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Reliability-Based Optimization Using
Evolutionary Algorithms

Kalyanmoy Deb, Shubham Gupta, David Daum, Jürgen Branke,

Abhishek Kumar Mall and Dhanesh Padmanabhan

Abstract— Uncertainties in design variables and problem
parameters are often inevitable and must be considered in
an optimization task if reliable optimal solutions are sought.
Besides a number of sampling techniques, there exist several
mathematical approximations of a solution’s reliability. These
techniques are coupled in various ways with optimization in
the classical reliability-based optimization field. This paper
demonstrates how classical reliability-based concepts can
be borrowed and modified and, with integrated single and
multiobjective evolutionary algorithms, used to enhance their
scope in handling uncertainties involved among decision variables
and problem parameters. Three different optimization tasks
are discussed in which classical reliability-based optimization
procedures usually have difficulties, namely 1) reliability-
based optimization problems having multiple local optima, 2)
finding and revealing reliable solutions for different reliability
indices simultaneously by means of a bi-criterion optimization
approach, and 3) multiobjective optimization with uncertainty
and specified system or component reliability values. Each of
these optimization tasks is illustrated by solving a number of test
problems and a well-studied automobile design problem. Results
are also compared with a classical reliability-based methodology.

Index Terms— Ditlevsen’s bound, evolutionary multiobjec-
tive optimization, most probable point, Pareto-optimal front,
reliability-based optimization, reliable front, system reliability.

I. INTRODUCTION

F
OR PRACTICAL optimization studies, reliability-based

techniques are getting increasingly popular, due to the

uncertainties involved in realizing design variables and sto-

chasticities involved in various problem parameters. For a
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canonical deterministic optimization task, the optimum solu-

tion usually lies on a constraint surface or at the intersection

of more than one constraint surface. However, if the design

variables or some system parameters cannot be achieved ex-

actly and are uncertain with a known probability distribution,

the deterministic optimum (lying on one or more constraint

surfaces) will fail to remain feasible on many occasions. In

such scenarios, a stochastic optimization problem is usually

formed and solved, in which the constraints are converted

into probabilistic (or chance) constraints, meaning that the

probability of failure (of being an infeasible solution) is limited

to a prespecified value (say (1 − R)) [1], [2], where R is the

specified reliability of the design.

Existing reliability-based optimization techniques differ in

the manner they handle the probabilistic constraints. One

simple approach is to use a Monte Carlo simulation technique

to create a number of samples following the probability

distribution to represent uncertainties and stochastitices in

the design variables and problem parameters and evaluate

them to compute the probability of failure [3]–[5]. However,

such a technique becomes computationally expensive when

the desired probability of failure is very small (say, one in a

million).

Recently, optimization-based methodologies, instead of

sampling methods, are suggested to take care of the proba-

bilistic constraints. In these methods, stochastic variables and

parameters are transformed into the standard normal variate

space, and a separate optimization problem is formulated to

compute the probability of failure and equate it with the

desired value (1 − R). At least three different concepts—

double-loop methods, single-loop methods, and decoupled

methods—exist. In this paper, we extend the double-loop

method to be used with an evolutionary optimization tech-

nique. To handle multiple constraints, we borrow the system

reliability concepts through the use of Ditlevsen’s bounds to

compute a more accurate probability of failure. Furthermore,

we propose and use a computationally faster technique to

compute the reliability estimate of a design. We apply the

proposed methodology to three different types of optimization

problems and demonstrate by solving test problems and an

automobile design problem that the evolutionary optimization

techniques are good candidates for reliability-based design.

Results are compared with a couple of classical methods, and

the advantages and disadvantages of them are discussed. This

paper clearly brings out problem domains in which reliability-

based evolutionary algorithms will have an edge over their

classical counterparts and should encourage more such studies.

1089-778X/$26.00 © 2009 IEEE
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The paper is structured as follows. Section II introduces the

reliability-based optimization problem and describes currently

used classical reliability-based methodologies. Further related

work, in particular in the area of evolutionary computation,

is surveyed in Section III. Then, three possible scenarios for

reliability-based optimization are described in Section IV.

Our evolutionary approach describing the computationally

faster technique is presented in Section V. Then, Sections VI

to VIII report empirical results of our approach on the

aforementioned three scenarios with a comparison to classical

approaches. The paper concludes with a summary and some

ideas for future work in Section IX.

II. PROBLEM DEFINITION AND

CLASSICAL RELIABILITY-BASED METHODOLOGIES

A. Problem Definition

Let us consider here a reliability-based single-objective

optimization problem of the following type:

Minimize
(x,d)

f (x, d, p)

subject to g j (x, d, p) ≥ 0, j = 1, 2, . . . , J

hk(d) ≥ 0, k = 1, 2, . . . , K

x(L) ≤ x ≤ x(U ),

d(L) ≤ d ≤ d(U ).

(1)

Here, x is a set of design variables which are uncertain. That

is, for a particular vector µx considered in the optimization,

the realized value is distributed with a probability distribution.

In our discussion here, we shall assume a normal distribution

N (µx, σx) with mean µx and a covariance matrix σx, which

is dependent on the variable vector value µx. Appropri-

ate transformation techniques are available to consider other

probability distributions as well [4]. Similarly, p is a set of

uncertain parameters (which are not design variables) and

follow a probability distribution N (µp, σp) representing the

uncertainty. However, d is a set of deterministic design vari-

ables, which are not uncertain and can be realized as they are

specified exactly. Thus, the stochasticity in the optimization

problem comes from two sets of parameters: x and p. However,

although the above problem is written in a way to mean

that x and d are decision variable vectors to the optimization

problem, in reality, µx and d are decision variable vectors. In

most cases, fixed covariance vectors are used for x and p, or

covariances as known functions of x and p are assumed.

Here, we only consider inequality constraints. This is be-

cause if an equality constraint involves x or p, there may not

exist a solution for any arbitrary desired reliability against

failure. All inequality constraints can be classified into two

categories: 1) stochastic constraints g j involving at least one

stochastic quantity (x, p or both) and 2) hk involving no

stochastic quantity.

Fig. 1 shows a hypothetical problem with two stochastic

inequality constraints. Typically, the deterministic optimal

solution [the solution to the problem given in (1) without

any uncertainty in x or p] lies on a particular constraint

boundary or at the intersection of more than one constraints,

as shown in the figure. In the event of uncertainties in design

variables, as shown in the figure with a probability distribution

Uncertainities

in x1 and x2

Deterministic

optimum

Feasible

region

x2

x1

Reliable

solution

Fig. 1. Concept of reliability-based optimization procedure.

around the optimal solution, in many instances, such a solution

will be infeasible. In order to find a solution that is more

reliable (meaning that there is a small probability of resulting

in an infeasible solution), the true optimal solution must be

sacrificed, and a solution interior to the feasible region may

be chosen. For a desired reliability measure R, it is then

desired to find that feasible solution that will ensure that the

probability of having an infeasible solution instance created

through uncertainties from this solution is at most (1 − R).

To arrive at such a solution, the above optimization problem

can be converted into a new optimization problem. Since the

objective function f and constraints g j are probabilistic due

to the randomness in variable set x and parameter set p, the

following deterministic formulation can be made:

Minimize
(µx,d)

f (µx, d, µp)

subject to P(
∧J

j=1(g j (x, d, p) ≥ 0)) ≥ R

hk(d) ≥ 0, k = 1, 2, . . . , K

x(L) ≤ µx ≤ x(U ),

d(L) ≤ d ≤ d(U )

(2)

where µx and µp denote the mean of variables x and p,

respectively. The term P() signifies the joint probability of

the solution x being feasible from all J constraints under

the uncertainty assumption. The quantity R is the desired

reliability (within [0, 1]) for satisfying all the constraints.

