i ; θk

i )
ηi

+ 1

2

NVAR
∑

i=1

NVAR
∑

j=1

H̃ijηiηj , (11)

where

H̃ij = ∂2f

∂Xi∂Xj

∣

∣

∣

∣

X=µk

φ(Y k
i )

ρi(μ
k
i ; θk

i )

φ(Y k
j )

ρj (μ
k
j ; θk

j )
. (12)

The constraint is expanded at the most probable point

Xk = XMPP by using a first order Taylor expansion in the

intermediate variables defined by the IsoT in (3). The MPP

is obtained by solving
{

min
X

1
2
Y (X)T Y (X)

s.t. g(X) = 0
(13)

in the physical space, where Y contains Yi = Yi(Xi) defined

by the iso-probalistic transformation in (3). This means, of

course, finding the closest point to the limit state function in

the metric of Hasofer-Lind. The main motivation for finding

the MPP in the physical space is that the IsoT then only

appears in the objective function. This has been found to

be most beneficial for problems with many constraints and

non-Gaussian variables.

Numerically, the problem in (13) is solved by applying

Newton’s method to the necessary optimality conditions,

which are

Yi

ρi(Xi; θk
i )

φ(Yi)
+ λ

∂g

∂Xi

= 0, i = 1, . . . , NVAR

g(X) = 0

(14)

By neglecting the gradients of the probability density func-

tions, the following in-exact Jacobian is used in the Newton

algorithm:

J =

⎡

⎢

⎣

diag

(

(

ρi (Xi ;θk
i )

φ(Yi )

)2
)

+ λ∇2g ∇g

∇gT 0

⎤

⎥

⎦
. (15)

The use of this Jacobian has proven to be superior over the

exact one in our implementation of the algorithm. By adding

1

φ(Yi)

⎛

⎝

∂ρi

∂Xi

−
(

ρi(Xi; θk
i )

φ(Yi)

)2
∂φ

∂Yi

⎞

⎠

to J (i, i) for i = 1, . . . , NVAR, the exact Jacobian is recov-

ered. Notice, that the derivative of the density functions also

are needed in order to establish this term, see Appendix A.

In addition, we are using a line-search of Armijo type,
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which we have adopted several times for solving non-

smooth and non-linear problems in mechanics. For instance,

in Strömberg (2011), it was utilized to simulate frictional

heat bands in a brake disc. In Klarbring and Strömberg

(2013), the state problem of hyperelastic bodies was estab-

lished with this approach in order to perform topology

optimization of non-linear elastic structures.

The linear approximation of g obtained by the Taylor

expansion in the intermediate variables reads

g̃= g̃(Y )≈
NVAR
∑

i=1

∂g

∂Xi

∣

∣

∣

∣

X=xMPP

φ(yMPP
i )

ρi(x
MPP
i ; θk

i )

(

Yi − yMPP
i

)

,

(16)

where yMPP
i = Yi(x

MPP
i ) is the optimal solution to (13).

Notice that g(xMPP) = 0 was utilized in the expansion.

Thus, we let g̃ = g̃(Y ) represents the hyperplane in (16).

By inserting g̃ into the reliability constraint in (2), the prob-

ability operator Pr[·] is straight-forward to evaluate2. We

have that

Pr[g̃(X) ≤ 0] = �

(

0 − μg̃

σg̃

)

, (17)

where the mean value μg̃ and the standard deviation σg̃ of

g̃, respectively, can be expressed as

μg̃ =
NVAR
∑

i=1

∂g

∂Xi

∣

∣

∣

∣

X=xMPP

φ(yMPP
i )

ρi(x
MPP
i ; θk

i )

(

ηi − yMPP
i

)

,

σg̃ =

√

√

√

√

NVAR
∑

i=1

(

∂g

∂Xi

∣

∣

∣

∣

X=xMPP

φ(yMPP
i )

ρi(x
MPP
i ; θk

i )

)2

τ 2
i . (18)

Here, τ 2
i = VAR[Yi] is the variance of Yi . In the follow-

ing it is assumed that the move limits represented by ǫ, see

(19), are set such that ηi will be close to zero, implying that

τi ≈ 1 can be considered to be a proper approximation. As

discussed previously in this section, one might think that

VAR[Yi] always equals one, but this is not the case since

the mean E[Yi] typically goes from zero to a non-zero value

during the solution of (19). Thus, during an increment the

mean is changed and the iso-probabilistic transformation at

iteration k is no longer valid at iteration k + 1. This is also

explained by Fig. 4.