The conversion of the constraint g j (x, d, p) ≥ 0 into a

probabilistic constraint with the introduction of a reliability

term is a standard technique and the transformed probabilistic

constraint is also known as a chance constraint. However,

finding the joint probability of a solution being feasible from

multiple constraints is a difficult mathematical proposition and

approximate methods are used to make an estimate of the

above probability. We discuss some of the commonly used

procedures in Section II-B and shall discuss a couple of ways

of handling the joint probability term for multiple constraints

later in Section II-D. Many reliability-based optimization

studies simply break the above probability constraint into J

chance constraints as follows:

P(g j (x, d, p) ≥ 0) ≥ R j , j = 1, 2, . . . , J (3)

where R j is the desired probability of constraint satisfaction

of the j th constraint. Of course, this requires the definition
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of sensible reliabilities for each individual constraint, while a

decision maker is usually only interested in the overall system

reliability R.

A nice matter about the optimization problem given in (2)

with the joint probability term or the individual probability

term as given in (3) is that constraints associated with the

optimization problem are now deterministic, and hence, any

existing optimization methodology can be used to solve the

problem. What remains to be done is a computational proce-

dure to estimate the probability P(). As we see next, this is

not an easy matter, and most of the remainder of this paper

is devoted to estimating this probability in an accurate and

computationally efficient manner.

B. Determining a Solution’s Reliability

Ideally, the reliability of a solution must be determined by

checking whether the solution is adequately safe against all

constraints. Since this is mathematically and computationally

a challenging task [6], we defer the discussion on simultaneous

consideration of all constraints till Section II-D and first

discuss the procedures for computing reliability of a solution

against a single constraint (3).

Mathematically, the probability of a solution x being safe

against the j th constraint (or P(g j (x, d, p) ≥ 0)) can be

written as (1 − Pj ), with

Pj (µx, d, µp) =

∫

g j (x,d,p)<0

ϕµx,µp(x, p)dxdp (4)

where Pj is the failure probability, and ϕµx,µp is the joint

probability density function of (x, p). However, it is usually

impossible to find an analytical expression for the above

integral for any arbitrary constraint function which forces

researchers to follow one of the following two approxi-

mate procedures: 1) statistical approximation by sampling or

2) optimization-based procedures by estimating a distance of

the solution from the constraint. We discuss both of these

approaches one by one.

1) Sampling-Based Reliability Measures: In this procedure,

N different sample solutions are created by following the

known joint probability distribution of variation of x and p.

Thereafter, for each sample, the constraint g j can be evaluated

and checked for its violation. If r j cases (of N ) do not satisfy

the constraint, Pj = (r j/N ) and the probabilistic constraint

P(g j (x, d, p) ≥ 0) can be substituted by a deterministic

constraint as follows:

1 −
r j

N
≥ R j . (5)

An advantage of this approach is that it can be used to

handle multiple constraints by simply checking the feasibility

of samples on all constraints. Such a method is simple and

works well if the desired reliability R j is not too close to

one [7], [8]. However, a major bottleneck of this approach

is that the sample size N needed for finding the quantity r j

must be of the order of at least O(1/(1 − R j )), such that

at least one infeasible case is present in the sample. For a

very stringent reliability requirement, such as for a limiting

failure probability (1 − R j ) of O(10−6), a large sample size

(N ∼ O(106)) is required to compute r j . This may be

computationally too expensive to be of any practical use.

The number of necessary samples can be somewhat reduced

by using a more systematic sampling, e.g., Latin hypercube

sampling [5], importance sampling [9], or directional sampling

[10] (see also [4]). Wang et al. [11] proposed a combination

of sampling and meta-modeling. Their approach applies a

discriminative sampling strategy, which generates more points

close to the constraint function. Then, in the neighborhood

of the constraint function, a kriging model is built, and the

reliability analysis is performed based on this model.

However, even these improvements may not be sufficient

to render the approach applicable if the desired reliability is

large.

2) Optimization-Based Reliability Measures: The underly-

ing idea of this class of reliability measures is to determine

a point on the constraint boundary which is closest to the

solution. This point is usually called the “most probable point”

(MPP) of failure [12]. Assuming a single constraint, and

approximating it as being linear in the vicinity of the MPP,

a solution’s reliability can then be calculated. Because of the

assumption of linearity, these methods are also known as first-

order reliability methods (FORMs).

To do so, we first convert the X coordinate system into an

independent standard normal coordinate system U, through the

Rosenblatt transformation [13]. The standard normal random

variables are characterized by zero mean and unit variance. In

this space, we approximate the hyper-surface (g j (x, d, p) = 0

or equivalently G j (U) = 0) by a first-order approximation at

the MPP. In other words, the MPP corresponds to a reliability

index β j , which makes a first-order approximation of Pj =

�(−β j ), where �() is the standard normal density function.

The remainder of this section discusses some alternatives to

calculate the MPP.

a) Performance measure approach (PMA): To find the

MPP in the PMA approach, the following optimization prob-

lem is solved [4]:

Minimize G j (U)

subject to ‖U‖ = βr
j

(6)

where βr
j is the required reliability index computed from

the required reliability R j as βr
j = �−1(R j ). The above

formulation finds a U∗ point which lies on a circle of radius

βr
j and minimizes G j (U). The original probability constraint

is replaced by

G j (U
∗) ≥ 0. (7)

Fig. 2 illustrates this approach on a hypothetical problem.

The figure shows a probabilistic constraint g j in the U-space

(for ease of illustration, two variables are considered here). The

corresponding constraint G j (u1, u2) and the feasible region

are shown. The circle represents solutions that correspond to

a reliability index of βr
j . Thus, the PMA approach finds a

point U∗ on the circle for which the function G j (U) takes the

minimum value. Then, if the corresponding constraint function

value is non-negative (or, G j (U
∗) ≥ 0), the probabilistic

constraint P(g j (x, d, p) ≥ 0) ≥ R j is considered to have

been satisfied.
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G = c

β j
r

G < 0

G = 0

U*

MPP

U−Space

u1

u2

0

Infeasible

region, j

j

j

Fig. 2. PMA approach.

G < 0

β j
r

g
j
0

G = 0j

U−Space

Infeasible

region, j

g
j
1

0

1

u1

u2

O

A B

C

U*

g
j
2

2

Fig. 3. Fast approach for solving the PMA problem.

Although the above optimization problem involves an equal-

ity constraint, a customized optimization procedure can be

employed to consider solutions only on the ‖U‖ = βr
j hy-

persurface, thereby making every solution a feasible solution.

Such a customized algorithm will make the search process

comparatively faster.

b) Fast performance measure approach (FastPMA): A

faster variant of the PMA approach is suggested in [14] and

is illustrated in Fig. 3. To speed up PMA, a gradient vector

∇g0
j of each probabilistic constraint g j is first computed at

the origin of the U-space. Its intersection (point A) with a

circle of radius βr
j is computed and a new gradient (∇g1

j ) is

recomputed at this point (A). Thereafter, the intersection (point

B) of this new gradient direction from the origin with the circle

is recomputed and a new gradient vector (∇g2
j ) is computed

at B. This procedure is continued till a convergence of the

norm of two consecutive gradient vectors with a predefined

tolerance (ǫP M A) or a fixed number of iterations ηP M A is

met. This point (U∗) is an estimate of the MPP of the original

PMA problem.

G = 0

β j
r

G < 0

U−Space

u1

u2

0

Infeasible

region,

MPP

U*
j

j

Fig. 4. RIA approach.

c) Reliability index approach (RIA): In this method, the

following optimization problem is solved:

Minimize ‖U‖

subject to G j (U) = 0.
(8)

Here, the MPP is calculated by finding a point which is

on the constraint curve in the U-space and is closest to the

origin. The optimum point U∗ is used to replace the original

probability constraint as follows:

‖U‖ ≥ βr
j . (9)

Fig. 4 illustrates the procedure. During the optimization

procedure, the desired reliability index βr
j is ignored, and

the minimum U-vector on the constraint boundary is found.

Thereafter, the minimal U∗ is compared with βr
j .

This approach also involves an equality constraint. Although

this method is computationally more expensive than the PMA

approach, a nice aspect is that the optimization problem

directly returns the distance of the solution from the constraint

(which is directly related to the reliability against a violation

of the constraint). The PMA approach, on the other hand, only

determines whether a solution is reliable or not against con-

straint satisfaction with respect to a specified reliability index.

d) Fast reliability index approach (FastRIA): There can

also be a relatively fast yet less-accurate variant of RIA,

which we propose here. First, we find an intermediate MPP

point (U∗
P M A) on a unit circle (assuming βr

j = 1) based on

the above FastPMA approach. As discussed, this operation is

computationally fast. Thereafter, we perform a unidirectional

search along U∗
P M A and locate the point for which G j (U) = 0.

We employ the Newton–Raphson approach for performing

the unidirectional search [15]. Due to the conversion of the

original multivariable problem to a single-variable problem,

the computation is usually fast, requiring only a numerical

derivative of the constraint function in the U-space. However,

it is worth mentioning here that the MPP point obtained by

this dual procedure is an approximation to the exact MPP,

particularly for highly nonlinear constraints.
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To find a better search direction U∗
P M A, we also suggest

another procedure in which we compute the MPP on a circle

of radius βr
j (computed from the supplied reliability index

R j ), instead of a unit circle. Since the MPP computation is

performed directly on the circle of interest, this approach is

expected to produce solutions with a better accuracy than the

previous approach.

With this background, we are now ready to describe the

essential procedures for reliability-based optimization.

C. Reliability-Based Optimization

The above-mentioned methods to measure a solution’s re-

liability have been integrated into an optimization algorithm

in several ways. Some of them are described in the following

subsections.

1) Double-Loop Methods: In the so-called double-loop

methods [16], a nested optimization is used. The outer op-

timization problem (usually referred as a “loop”) optimizes

the original problem given in (2) and uses (x, d) as decision

variable vectors. For each solution considered in the outer

loop, the chance constraint is computed by solving another

optimization problem (called the “inner loop”), using either

the PMA or the RIA approach described above. Because of

the nested nature of the overall optimization task, the double-

loop methods are computationally expensive.

2) Single-Loop Methods: The single-loop methods [3] com-

bine both optimization tasks together by not exactly finding

the optimum of the inner-level optimization task, thereby

constituting an approximate task of finding the true MPP point.

For example, in [3] the following replacement of the original

probabilistic constraint is suggested:

g j (x̄, p̄, d) ≥ 0 (10)

where x and p are computed from the derivatives of g j with

respect to x and p at the means, respectively, as follows:

x̄ = µx − βr
j σ

∇xg j
√

‖∇xg j‖
2 + ‖∇pg j‖

2
, (11)

p̄ = µp − βr
j σ

∇pg j
√

‖∇xg j‖
2 + ‖∇pg j‖

2
. (12)

Since the above is only an approximation to the double-

loop procedure, the single-loop methods often cannot produce

accurate results but are computationally faster than the double-

loop methods. A study [17] compares a number of single-loop

approximate ideas against double-loop methods.

3) Decoupled Methods: In the decoupled methods, two

optimization (outer-level and inner-level) approaches are ap-

plied one after the other. Decoupled methods have been

shown to be a good compromise between the two approaches

mentioned above [18], [19]. These methods are started by first

finding the deterministic optimal solution in the search space

(without considering any uncertainty on design variables x or

parameters p and using the mean of x as decision variables).

Thereafter, the most probable point (MPP) for each constraint

g j is found using the PMA or RIA approach. Then, in the

next iteration, each constraint is shifted according to their

x1

Shifted g2

Feasible region

x2

A

A2

A1

B

g2
g1

Shifted g1

B1 B2

Fig. 5. Working principle of SORA.

MPP points found in the last inner-level optimization, and a

deterministic optimization to the shifted constraint problem

is solved. This dual optimization continues in turn until no

further improvement in the current solution is achieved. The

outcome of such a strategy is sketched in Fig. 5. From the

deterministic optimum (A), both constraints are considered

(one at a time) to find the corresponding MPP points (A1

and A2). Thereafter, the corresponding constraints are shifted

at these points and a new optimization problem is solved

to find a new point B. The procedure continues (by finding

B1 and B2 for both constraints) until convergence. Fig. 6

sketches a particular approach [sequential optimization and

reliability assessment (SORA) method] suggested elsewhere

[18], in which the PMA approach is used to determine the

MPP in the second optimization problem.

D. Handling Multiple Constraints

Ideally, the reliability of a solution should be computed by

considering a cumulative effect of all constraints, as presented

by the probability term in (2). However, the above PMA and

RIA methods assume a single constraint in their approaches

and compute an MPP for a particular constraint at a time.

There are basically two ways to extend the approaches to

multiple constraints.
a) Closest Constraint: The simplest way to consider

multiple constraints is to determine the failure probability

Pj for each constraint individually and then to calculate the

following bounds on the overall failure probability PF :

max
j

Pj ≤ PF ≤ min(1,
∑

j

Pj ). (13)

Intuitively, usually, the larger the failure probability Pj of

a constraint, the closer the constraint to the solution. Thus,

the above lower bound signifies simply the failure probability

of the closest constraint and can be used as a crude estimate

(usually an underestimation) of the failure probability against

all constraints. The upper bound of PF holds if the constraints

have no overlapping regions and, in other cases, is an overes-

timation of the overall failure probability. The only reason for
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Minimize
(µ X , d)

Subject to

f(µx, d, µp),

gj(µx – sj, d, pMPP, j) > 0,    j = 1, 2, ..., J,

hk (d) > 0,   k = 1, 2, ..., K,

x(L) < µx < x(U),

d(L) < d < d(U).

t t

For j = 1, 2, ..., J

     PMA Approach to find MPP for jth constraint → (XMPP, j , pMPP, j)
t t

(µX , dt)t
t = t + 1

St
j = µX – X MPP,j, ∀j

t t

Fig. 6. Specific decoupled method (SORA) [18]. Initial value of s j is set
equal to zero for all j .

using such simple estimates is the low computational burden,

since no joint failure probability estimate need be computed

by this approach.

b) Ditlevsen’s bound: Much closer bounds on the overall

failure probability are given elsewhere [2], [20], in which first,

the failure probability Pj of each constraint is computed, and

then, the overall failure probability PF of the solution from

all constraints is bounded as follows:

P1 +

J
∑

i=1

max

⎧

⎨

⎩

0,

⎛

⎝Pi −

i−1
∑

j=1

Pj i

⎞

⎠

⎫

⎬

⎭

≤ PF

≤

J
∑

i=1

Pi −

J
∑

i=2

max
j | j<i

Pj i . (14)

The formula depends on the exact ordering of the failure

modes considered in the study. Usually, the failure modes

are ordered according to decreasing values of Pi [21]. Thus,

P1 and PJ correspond to the largest and smallest failure

probabilities, respectively. The joint probability Pj i of failure

against both i th and j th constraints is given by the cumulative

distribution function (CDF) of the bivariate normal distribution

Pj i = �(−β j ,−βi , ρ j i ) (15)

and the correlation coefficient ρ j i is given as follows [20]:

ρ j i =

〈

u∗
j , u∗

i

〉

∥

∥

∥u∗
j

∥

∥

∥

∥

∥u∗
i

∥

∥

(16)

where u∗
j is the MPP point in the U-space for the j th constraint

alone computed for solution x. The cosine-inverse of ρ j i indi-

cates the angle between the two u∗ vectors. Fig. 7 explains this

procedure. The FORM approach makes a linear approximation

of each constraint at MPP, meaning that the MPP point is

the point where the linear approximation is a tangent to the

original constraint. Once these MPP points are found for all

constraints, the correlation coefficient ρ j i is the cosine of the

angle formed by the MPP vectors of j th and i th constraints.