2g̃ is of course normal distributed.

In conclusion, by inserting (11) and (17) into (2), the

deterministic QP-problem to be solved in the standard

normal space reads

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
ηi

NVAR
∑

i=1

∂f

∂Xi

∣

∣

∣

∣

X=µk

φ(Y k
i )

ρi(μ
k
i ; θk

i )
ηi + 1

2

NVAR
∑

i=1

NVAR
∑

j=1

H̃ijηiηj

s.t.

⎧

⎪

⎨

⎪

⎩

NVAR
∑

i=1

∂g

∂Xi

∣

∣

∣

∣

X=xMPP

φ(yMPP
i )

ρi(x
MPP
i ; θk

i )

(

ηi − yMPP
i

)

≤ −βtσg̃

−ǫ ≤ ηi ≤ ǫ

(19)

Here, the target reliability index βt = �−1 (Ps) has also

been introduced. In the next section, it is discussed how this

reliability index is corrected by using SORM.

The optimal solution to (19) is obtained by using the opti-

mization toolbox of Matlab (quadprog.m) and it is denoted

η∗
i . The corresponding mean value µk+1 is then updated by

using (8). By using this relationship, we map back η∗
i from

the standard normal space to the means in the physical space

according to

μk+1
i ≈ μk

i +
φ(Y k

i )

ρi(μ
k
i ; θk

i )
η∗

i . (20)

Then, a new QP-problem is generated around µk+1 fol-

lowing the procedure presented above. This procedure, see

Fig. 4, continues in a sequence until convergence is reached,

see also the flowchart presented in Fig. 3.

3 SORM-based corrections

At the origin of the standard normal space, (19) is equivalent

to

βHL ≥ βt , (21)

where

βHL =
√

yMPPT
yMPP = −

μg̃

σg̃

(22)

is the Hasofer-Lind reliability index. The perhaps confusing

minus sign here is of course a consequence of the defini-

tion of g in (2). This is explained in detail in Appendix B.

When βHL = βt , the probability of failure is estimated using

FORM to

Pf = 1 − Ps = �(−βt ). (23)

Furthermore, by using SORM, this is adjusted to

1 − Ps = χSORM�(−βt ), (24)

where χSORM is a correction factor established by any

SORM approach. Four such approaches are presented in
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detail below. Equation (24) now suggest how to correct our

target of reliability βt in the following manner:

βSORM = −�−1

(

1 − Ps

χSORM

)

(25)

This is our SORM-based target reliability index to be used

in (19) instead of βt . In such manner, we modify our FORM-

based SQP to a SORM-based SQP approach.

Before applying SORM, let us transform our variables Y

with base vectors ei to a new orthonormal coordinate system

where the first base vector ê1 is defined by the MPP using

ê1 = Y MPP

||Y MPP||
, (26)

see also Fig. 1. The other base vectors êi are then gener-

ated by the Gram-Schmidt procedure of the following set of

vectors {ê1, e2, . . . , eNVAR}. The columns of the correspond-

ing rotation matrix R is then defined by êi in the following

manner:

R =
[

ê2, ê3, . . . , êNVAR , ê1

]

, (27)

and we have that our new variables are given by

Z = RT Y . (28)

Now, let us perform a second order Taylor expansion of
h = h(Y ) = −g(X(Y )) in Z at the MPP. This yields

h(Z)≈∇hT R(Z−ZMPP) + 1

2
(Z − Z MPP)T RT ∇2hR(Z − ZMPP).

(29)

Since RT ∇h and ZMPP are collinear and opposite (this

follows from the necessary conditions to (13)) and

ZMPP = {0, . . . , 0, βHL}T , (30)

we can write (29) as

h(Z)=||RT ∇h||(βHL−ZNVAR )+1

2
(Z−zMPP)T RT ∇2hR(Z−z MPP).

(31)

Furthermore, if we normalize this limit function with the

scalar ||RT ∇h||, then we obtain

h̄(Z) = (βHL − ZNVAR) + (Z − zMPP)T A(Z − zMPP), (32)

where

A = 1

2

RT ∇2hR

||RT ∇h||
. (33)

In the derivations above, we also utilize

∂2x

∂y2
= ρ−1 ∂φ

∂y
− φρ−2 ∂ρ

∂x

∂x

∂y
, (34)

when ∇2h is calculated. Gradients of the five distributions

considered in this paper are presented in Appendix A.