The above Ditlevsen’s bounds are much tighter than the

closest constraint bound but involve computation of the

pairwise joint failure probabilities. To be conservative, we shall

consider the upper Ditlevsen’s bound here and replace all J

chance constraints in (2) with a single constraint of comparing

x
u3*u1*

g1
g3

g2

MPP1

MPP2

MPP3

u2*
ρ

12

Fig. 7. Computation of the correlation coefficient.

the overall survival probability (1 − PF ) with the desired

reliability R

1 −

(

J
∑

i=1

Pi −

J
∑

i=2

max
j | j<i

Pj i

)

≥ R. (17)

The difference between considering only the closest con-

straint approach [lower bound in (13)] and using the

Ditlevsen’s upper bound on failure probability can be ex-

plained using Fig. 8. If there is only one constraint (the left-

most panel), it divides the space into a feasible area (grey) and

an infeasible area (white). Overall failure probability becomes

identical to P1 and both methods estimate the failure proba-

bility without any error. For the case of two constraints (the

middle panel), if only the closest constraint (C1 for the solution

marked) is considered, feasibility will be overestimated by

not computing the failures arising from the area denoted

as A2. However, using the Ditlevsen’s upper bound, both

constraints are handled accurately, as PF is now computed as

(P1+P2−P12), which corresponds to failure arising from areas

A2, A3, and A4. For more than two constraints, the Ditlevsen’s

upper bound may no longer provide an exact estimate of the

failure probability. For the scenario in the rightmost panel in

Fig. 8, true failure probability should arise from cumulative

areas marked A2 to A7. However, the Ditlevsen’s upper bound

will estimate it to be (P1 + P2 + P3 − P12 −max(P13, P23)). If

P23 ≥ P13, the failure arising from area A3 will be considered

twice; otherwise, the failure arising from A8 will be considered

twice. Thus, the Ditlevsen’s upper bound may overestimate

the actual failure probability for a problem having more than

two constraints, i.e., the true reliability will be larger than the

estimated reliability.

Nevertheless, the Ditlevsen’s upper bound is usually tight.

In principle, it would be possible to improve the bounds by

also using higher order intersections, but this involves much

more numerical effort with a little gain in accuracy of the

result [22].
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Fig. 8. Area considered (grey) feasible and (white) infeasible for (a) one constraint, (b) two constraints, (c) three constraints.

III. OVERVIEW OF OTHER RELATED STUDIES

There are two closely related aspects when optimizing in

the presence of uncertainty: reliability and robustness. The

terms are not uniquely defined in the literature, and we will

make the following distinction in this paper under variable

and parameter uncertainty. Reliability-based design (which is

the focus of this paper) aims at finding the best solution that

satisfies the constraints with a specified probability. Robust

design is usually concerned with the solution quality and not

the constraints. There are many possible notions of robustness,

including a good expected performance, a good worst-case

performance, a low variability in performance, or a large range

of disturbances still leading to acceptable performance (see

also [23, p. 127]).

As the classical reliability-based optimization has already

been discussed in depth above, the following survey focuses

on reliability and robustness in combination with evolution-

ary optimization. In recent years, there has been a growing

interest in applying evolutionary computation to optimization

problems involving uncertainty, and a recent survey on this

field can be found in [24].

Most research in the EA community so far has focused on

the robustness of solutions, in particular the expected fitness

given a probability distribution of the uncertain variable. From

the point of view of the optimization approach, this reduces the

fitness distribution to a single value: the expected fitness. Thus,

in principle, standard evolutionary algorithms could be used

with the expected fitness as the driving force. Unfortunately,

it is usually not possible to calculate the expected fitness

analytically; it has to be estimated. This, in turn, raises the

question how to estimate the expected fitness efficiently, which

is the topic of many studies of robustness within EAs. In [25],

it was shown that for the case of an infinite population size

and proportional selection, adding random perturbations to the

design variables in each generation is equivalent to optimizing

on the expected fitness function. For finite population sizes,

explicit averaging (e.g., [23], [26]) or the use of metamodels

(e.g., [27]) may be successful.

Robustness based on expected fitness has also been studied

for the case of multiobjective problems [28]–[30]. These

approaches rely on multiple sampling for estimation. Then, a

standard EMO algorithm is used to work with these expected

fitnesses. Reference [29] thereby extends [28] by additionally

taking into account robustness with respect to constraint

violations.

In contrast to searching the solution with the best expected

fitness, the worst-case cannot usually be obtained by sampling.

Instead, finding the worst-case for a particular solution may

itself be a complex optimization problem. In [31], this is

solved by running an embedded optimizer searching for the

worst-case for each individual (called anti-optimization in

[31]). Similarly, in [32] a simplified meta-model around a

solution is constructed and a simple embedded local hill

climber to search for the worst-case is used. In [33], the

maximum disturbance range that guarantees fitness above

a certain threshold is used. Again, this is determined by

an embedded search algorithm.1 In [34], a coevolutionary

approach for a scheduling problem, co-evolving solutions,

and worst-case disturbances are used. Others simply calculate

some bounds on the worst-case behavior (e.g., [35]). In [36],

a multiobjective evolutionary algorithm is used to evolve

the tradeoff between Pareto optimality and worst normalized

variation among all objectives due to uncertainty.

A few papers treat robustness as an additional criterion to be

optimized. Robustness is measured, e.g., as variance [27], [37],

[38], as maximal range in parameter variation that still leads

to an acceptable solution [33], [39] or as the probability to

violate a constraint [40], [41]. This allows the decision maker

to analyze the possible tradeoff between solution quality and

robustness/reliability. The challenges and approaches are quite

similar to the single objective optimization in determining the

performance measures.

An excellent and comprehensive survey on robustness op-

timization, which also discusses the connection to reliability

optimization and the role of evolutionary computation in this

area, can be found in [42].

With respect to evolutionary reliability optimization, several

studies [5], [43] have used Monte Carlo simulation with

Latin hypercube sampling (LHS) within an EA to estimate

reliability. Reference [44] uses a Taguchi approach to analyze

1These approaches are similar to what is proposed below in the sense that
they use an embedded optimizer to evaluate a solution. However, they consider
robustness, while we consider reliability, and we use techniques specifically
designed to calculate a solution’s robustness.
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Fig. 9. Sketch of two optima A and B and their corresponding reliable
solutions (A′ and B′) for a fixed reliability index.

the sensitivity of engineering designs found by an evolutionary

algorithm. An overview of the reliability-based design opti-

mization methods for automotive structures is given by [45],

which also includes sampling techniques, nonlinear response

surface methodologies, robust assessment, and robust design

formulation. None of the above sampling-based approaches is

applicable if very high levels of reliability are desired. Another

study used interval arithmetic approach with an evolutionary

algorithm to find reliable solutions [46].

This paper summarizes and extends the approaches pre-

sented in [40], [41], where it has first been suggested to

integrate classical methods to calculate a solution’s reliability

within an EMO algorithm.

IV. THREE RELIABILITY-BASED OPTIMIZATION CASES

In this section, we present three different aspects of

reliability-based optimization problems which may be difficult

to solve using the classical optimization techniques mentioned

in Section II-C but for which evolutionary algorithms (EAs,

search heuristics mimicking the natural evolutionary principles

[47]–[49]) may be suitable.

A. Single-Objective, Multimodal Reliability-Based

Optimization

Many single-objective optimization problems involve mul-

tiple global and local optima. Most classical methods start

with a deterministic optimum and then search for a close

reliable solution. However, in some problems the deterministic

global minimum is highly constrained, and the closest reliable

solution is far away. On the other hand, a different local

optimum may be much less constrained, and a close reliable

solution might actually be better than the reliable solution

close to the global optimum.

This is illustrated in Fig. 9. In a sufficiently nonlinear

problem, the reliable minimum (point A′) corresponding to the

global deterministic minimum (point A) need not be the best

solution and the reliable minimum (point B′) corresponding

to a local deterministic minimum (point B) may be better.

The classical serial procedure of first finding the deterministic

global optimum (solution A) and then finding the reliable

solution (solution A′) may not be a good idea in such

problems. Evolutionary optimization methods are population-

based approaches and do not need to start their search from

a deterministic optimum. They can be directly used to solve

the reliability-based optimization problem (2). Moreover, due

to their population approach, they are more likely to avoid

the locally optimal reliable solution and converge to the true

reliable solution.

It is worth mentioning here that although we discussed

the multimodality issue in the context of single-objective

optimization, such a scenario may very well exist in the case

of a multiobjective optimization problem. In such a scenario,

a classical method may find it difficult to converge to the

globally reliable frontier and may instead get stuck in a locally

Pareto-optimal frontier.

B. Optimization for Seeking Multiple Solutions for Different

Reliability Values

In most reliability-based design optimization (RBDO) stud-

ies, the aim is to find the reliable optimum corresponding

to a given failure probability (or a given reliability index).

However, in the context of design optimization, it would be

educative to learn how the reliable solutions change with

different levels of reliability index, as shown in Fig. 10. When

reliability is not considered, the deterministic optimum is the

desired solution. As discussed earlier, when the optimization

is performed for a particular reliability (say R = 0.9), a

solution in the interior to the feasible region becomes the

corresponding reliable solution. As the desired reliability value

is increased, the resulting solution will move further away

from the constraint and inside the feasible region. That is,

if we can locate the reliable optimum for small (say 80%)

to large value (say 99.999%, meaning a failure of one in

a thousand) of reliability, the trace of solutions will reveal

important insights about how to change decision variables to

make the corresponding solutions more and more reliable.

Fig. 10 shows such a trace on the decision variable space

for a hypothetical problem. Such multiple reliable solutions

can be found simultaneously by treating the problem as a

two-objective optimization problem of optimizing the original

objective and, in addition, maximizing the reliability index (R

or β), as well as by locating a number of tradeoff optimal

solutions using an evolutionary multiobjective optimization

(EMO) strategy to this bi-objective optimization problem

Minimize
(µx,d)

f (µx, d, µp)

maximize
(µx,d)

R(µx, d, µp)

subject to hk(d) ≥ 0, k = 1, 2, . . . , K

x(L) ≤ µx ≤ x(U ),

d(L) ≤ d ≤ d(U )

(18)

where

R(µx, d, µp) = 1 − PF .

The overall failure probability PF can be computed by com-

puting individual failure probabilities Pj involving inequality

constraints g j . The procedure for computing PF was discussed

in Section II-D.
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Fig. 10. Different reliability indexes may result in an interesting relationship
among reliable solutions. Circles show a solution’s distance to the constraints
(not a quantile of the probability density function).
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Fig. 11. Bi-objective formulation of minimizing objective function f (x) and
maximizing reliability index R(x).

The scenario is depicted in Fig. 11. The shaded region

marks the objective space, but the solid front at the bottom-

right part of the shaded region marks the optimal solutions

corresponding to different reliability index values within a

prespecified range [RL , RU ]. The EMO procedure is capable

of finding multiple Pareto-optimal solutions for solving such

a bi-objective optimization problem, thereby finding multiple

reliable solutions corresponding to differing reliability values.

Such a study will help to analyze the effect of the reliability

index on the quality of solutions (both in objective value

and in decision parameter values) and may help to determine

a suitable reliability index for a particular application. It is

worth mentioning here that instead of finding the complete

front using an EMO, a number of reliability index values

(such as R illustrated in the figure) can be chosen; for

each case, the objective function f (x) can be optimized

with the consideration of constraints, variable bounds, and

uncertainty, and a corresponding reliable solution x∗ can be

found. Such multiple independent applications of a posteriori

multiple criterion decision making (MCDM) method (such as

the ǫ-constraint method [50]) works in a similar principle as

an EMO and can also be used for this purpose. However,

a recent study [51] has discussed the difficulties of using a

posteriori MCDM methods, particularly in handling difficult

optimization problems. Also, sequential methods are usually

computationally more expensive than an EMO procedure,

searching for several Pareto-optimal solutions concurrently.

C. Multiobjective Reliability-Based Optimization

The concept of reliability-based optimization methods can

also be applied to solve multiobjective reliability-based opti-

mization problems

Minimize
(x,d)

( f1(x, d, p), . . . , fM (x, d, p))

subject to g j (x, d, p) ≥ 0, j = 1, 2, . . . , J

hk(d) ≥ 0, k = 1, 2, . . . , K

x(L) ≤ x ≤ x(U ),

d(L) ≤ d ≤ d(U ).

(19)

In such cases, instead of a single reliable solution, a reliable

frontier is the target, as shown in Fig. 12. When reliability

aspects are considered, the corresponding reliable front may be

different from the original front and will, in general, be placed

inside the feasible objective space. As the reliability index is

increased (to get more reliable solutions), the front is expected

to move further inside the feasible objective space. To solve

multiobjective optimization problems, EMO procedures can

be applied directly on the following deterministic optimization

problem:

Minimize
(µx,d)

( f1(µx, d, µp), . . . , fM (µx, d, µp))

subject to P(g j (x, d, p) ≥ 0) ≥ R j , j = 1, 2, . . . , J

hk(d) ≥ 0, k = 1, 2, . . . , K

x(L) ≤ µx ≤ x(U ),

d(L) ≤ d ≤ d(U ).
(20)

The probability constraint P() can be computed as before

by using any of the four methods discussed earlier. The

advantage of finding the complete reliable frontier is that

the relative sensitivity of different regions of the frontier

can be established with respect to the uncertainties in design

variables and parameters. This information will be useful to

the designers and decision makers in choosing a solution from

a relatively insensitive region of the tradeoff frontier.

There is a fourth problem scenario involving M conflicting

objectives, in which an (M + 1)-dimensional tradeoff frontier

can be attempted to be found by including an additional

objective of maximizing derived reliability R, as considered

in Section IV-B for a single-objective optimization problem.

This will provide a plethora of information about the nature

of change of the original M-dimensional tradeoff frontier with

the required reliability value. In this paper, we do not explicitly

add such a reliability objective for multiobjective optimization
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Fig. 12. Reliable front in a multiobjective reliability-based optimization
problem.

problems but perform multiple independent M-objective runs

with different fixed reliability (R) values and show the effect

of R on the obtained frontier.

V. PROPOSED EVOLUTIONARY APPROACHES

A. General Setup

We suggest here reliability-based optimization procedures

based on evolutionary optimization algorithms to handle all

three problem classes described above.

For the problems described in Sections IV-A and C, we

suggest to use the FastPMA approach of computing the MPP,

because it suffices to determine whether a solution fulfills the

specified reliability, and the method is fast. To handle problems

described in Section IV-B, the RIA-based approach is needed

because, for each solution, the corresponding reliability value

has to be determined, as this value corresponds to one of the

objectives which needs to be maximized during the optimiza-

tion task. Since computational efficiency is still an issue, we

use the FastRIA variant in this case.

For evolution, we use a real-parameter GA with a penalty-

parameterless constraint handling approach [52] to handle all

deterministic constraints in the case of the single-objective

scenario of Section IV-A. For multiobjective optimization

problems, we employ the constrained tournament concept

with the elitist non-dominated sorting GA or NSGA-II [53].

We use tournament selection with tournament size of 2,

and the simulated binary crossover (SBX) operator [54]

to create two blended offspring solutions. The crossover

probability is 0.9, meaning that 90% of the pairs are re-

combined to create offspring solutions, and the remaining

10% parents are simply chosen. The SBX operator in-

volves a distribution index controlling the spread of obtained

solutions. We have used a value of 2, which is recom-

mended in the original study [54]. Finally, a polynomial

mutation operator [49] is used to perturb the offspring

solutions in their neighborhood. A mutation probability

of 1/n is used so that on average one of the design

variables are mutated per offspring solution. A distribu-

tion index of 50 is used for mutation. For details of

these operators, see a description given elsewhere [49]. A

C-code implementing the above-mentioned GA is available

at http://www.iitk.ac.in/kangal/soft.htm.

But before we discuss the simulation results, we suggest a

procedure of identifying redundant constraints for the purpose

of computing the overall probability of failure so that overall

computational time is further reduced.