A parabolic approximation of (32) reads

h̄p(Z) = (βHL − ZNVAR) +
NVAR−1
∑

i=1

λiζ
2
i , (35)

where λi are the principle curvatures of A(1:NVAR −
1,1:NVAR − 1) and ζi are some variables given in a coordi-

nate system defined by the corresponding eigenvectors. The

parabolic approximation in (35) is illustrated in Fig. 5.

By starting from the representation of the limit function

in (35), one can derive Breitung’s formula (Breitung 1984),

which suggests that

Pf = Pr[h(Y ) < 0] ≈ �(−βHL)

NVAR−1
∏

i=1

1√
1 + 2βHLλi

(36)

for large values on βHL. The latter product is called Breitung’s

correction and denoted here by χSORM = χSORM(βHL, λ),

where λ contains the principle curvatures λi .

Instead of using (36), one can apply the correction factor

suggested by Hohenbichler et al. (1987), which reads

χSORM =
NVAR−1
∏

i=1

1
√

1 + 2
φ(βHL)

�(−βHL)
λi

. (37)

Fig. 5 Illustration of the parabolic approximation utilized in the

SORM approaches



638 N. Strömberg

This is suggested to be an improvement of Breitung’s correc-

tion.

Another improvement of Breitung’s formula is suggested

by Tvedt (1983):

Pf = P[h(Y ) ≤ 0] ≈ P1 + P2 + P3,

P1 = �(−βHL)
NVAR−1
∏

i=1

1√
1+2βHLλi

,

P2 =(βHL�(−βHL)−φ(−βHL))

(

NVAR−1
∏

i=1

1√
1+2βHLλi

−
NVAR−1
∏

i=1

1√
1+2(βHL+1)λi

)

,

P2 =(βHL+1)(βHL�(−βHL)−φ(−βHL))
(

∏NVAR−1
i=1

1√
1+2βHLλi

−Re

[

NVAR−1
∏

i=1

1√
1+2(βHL+i)λi

])

.

(38)

When using this formula, our correction factor becomes

χSORM = Pf

�(−βHL)
= P1 + P2 + P3

�(−βHL)
. (39)

In this work, we also consider a less known SORM

approach suggested recently by Mansour and Olsson

(2014). They propose

Pf =P[h(Y )≤0]≈φ(−βC)) − φ(−βC))

(

H2γ1

6
+

H5γ
2
1

72
+ H3γ2

24

)

,

(40)

where

H2 = H2(−βC) = β2
C − 1,

H3 = H3(−βC) = −β3
C + 3βC,

H5 = H5(−βC) = −β5
C + 10β3

HL − 15βC

(41)

are three of the probabilists’ Hermite polynomials. Further-

more,

βC =

NVAR−1
∑

i=1

λi + βHL

√

NVAR−1
∑

i=1

2λ2
i + 1

,

γ1 =

NVAR−1
∑

i=1

8λ3
i

(

NVAR−1
∑

i=1

2λ2
i + 1

)3/2
,

γ2 =

NVAR−1
∑

i=1

48λ4
i

(

NVAR−1
∑

i=1

2λ2
i + 1

)2
. (42)

Here, βC, γ1 and γ2 represent the Cornell reliability index,

the skewness and kurtosis, respectively, of the limit state

function in (35). The corresponding correction factor χSORM

is again established by (39).

4 Numerical examples

The performance of the proposed SORM-based SQP

methodology for RBDO is demonstrated in this section for

three established benchmarks. However, the first two bench-

marks are generalized to be formulated for considerable

higher number of variables and constraints than the orig-

inal formulations, and the final one is typically used to

test deterministic design optimization algorithms, but in this

work formulated instead as a RBDO problem. The density

functions and the corresponding gradients of the five distri-

butions (normal, lognormal, Gumbel, gamma and Weibull)

are presented in Appendix A, see also Fig. 2. The distri-

butions are generated by using the statistics and machine

learning toolbox of Matlab and the QP-problem is solved

Table 1 Our solution (SSQP) compared to the solution reported in Cho and Lee (2011)

μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8 μ9 μ10

SSQP 2.135 2.331 8.709 5.102 0.922 1.445 1.389 9.809 8.156 8.476

(Cho and Lee 2011) 2.129 2.346 8.710 5.097 0.929 1.453 1.377 9.800 8.136 8.468

βMC
1 βMC

2 βMC
3 βMC

4 βMC
5 βMC

6 βMC
7 βMC

8 f (µ) E[f ]
SSQP 3.00 3.00 3.00 3.00 3.00 ∞ 3.00 ∞ 27.747 27.758

(Cho and Lee 2011) 3.00 3.01 3.03 3.03 2.99 ∞ 3.00 ∞ 27.755 27.765
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using quadprog.m of Matlab. In all examples, the start-

ing point is taken to be the deterministic optimal solution

obtained by a genetic algorithm (GA) and SLP, and the sam-

ple size is set to 1E6 using quasi-Monte Carlo simulations

with our in-house code with Halton and Hammersley sam-

plings, see Appendix C. All SORM approaches have been

tested and so far we think that their performances are very

similar. The solutions are obtained on a laptop workstation

with Intel i7 2.80 GHz and 16 GB RAM.

The first example in (43) is a numerical benchmark that

was considered by Cho and Lee (2011), which is a RBDO

formulation of the Hock and Schittkowski problem no. 113.

The RBDO problem in Cho and Lee (2011) consists of 10

normal distributed variables with VAR[Xi] = 0.022 and 8

constraints. This problem is recovered by setting N = 0

in (43). The solution obtained by the SORM-based SQP

approach is presented in Table 1. The solution is better than

the one presented in Cho and Lee (2011), both the functional

value f (µ) and the mean E[f ]. In addition, the reliability

for each constraint is satisfied most accurately.
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min
μi
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⎢

⎢

⎢

⎢

⎢

⎣

N
∑

j=0

(

45 + μ2
10j+1 + μ2

10j+2 + μ10j+1μ10j+2 − 14μ10j+1

−16μ10j+2 + (μ10j+3 − 10)2 + 4(μ10j+4 − 5)2

+(μ10j+5 − 3)2 + 2(μ10j+6 − 1)2 + 5μ2
10j+7

+7(μ10j+8 − 11)2 + 2(μ10j+9 − 10)2 + (μ10j+10 − 7)2
)
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⎥

⎥

⎥
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⎪

⎪

⎪
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for j = 0, . . . , N

Pr[4X10j+1+ 5X10j+2 − 3X10j+7 + 9X10j+8 ≤ 105] ≥ �(3)

Pr[10X10j+1− 8X10j+2 − 17X10j+7 + 2X10j+8 ≤ 0] ≥ �(3)

Pr[−8X10j+1+ 2X10j+2+ 5X10j+9− 2X10j+10 ≤ 12]≥ �(3)

Pr

[

3(X10j+1 − 2)2 + 4(X10j+2 − 3)2

+2X2
10j+3 − 7X10j+4 ≤ 120

]

≥ �(3)

Pr

[

5X2
10j+1 + 8X10j+2 + (X10j+3 − 6)2

−2X10j+4 ≤ 40

]

≥ �(3)

Pr

[

0.5(X10j+1 − 8)2 + 2(X10j+2 − 4)2

+3X2
10j+5 − X10j+6 ≤ 30

]

≥ �(3)

Pr

[

X2
10j+1+ 2(X10j+2− 2)2−2X10j+1X10j+2

+14X10j+5 − 6X10j+6
≤ 0

]

≥ �(3)

Pr

[

−3X10j+1 + 6X10j+2

+12(X10j+9 − 8)2 − 7X10j+10 ≤ 0

]

≥ �(3).

(43)
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Fig. 6 CPU-time in seconds as function of number of variables NVAR

and the optimal objective value as function of NVAR

We also consider the problem in (43) for non-Gaussian

distributions. The results are reported in Table 2. The solu-

tions for lognormal and gamma distributions are very sim-

ilar to the one obtained for the normal distribution, but for

the Gumbel and Weibull distributions both solutions differ

slightly. One also observers that the corresponding prob-

abilities of safety for these two solutions are a bit more

conservative. This is probably a topic for small improve-

ments in the future. In addition, we solve the problem for

50, 100, 200 and 300 normal distributed variables with

40, 80, 160 and 240 constraints, respectively, in order to

demonstrate the numerical performance. The trend of the

CPU-time and the objective value for this study is shown in

Fig. 6. From the graphs one can see that the problem with

300 variables is solved in less than 20 CPU minutes on a

laptop with the same accuracy as for 10 variables.