B. Identifying Redundant Constraints

Determining the MPP for every solution and every con-

straint can be computationally demanding, particularly when

dealing with a large number of constraints and population

members. The use of FastPMA and FastRIA variants discussed

earlier for MPP computations alleviates the problem to some

extent. Here, we propose a procedure to make a further reduc-

tion in computation of overall failure probability by identifying

constraints which either are far away or do not contribute much

to the overall failure probability. To understand these cases, we

first sort the constraints from the largest failure probability to

the smallest failure probability.

After sorting, we have Pi ≥ Pj for i < j . The Ditlevsen’s

upper bound can be computed in the following manner. The

overall failure probability PF can be computed by adding

terms (Pi − max j | j<i Pj i ) (for i > 1) one by one to P1. It is

interesting to note that this term (within brackets) is always

non-negative. As the terms are included one by one, one of two

scenarios can happen. The value of the term becomes so small

that the inclusion of it in PF computation does not affect the

failure probability value significantly (say, the term has a value

less than a threshold η, which is set much smaller than (1−R)).

In this case, the constraint i can be said to be redundant for

the PF computation. For example, consider a two-constraint

scenario shown in Fig. 13 for which two constraints are almost

parallel to each other with respect to the current solution x

and that the solution x makes the second constraint almost

redundant. Using our check for identifying redundant con-

straints stated above, we realize that P1 > P2 and P12 ≈ P2,

thereby making the above-specified term (P2 − P12) almost

equal to zero. Thus, our proposed η-threshold check will then

declare the second constraint as a redundant one for the current

solution.

Second, the failure probability Pi of the i th constraint itself

can be so small (say, less than η) that it is not worth including

in the PF computation. In this case, all other constraints placed

beyond i th constraint in the sorted list can also be termed as

redundant. Fig. 14 shows such a scenario. Constraint g1 is so

close to the current solution compared to other constraints that

other constraints will cause a negligible failure probability (P2

and so on) compared to P1. Hence, constraints g2 and other

far away constraints can be declared redundant for the current

solution.

The inclusion of the above-mentioned terms (Pi −max j | j<i

Pj i ) one by one has another advantage in dealing with

problems described in Sections IV-A and C, in which a

desired reliability (R) is supplied by the user. Recall that the
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Fig. 13. Almost parallel constraints making one constraint redundant.

chance constraints require that the probability of a solution

being feasible is at least R (or, PF ≤ 1 − R). While

considering the term for the kth constraint in the ordered

list, the Ditlevsen’s upper bound can be overestimated by

P1 +
∑k−1

i=2 (Pi − max j | j<i Pj i )+ (J − k)Pk and the following

condition can be tested:

Pk ≤
1

J − k

(

(1 − R) − P1 −

k−1
∑

i=2

(Pi − max
j | j<i

Pj i )

)

. (21)

If the above condition is true, there is no need to proceed

with kth and all other constraints thereafter in the ordered

list. The above test can be made for including each constraint

starting from k = 2.

It is interesting to realize that the redundancy check sug-

gested above has a local property. That is, constraints which

are found redundant by a solution x may also be found

redundant for most other near-by solutions (say y, provided

‖y − x‖ ≤ ǫ). In all simulations in this paper, we have used

ǫ = 0.01 in the U-space and η = 9(10−7). This principle can

lead us to saving expensive MPP computations in the following

way. From the initial generation, we maintain a database

storing a solution x and a linked list of constraints which are

found redundant for the solution. In later generations, when

a solution y close (with the above-mentioned ǫ-neighborhood

check) to x is found, we do not need to compute the MPP

for the redundant constraints of y, the information of which

is taken from the database for x. This procedure will save

constraint calls for computing MPP vectors, thereby saving

computational time.

g2
g1

g3

x

u1*

u2*

u3*

Redundant

Fig. 14. Far away constraints which can be redundant.

VI. SIMULATION RESULTS ON MULTIMODAL

RELIABILITY-BASED OPTIMIZATION PROBLEMS

In a real-world optimization problem, there often exist

multiple local optima, irrespective of whether reliability is

considered or not. Often, the reliable local optima are located

close to some deterministic local optima. But the global

optimum when taking reliability into account may be close to

a local deterministic optimum. This is a problem for methods

like SORA, which first compute the deterministic optimum,

and search for a reliable solution from there.

In this section, we compare EAs with two classical

reliability-based optimization methods, and show that EAs do

not suffer from this problem.

Let us consider the following two-variable test problem:

Maximize y

subject to x2 − 1000y ≥ 0,

y − x + 200 ≥ 0,

x − 3y + 400 ≥ 0,

−400 ≤ x, y ≤ 300.

(22)

In this problem, x = (x, y) are uncertain variables, and there

exists no deterministic variable d. Also, there does not exist

any uncertain problem parameter (p). We assume independent

and normally distributed uncertainties with σx = σy = 10 and

a desired reliability index of βr = 4.

First, we present results obtained with a real-coded genetic

algorithm with the proposed FastPMA to check reliability of a

solution. The proposed EA uses the simulated binary crossover

and the polynomial mutation operators [49], and a population

size of 20. The GA is terminated after 60 generations have

elapsed. Recall that the FastPMA approach (discussed in

Section II-B2b) begins with a guess of a MPP direction using

the derivative vector of the underlying constraint function and

then iterates to converge on a particular direction. We termi-

nate the MPP direction finding strategy when the difference

between two consecutive direction vectors is ǫP M A = 0.001 or
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TABLE I

COMPARISON OF PERFORMANCES OF DOUBLE-LOOP METHOD, SORA, AND PROPOSED GA. IN EACH CASE, A TOTAL OF 2500 RUNS ARE PERFORMED

Method # Proportion Solution Evaluations

success success Best Average Worst

GA (ǫP M A = 0.001) 2500 100% 9483 9756.2 9768

GA (ηP M A = 2) 2500 100% 3663 3663.0 3663

SORA 1630 ∼65% 491 1394.0 15 679

Double-loop 1219 ∼49% 2910 147 994.7 413 040
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Fig. 15. Proceedings of three GA simulations showing how population-best
solution can progress toward the global maximum (B′).

less. We perform 2500 runs with different initial populations

to check the robustness of the proposed procedure. The first

row in Table I shows the performance of the proposed GA. We

observe that in all 2500 runs, the GA is able to find a solution

near the correct reliable optimum solution (237.908, 11.820)T ,

with a function value of 11.820. Fig. 15 shows how three

different GA simulations starting at different regions in the

search space (considering the population best) avoid the local

maximum (A′) and converge to the global maxima (B′). One

of the runs has its best located near A′ in the initial population

and even then the GA with the proposed FastPMA approach

can advance and converge near the globally optimal reliable

solution. Fig. 16 shows all 2500 points obtained by the 2500

GA applications.

To investigate the effect of the extent of iterations on finding

the MPP direction on the final outcome of the algorithm, next

we terminate the MPP direction finding strategy only after

two (ηP M A = 2) iterations. The second row in Table I shows

the performance of the modified GA. Again, we obtain 100%

successful result but this time with far fewer overall solution

evaluations. A plot of the obtained solutions in the decision

variable space produces a similar plot as in Fig. 16 and is

not presented here for brevity. In this problem, the choice of

the gradient direction on βr -circle as an initial guess of the

MPP direction is close enough to the true MPP direction, and

two iterations were enough to locate a near MPP point for

this problem. This reduces the solution evaluations drastically

without degrading the performance of the GA procedure.

Now, let us compare the performance of the EA with two

classical methods. First, we have implemented the classical

SORA approach [18] discussed in Section II-C3 to solve the

above problem. The MATLAB code fmincon is used to

optimize both the PMA and the overall optimization tasks.

We terminate each of the two optimization tasks when the

tolerances in variable vector (TolX), function value (TolFun)

and constraint value (TolCon) are 10−8. We performed a

number of simulations using larger tolerance values in order

to find the smallest number of solution evaluations for a

successful application of SORA, but most runs resulted in

nonoptimal solutions, other than solutions A′ or B′. We argue

that a larger tolerance value causes intermediate unidirectional

search iterations of fmincon to prematurely terminate to

nonoptimal solutions, thereby not allowing the overall algo-

rithm to advance to the true optimal solutions. Fig. 17 shows

the final obtained solutions from each of 2500 simulations. It

is clearly visible that, even with a tolerance value of 10−8,

not all runs converge to the true reliable optimum near B′, but

many runs find their way to a solution near the deterministic

optimum A′. The fact that the approach sometimes finds the

true reliable optimum is surprising, and may probably be

attributed to the fact that SORA first stage, which searches

for the deterministic global optimum, gets stuck in the local

optimum B′. This situation happens particularly when the

initial starting point is chosen near the local optimum B.

Combined solution evaluations for 2500 runs are recorded and

presented in Table I. Although overall function evaluations are

much smaller than that required with our proposed EA, the

SORA method is found to be successful in only about 65%

of the simulations.

Next, we implement the double-loop method using MAT-

LABs fmincon code for both upper and lower level op-

timization tasks. After some trials using different tolerance

values, we observe that an identical tolerance value (10−8)

in each optimization task as that needed in SORA is needed

to obtain near-optimal results. Fig. 18 plots the solutions

obtained by 2500 runs. Interestingly, nonoptimal solutions

are found in many runs. It seems that the outcome of the

procedure strongly depends on the chosen initial points. For

some initial points, the MPP solution obtained by the lower

level search cannot be improved by the upper level search

and the combined algorithm gets stuck to a point parallel to a

critical constraint boundary and requires in a huge number of

function evaluations.
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Fig. 17. SORA results.

Results of all three approaches for 2500 independent runs

are compared in Table I. From these extensive computer

results, we conclude the following.

1) The proposed GA can find the correct reliable optimum

in 100% of all runs, compared with 65% for SORA and

49% for the double-loop method.

2) SORA is the fastest approach in terms of function eval-

uations. The double-loop method is the second fastest

(in terms of the best algorithm performance) but with

some extremely long runs. However, the GA performs

second in terms of average required function evaluations

but does best in terms of worst function evaluations in

2500 simulations.

3) The double-loop method is not as accurate and also

requires more solution evaluations than SORA.

4) The performance of the proposed GA approach is con-

sistent and more reliable than both SORA and the

double-loop method.

Double-loop

points
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x

y
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Fig. 18. Double-loop results.

5) The double-loop method is prone to get attracted to sub-

optimal solutions due to complex interactions between

upper and lower level optimization tasks.

This paper clearly indicates the importance of EA-based

approaches to difficult reliability-based optimization problems.

VII. SIMULATION RESULTS ON

FINDING MULTIPLE RELIABLE SOLUTIONS

Here, we consider two problems—the two-variable problem

considered in the previous section and an automobile car side-

impact problem.

A. Test Problem Revisited

We now consider an additional objective of maximizing

the reliability index. To handle two objectives, we employ

the NSGA-II algorithm, in which every population member

is checked with the RIA optimization approach to find the

corresponding reliability index of the solution. Here, we

employ the fastRIA approach described in Section II-B2d.

The reliability index is restricted to lie within 0.05 and 5.0,

corresponding to 51.98388% to 99.99997% reliability values.

We use a population size of 40 and run NSGA-II for 80

generations. The resulting population members are shown in

Fig. 19. It is clear that as the reliability index is increased,

the corresponding optimal function value gets worse (reduced

here). There seems to be two different patterns of variation of

the optimal function value. Up until about a reliability index

of 0.7 (meaning about 75.8% reliability), the drop in optimal

function value is more rapid, but thereafter, the rate is slow.

To illustrate, a number of intermediate solutions with their

associated reliability index is marked on the figure with a

diamond. A plot of these solutions in the decision variable

space (see Fig. 20) reveals that up until βr ≤ 0.7, a solution

near the global optimum (solution A) is still the reliable

optimum. However, with a larger reliability requirement, the

reliable optimum moves near the local optimum (solution B).
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Fig. 19. Optimal objective value reduced with desired reliability index.

Fig. 19 also depicts that the worsening of optimal objective

value is almost linear in the increase in reliability index βr .

Fig. 20 shows how the optimal solution starting near the global

optimum (for a small reliability requirement) moves inside the

feasible search space with an increased demand in reliability,

then moves near the local optimum, and finally moves further

interior to the search space with an increase in reliability index.

Such information provides a good understanding of how the

optimal solution varies depending on the desired reliability and

is extremely valuable to designers and practitioners in solving

real-world optimization problems.

We now consider an engineering design problem and

employ both the closest constraint and multiple constraint

strategies to find and analyze the solutions to decipher

more meaningful design principles associated with reliable

solutions.

B. Car Side-Impact Problem

A car is subjected to a side-impact based on European

Enhanced Vehicle-Safety Committee (EEVC) procedures. The

effect of the side-impact on a dummy in terms of head

injury (HIC), load in abdomen, pubic symphysis force, viscous

criterion (V ∗C), and rib deflections at the upper, middle, and

lower rib locations are considered. The effect on the car are

considered in terms of the velocity of the B-Pillar at the middle

point and the velocity of the front door at the B-Pillar. An

increase in dimension of the car parameters may improve the

performance on the dummy but with a burden of increased

weight of the car, which may have an adverse effect on the

fuel economy. Thus, there is a need to find a design balancing

the weight and the safety performance. The optimization

problem formulated elsewhere [55] included the minimization

of the weight of the car subject to EEVC restrictions on

safety performance. There are 11 design variables x which

can be grouped into two sets: uncertain decision variables

x = (x1, . . . , x7) and uncertain parameters p = (x8, . . . , x11).

All variables/parameters (in millimeters) are assumed to be

stochastic with standard deviations (in millimeters) given

below. Problem parameters x8 to x11 are assumed to take

a particular distribution with a fixed mean of 0.345, 0.192,
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Fig. 20. Location of optimal solutions with desired reliability index.

0, and 0 mm, respectively. Thus, the stochastic optimization

problem involves seven decision variables and three stochastic

parameters which all vary with a normal distribution. Their

description and the standard deviation of their variations are

given in the Appendix.

We use a population of size of 100 and run NSGA-II to

optimize two objectives f (x) (minimize weight function) and

R (maximize reliability index) for 100 generations. Fig. 21

shows the tradeoff, nondominated front obtained using three

methodologies: 1) the approach which uses only the closest

constraint to compute MPP (direction for MPP is computed

at a unit circle); 2) the approach which uses Ditlevsen’s upper

bound to compute reliability; and 3) the Ditlevsen’s approach

which does not consider redundant constraints to compute

reliability.

We make a few interesting observations from this figure.

First, the shape of the tradeoff front suggests that till up to

a reliability index near 1.5, the worsening of optimal weight

with an increased reliability requirement is less compared to

that for solutions beyond a reliability index of 1.5. This means

that larger sacrifice in weight is needed compared to the gain in

reliability index for achieving a solution having such a large

reliability requirement. Thus, unless a very large reliability

is needed, it may not be wise to unnecessarily set a high

reliability demand.

Second, the nondominated front obtained using multiple

constraint consideration is located inside the feasible objective

space relative to the nondominated front obtained using a

single-constraint case. This is due to the fact that a single-

constraint (albeit closest) consideration overestimates the prob-

ability of feasibility, thereby resulting in a front which appears

to be better. To illustrate this fact, we have computed the

overall reliability index value using the Ditlevsen’s bound for

each of the solutions obtained using the closest constraint

strategy and plotted them against the reported reliability index

in Fig. 22. It is clear from the figure that each solution

obtained using the closest constraint strategy corresponds to a

smaller overall reliability index than that obtained with respect

to closest constraint alone. Thus, when all constraints are

considered using the Ditlevsen’s bound, each of these solutions
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will be infeasible with respect their specified reliability index.