The second problem in (44) is a generalization of a well

established benchmark for RBDO, see e.g. (Chan et al. 2007;

Table 2 Our solution of (43) for non-Gaussian distributions

μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8 μ9 μ10

Lognormal 2.127 2.349 8.711 5.098 0.912 1.415 1.373 9.798 8.138 8.481

Gumbel 2.265 2.218 8.502 5.366 0.984 1.632 1.554 9.884 8.337 8.422

Gamma 2.130 2.343 8.711 5.100 0.915 1.425 1.378 9.802 8.144 8.480

Weibull 2.259 2.231 8.522 5.333 0.990 1.628 1.551 9.885 8.351 8.432

βMC
1 βMC

2 βMC
3 βMC

4 βMC
5 βMC

6 βMC
7 βMC

8 f (µ) E[f ]
Lognormal 3.00 3.00 3.00 3.00 3.00 ∞ 3.00 ∞ 27.755 27.766

Gumbel 3.04 3.01 3.11 4.75 3.17 4.75 3.02 ∞ 28.865 28.873

Gamma 3.00 3.00 3.00 3.00 3.00 ∞ 3.00 ∞ 27.751 27.763

Weibull 3.25 3.41 3.11 ∞ 3.10 ∞ 3.12 ∞ 28.48 28.49
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Fig. 7 The solutions with

Weibull distributions for targets

of reliability of �(3) and �(4),

respectively. The sample size to

the left is 5E3 and to the right

2E5. In the left figure 12 points

are violating the constraints and

13 points in the right plot

Fig. 8 (44) solved for different distributions and targets of reliability. Column 1: normal, column 2: lognormal, column 3: Gumbel, column 4:

gamma and column 5: Weibull. Row 1: Ps = 0.99, . . ., row 4: Ps = 0.99999
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Table 3 A 10 variables benchmark with 15 constraints

μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8 μ9 μ10

NVAR = 2 3.4525 3.2758 3.4073 3.1724 3.7129 3.8508 3.4214 3.2034 3.6130 3.6369

NVAR = 10 3.4525 3.2758 3.4073 3.1724 3.7129 3.8508 3.4214 3.2034 3.6130 3.6369

�(4) 3.6204 3.6485 3.5328 3.4677 4.3255 4.8719 3.5583 3.5198 3.9730 4.3566

Calls, CPU 1749, 6.45 s 1546, 5.96 s 2519, 8.94 s 1616, 8.80 s 2470, 9.11 s

βMC
1 βMC

2 βMC
4 βMC

5 βMC
7 βMC

8 βMC
10 β MC

11 βMC
13 βMC

14

NVAR = 2 2.99 3.00 3.00 3.00 2.98 3.01 3.00 3.00 2.99 3.00

NVAR = 10 2.99 3.00 3.00 3.01 2.98 3.01 3.00 3.00 3.00 3.00

�(4) 3.99 4.00 4.00 4.01 3.99 4.00 4.00 4.00 3.99 4.00

Youn and Choi 2004b) and also Figs. 7 and 8. The origi-

nal problem is for two variables and three constraints, this

is obtained by setting N = 0 in (44). In addition, we also

square the objective function in order to evaluate the SQP

approach. The generalization reads
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⎪

⎪
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⎪
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⎪

⎪

⎪

⎩

min
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(

N
∑
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μ2j+1 + μ2j+2

)2

s.t.
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⎪

⎪
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for j = 0, . . . , N

Pr[20 − X2
2j+1X2j+2 ≤ 0] ≥ �(3)

Pr

[

1 − (X2j+1+X2j+2−5)2

30

− (X2j+1−X2j+2−12)2

120
≤ 0

]

≥ �(3)

Pr[X2
2j+1 + 8X2j+2 − 75 ≤ 0] ≥ �(3),

(44)

where VAR[Xi] = 0.32.

We begin to solve the original problem of (44), i.e. when

N = 0, for our five different distributions. The results from

this study are presented in the first rows of Table 3. We also

report the number of function calls for these problems on the

fourth row together with the corresponding CPU time. The

slightly longer CPU time for the gamma variables compared

to the times obtained for normal and lognormal variables

is a consequence of a slower algorithm for the gamma dis-

tribution. However, in my opinion, the number of function

calls does not reveal the performance of an algorithm. For

instance, by increasing the number of functions calls when

using the Armijo line-search procedure, the performance

of the Newton algorithm is improved significantly and the

bottle-neck of solving linear equation systems for finding

search directions is reduced. Thus, by increasing the number

of function calls, the CPU time decreases. We believe that

the problem size and corresponding CPU times are more rel-

evant information for evaluating numerical performance of

an algorithm as presented in Fig. 6.

Next, we let N = 4, i.e. 10 variables and 15 constraints,

where the first pair of variables is normal distributed, the

second pair is lognormal, the third is Gumbel, the fourth is

gamma and the fifth pair is Weibull distributed. The solution

to this problem is presented on the second rows of Table 3.

Notice that the solution obtained for 10 variables with mix-

tures of the five distributions is identical to the sub-solutions

obtained for two variables. Furthermore, the targets of reli-

ability are also satisfied most accurately. We also solve this

problem with 10 variables when the target of reliability is

changed from �(3) to �(4). The solution is given on the

third rows of Table 3. For this particular problem we let the

sampling size of the quasi-Monte Carlo simulation be 1E7.

The solutions for Weibull distributions are plotted in Fig. 7

for both �(3) and �(4). In Fig. 8, we have solved (44)

when N = 0 for each distribution with targets of reliability

ranging from 0.99 to 0.99999.

Fig. 9 Convergence of the SQP

loops for mixtures of 50

variables and 75 constraints.

Left: FORM and right: SORM
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Fig. 10 Histograms of

constraints one and three
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We also solve (44) when N = 24, implying 50 variables

and 75 constraints. The first 10 variables are normal, the

next ten are lognormal and so forth. The solution is identical

to the ones obtained for two and ten variables. The CPU-

time is less than ten minutes, and the corresponding SQP

convergence histories for the FORM and SORM steps are

plotted in Fig. 9.

Finally, we consider the welded beam problem depicted

in Fig. 11. This is a well-known mechanical design problem

that has served as benchmark several times in determin-

istic optimization, see e.g. Garg (2014). We now treat

this design problem as a RBDO problem as given in

(45). The corresponding deterministic problem is given

in Appendix D. We let 0.1 ≤ X1, X4 ≤ 2 and

0.1 ≤ X2, X3 ≤ 10 be lognormal3 with VAR[X1] =
VAR[X4] = 0.12 and VAR[X2] = VAR[X3] = 0.32.

The optimal objective value for the deterministic problem

is 2.381 at X∗ = (0.24437, 6.2175, 8.2915, 0.24437) and

is obtained when constraints 1-3 and 6 are active. However,

for our RBDO formulation of the welded beam problem,

the expected mean of the optimal objective is 9.9442 at

µ∗ = (0.43379, 6.9512, 9.0252, 0.92561) when constraints

1 and 3 are active. The probability of safety of these

constraints are 0.9990. The corresponding histograms are

plotted in Fig. 10. Problem (45) might serve as a challeng-

ing RBDO benchmark with highly non-linear objective and

constraints.
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min
μi

1.10471μ2
1μ2 + 0.04811μ3μ4(14 + μ2)

s.t.
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⎪
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Pr[τ(Xi) − 13600 ≤ 0] ≥ 0.999

Pr[σ(Xi) − 30000 ≤ 0] ≥ 0.999

Pr[X1 − X4 ≤ 0] ≥ 0.999

Pr[0.125 − X1 ≤ 0] ≥ 0.999

Pr[δ(Xi) − 0.25 ≤ 0] ≥ 0.999

Pr[6000 − Pc(Xi) ≤ 0] ≥ 0.999.

(45)

3This choice is crucial since Xi cannot be negative.

5 Concluding remarks

In this work SORM-based RBDO is performed by SQP for

large problem sizes with mixtures of non-Gaussian distribu-

tions and high targets of reliability. This is done by deriving

a FORM-based QP-problem in (19), where the target of

reliability index is corrected using (25) with four different

SORM approaches. In this work, all SORM corrections have

shown very similar performance.

The derivation of (19) utilize the fact that the IsoT in

(3) is incremental in a sequential approach, therefore (3) is

termed incremental IsoT in this work. A proper treatment

of this fact is crucial for the performance of the method

and this is presented in detail in the paper. The derivation

is performed by using (8) and intermediate variables, both

defined by the incremental IsoT, such that (19) is formulated

in the standard normal space, which implies that the setting

of the move limits is straight-forward. Another important

feature of the methodology is the treatment of the MPP,

which is solved in the physical space instead of the nor-

mal space. In such manner, we only have to deal with the

IsoT in the objective function instead of the limit functions.

This is crucial for the numerical performance when deal-

ing with many constraints and non-Gaussian variables. In

addition, we have also found the introduction of the inexact

Jacobian in (15) improve the performance significantly for

non-Gaussian variables.

The proposed methodology is studied numerically for

several problems with non-Gaussian variables. In particu-

lar, two established RBDO benchmarks are generalized to

large number of variables and many constraints of reliabil-

ity. These two generalizations, (43) and (44), might sever

as benchmarks for testing new RBDO algorithms for large

problem sizes with mixtures of non-Gaussian variables. The

numerical performance of the implementation of the pro-

posed second order RBDO approach is excellent, showing

high accuracy and robustness at low CPU times when solv-

ing (43) for 300 variables and 240 contraints, and (44) for 50
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variables and 75 constraints with mixtures of non-Gaussian

variables and high targets of reliability.
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Appendix A: Distributions

In this appendix the density distribution functions used in

this work, and the corresponding gradients, are presented.

The relationships between the distribution parameters and

the mean E[X] and the variance VAR[X] are given in

Table 4. The distributions are plotted in Fig. 2 for E[X] = 1

and VAR[X] = 0.12.

Normal

ρN = ρN (x; θ1, θ2) = 1

θ2

√
2π

exp

(

− (x − θ1)
2

2θ2
2

)

, (46)

∂ρN

∂x
= (θ1 − x)

θ3
2

√
2π

exp

(

− (x − θ1)
2

2θ2
2

)

, (47)

Lognormal

ρL = ρL(x; θ1, θ2) = 1

xθ2

√
2π

exp

(

− (log(x) − θ1)
2

2θ2
2

)

(48)

∂ρL

∂x
==

θ1 − log(x) − θ2
2

x2θ3
2

√
2π

exp

(

− (log(x) − θ1)
2

2θ2
2

)

(49)

Gumbel

ρG =ρG(x; θ1, θ2)=
1

θ2
exp

(

(x − θ1)

θ2

)

exp

(

−exp

(

(x − θ1)

θ2

))

,

(50)

Table 4 Distribution parameters - normal, lognormal, Gumbel,

gamma and Weibull distribution. Here, 0.5772 represents the Euler-

Mascheroni constant

Distribution θ1 θ2

Normal E[X]
√

VAR[X]

Logormal log(E[X]) − θ2
2
2

√

log
(

1 + VAR[X]
E[X]2

)

Gumbel E[X] + 0.5772θ2

√

6VAR[X]
π2

Gamma E[X]2

VAR[X]
VAR[X]

E[X]

Weibull (Halder and

Mahadevan 2000)

E[X]

Ŵ

(

1 + 1

θ2

)

(
√

VAR[X]
E[X]

)−1.08

∂ρG

∂x
= 1

θ2
2

exp
(

(x−θ1)
θ2

)

− exp
(

2(x−θ1)
θ2

)

exp
(

exp
(

(x−θ1)
θ2

)) (51)

Gamma

ρŴ = ρŴ(x; θ1, θ2) = 1

θ
θ1

2 Ŵ(θ1)
xθ1−1 exp

(

− x

θ2

)

, (52)

∂ρŴ

∂x
= xθ1−2

θ
θ1+1
2 Ŵ(θ1)

(θ1θ2 − θ2 − x) exp

(

− x

θ2

)

, (53)

Weibull

ρW = ρW (x; θ1, θ2) = θ2θ
−θ2

1 xθ2−1 exp

(

−
(

x

θ1

)θ2
)

.

(54)

∂ρW

∂x
= θ2θ

−θ2

1 xθ2−2

(

θ2 − 1 − θ2

(

x

θ1

)θ2
)

exp

(

−
(

x

θ1

)θ2
)

.

(55)

Appendix B: Hasofer-Lind approach

In the established Hasofer-Lind approach, the reliability

index βHL is defined by the distance from the origin to

the closest point, denoted the MPP, on the failure surface

h(Y ) = −g(X(Y )), see Fig. 1. This is established by

solving
{

min
Y

√
Y T Y

s.t.h(Y ) = 0.
(56)

The Hasofer-Lind reliability index is then defined by the

corresponding optimal solution Y MPP in the following man-

ner

βHL =
√

Y MPPT
Y MPP, (57)

or, by using ∇hT Y = −λ∇hT ∇h
√

Y T Y from the neces-

sary optimality conditions to (56), as

βHL = −∇hT Y MPP

√

∇hT ∇h
. (58)

This can also be expressed in g = g(X(Y )) by utilizing (4).

If this is done, then one finally arrives at

βHL =

N
∑

i=1

∂g

∂Xi

∣

∣

∣

∣

X=XMPP

φ(yMPP
i )

ρi(x
MPP
i , θ i)

yMPP
i

√

√

√

√

N
∑

i=1

(

∂g

∂Xi

∣

∣

∣

∣

X=XMPP

φ(yMPP
i )

ρi(x
MPP
i , θ i)

)2
, (59)

from which (22) is obtained by using (18).

http://creativecommons.org/licenses/by/4.0/
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Appendix C: Halton and Hammersley sampling

The Halton and Hammersley sequences are two examples of

sparse uniform samplings generated by quasi-random seq-

uences. Let p1, p2, ..., pD represent a sequence of prime num-

bers, where D is the dimension of a Halton point defined by

XHal = XHal(k) = {�(k, p1), �(k, p2), . . . , �(k, pD)}
(60)

for a non-negative integer k. Furthermore, for any prime

number p,

�(k, p) = a0

p
+ a1

p2
+ . . . + aM

pM+1
, (61)

where the integers a0, a1,..., aM are obtained from the fact

that k can be represented as

k = a0 + a1p + ap2 + . . . + aMpM . (62)

A quasi-random set of N Halton points is now simply

obtained by taking a sequence of Halton points in (60) for

k = 0, 1, 2,..., N − 1. By defining the Hammersley point as

XHam = XHam(k) =
{

k

N
, �(k, p1), �(k, p2), . . . , �(k, pD−1)

}

,

(63)

we can easily generate a set of Hammersley sampling points

in a similar way as for the Halton set. The radical inverse

�(k, p) appearing in (61) is established in this work by the

following algorithm:

pp = p

kk = k

while kk > 0

a = mod(kk, p)

� = � + a/pp

kk = f loor(kk/p)

pp = pp ∗ p

end.

Appendix D: The welded beam problem

A most established engineering benchmark is the welded

beam problem shown in Fig. 11, which reads

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
xi

1.10471x2
1x2 + 0.04811x3x4(14 + x2)

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

τ(xi) − 13600 ≤ 0

σ(xi) − 30000 ≤ 0

x1 − x4 ≤ 0

0.125 − x1 ≤ 0

δ(xi) − 0.25 ≤ 0

6000 − Pc(xi) ≤ 0,

Fig. 11 The welded beam problem

where the shear stress τ(xi), normal stress σ(xi), displace-

ment δ(xi) and critical force Pc(xi) are given by

τ(xi) =
√

τ 2
1 + 2τ1τ2

(

x2
2R

)

+ τ 2
2 ,

τ1 = τ1(xi) = 6000√
2x1x2

,

τ2 = τ2(xi) = MR
J

,

M = M(xi) = 6000(L + x2
2

),

J = J (xi) = 2

(

x1x2√
2

(

x2
2

12
+
(

x1+x3

2

)2
))

,

R = R(xi) =
√

x2
2
4

+
(

x1+x3

2

)2
,

σ = σ(xi) = 36000L

x4x
2
3

,

δ = δ(xi) = 24000L3

Ex3
3x4

,

Pc = Pc(xi) =
4.013

√

EGx2
3
x6
4

36

L2

(

1 − x3

2L

√

E
4G

)

.

Here, G=12E6 Psi is the shear modulus, E=30E6 Psi is

Young’s modulus and L = 14 in. In addition, the vari-

ables are bounded by 0.1 ≤ x1, x4 ≤ 2 and 0.1 ≤
x3, x4 ≤ 10. The optimal solution obtained by GA and SLP

is (0.24437, 6.2175, 8.2915, 0.24437). An almost identical

solution was presented by Garg (2014).
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