When these solutions are re-plotted with the overall reliability

index computed using the Ditlevsen’s bound in Fig. 21, they

come out to be dominated by the solutions obtained by the all-

constraint strategy. Fig. 22 also shows that solutions from the

all-constraint strategy have identical reliability index values to

their reported values. As discussed earlier and evident from

this paper, the closest constraint consideration may not pro-

duce accurate computation of the tradeoff frontier, particularly

in the case of multiple critical constraints.

Third, an interesting feature is that both multiple constraint

considerations (with and without redundant constraints checks)

produce identical fronts. This is expected, since the check

for redundant constraints is suggested in this paper to reduce

the computational overhead and not to compromise on the

accuracy of the obtained solutions. The redundant constraint

consideration strategy requires only 33% (on average 329.825

constraint calls for every 1000 calls) of the total constraint calls

compared to the all-constraint approach. This is a substantial

reduction in computation. To understand this aspect better, we

compute the distance of the MPP from the current solution

in the U-space for all 10 constraints and plot the distance

values in the obtained solutions in Fig. 23. In the figure,

constraints g1, g6, and g10 produce a distance value more than

10.0 and hence are not shown. A closer examination of the

plot reveals that only two (out of 10) constraints (g2 and g8)

are critical for most reliable solutions. Thus, a consideration

of redundant constraints in this problem becomes an efficient

strategy in reducing the computational effort yet producing

an almost identical level of accuracy. Moreover, since only

two constraints are dominant in this problem, the handling of

combined failure probability using Ditlevsen’s upper bound

is accurate (as discussed in Section II-D), thereby providing

confidence on the accuracy of the obtained frontier using “All

constraints” strategy in Fig. 21.

Next, we compare our obtained solutions with an existing

decoupled method (SORA). For three different reliability

indices, SORA solutions are marked with diamonds in Fig. 21.

Since SORA uses one constraint at a time, the algorithm finds
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Fig. 22. Closest constraint solutions corresponding to a smaller overall
reliability index than reported for the car side-impact problem.

solutions similar to those obtained by our closest constraint

approach and fails to find more accurate solutions.

Finally, we make an attempt to analyze the obtained solu-

tions by analyzing the changes in the variable values, as we

move from the minimum-weight solution to the maximum-

reliability solution. Fig. 24 shows how all seven variables

vary with each solution’s reliability coefficient (recall that a

small reliability index corresponds to a small weight solution).

We gather the following important information about these

solutions.

Interestingly, x5, x6, and x7 remain fixed for all reliable

solutions (over a wide range of reliability indices [0.5, 3.0]).

Variables x5 and x7 are fixed at their lower bounds and x6

gets fixed at its upper bound. In the context of the car side-

impact problem, to ensure an optimal weight with prefixed

reliability values, the thickness of door beam (x5) and roof rail

(x7) must be chosen as small as possible and the door beltline

reinforcement (x6) must be chosen as large as possible.

Furthermore, for solutions up to around a reliability index

of βr = 2 (corresponding to about 97.725% reliability), x1

and x3 must be kept fixed to their lower bounds and there-

after they must be increased for a larger reliability solution.

These variables represent the thickness of B-Pillar inner and

floor side inner, respectively. On the other hand, till about

this critical reliability requirement, x2 (thickness of B-Pillar

reinforcement) and x4 (thickness of cross members) must take

larger values with an increase in reliability. Around this critical

reliability index, they must be set to their upper limit values.

Thus, overall it seems that a good recipe to obtain a

minimum weight solution of the car side-impact problem

under uncertainty in its decision variables and parameters is

to make the reinforcements stronger while compromising the

weight by using thinner members of other components. The

figure seems to suggest that if no upper bound were used

for these variables, the optimal strategy would have been

to use a monotonically increased dimension of x2 and x4

with increased reliability requirement. Since upper limits were

imposed, when the variables reach their upper limits at high

reliability values, the optimal strategy must change. To still
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achieve a minimum weight solution with a large reliability,

focus has to be changed to variables x1 and x3. Thicker

members for B-Pillar inner (x1) and floor side inner (x3) must

be used. Such information about the nature of solutions and

their interactions with the desired reliability index are inter-

esting and provide valuable knowledge about the problem to a

design engineer. Such an analysis procedure for finding useful

information about a problem via a multiobjective optimization

task has been termed innovization task in a recent study [56].

Here, we show a higher level concept of the innovization task

in which salient relationships among reliable tradeoff solutions

are revealed. We strongly recommend pursuing such a task

to other engineering design tasks for the sake of unveiling

important problem knowledge.

VIII. SIMULATION RESULTS ON MULTIOBJECTIVE

RELIABILITY-BASED OPTIMIZATION PROBLEMS

Finally, we consider a couple of two-objective optimization

problems to illustrate the effect of considering reliability in

multiobjective optimization.

A. Test Problem

First, we solve a two-variable, two-objective test prob-

lem [49]

Minimize f1 = x

minimize f2 =
1+y

x

subject to y + 9x − 6 ≥ 0,

−y + 9x − 1 ≥ 0,

0.1 ≤ x ≤ 1, 0 ≤ y ≤ 5.

(23)

Both variables are uncertain: x = (x, y) with σ = 0.03.

We use a population of size 50 and run NSGA-II for 50

generations. Fig. 25 shows the deterministic front and three

reliable frontiers with βr equal to 1.28 (90%), 2.0 (97.725%),

and 3.0 (99.875%), respectively.
To demonstrate the principle of using a specified reliability

index for a multiobjective optimization problem, in this prob-

lem, we employ the closest constraint strategy alone. In the

next problem, we shall use the multiple constraint strategies.
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Fig. 24. Variable values changing with different reliability requirement.

A part of the deterministic optimal front lies on constraint

g1; however, the minimum f1 solution lies on constraint g2

as well, as shown in Fig. 26. Fig. 25 shows how the reliable

tradeoff frontier moves inside the feasible objective space as

βr increases. For βr > 0, both constraints govern the location

of the reliable tradeoff frontier. The theoretical change in the

minimum f1 solution is marked (“Boundary”) in Fig. 25.

The figure indicates that optimal solutions for small f2 are

more reliable and less vulnerable to change due to reliability

consideration than the small f1 solutions.
Fig. 26 supports this argument. The figure shows how the

solutions get inside the feasible region with an increase in βr .

To be safe from both constraints, the minimum f1 solution

must be moved equally away from both constraints, as shown

in the inset figure. The circle indicates that the case in which

the βr = 2 variation boundary touches both constraints. Thus,

in the presence of uncertainties in decision variables, a part

of the deterministic optimal frontier is sensitive and a new

frontier becomes an optimal choice. This paper demonstrates

that if the user is interested in finding an optimal frontier which

is insensitive to variable uncertainties with a particular relia-

bility index, NSGA-II with the handling of chance constraints

described in this paper remains as a viable approach for the

task. We reconsider the car side-impact problem and attempt

to explain the importance of this task better.

B. Car Side-Impact Problem Revisited

We use the car side-impact problem discussed earlier, but

now use an additional objective of minimizing the average

rib deflection, which is calculated by taking the average of

three deflections g5(x), g6(x), and g7(x). All 10 constraints

are considered. Fig. 27 shows the reliable front as a function

of βr using the closest constraint strategy.
Once again, with an increase in the reliability index, the

optimal frontier gets worse. We observe the following features

from the figure.

1) The figure indicates the rate at which the front de-

teriorates. In this problem, the rate of deterioration
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seems to be faster than linear, as was also discussed

in Section VII-B. Thus, an unnecessary large reliability

index corresponds to solutions that are far from being

optimum. Designers must carefully set a reliability index

to make a good compromise of optimality and reliability

of solutions.

2) An interesting fact about this problem is that the front

moves inside the feasible objective space parallel to

each other, indicating that the whole front is uniformly

sensitive to a change in the reliability index.

3) The near minimum-weight solutions are found to be

more sensitive to the chosen reliability index. The opti-

mal solutions obtained in Fig. 21 in Section VII-B are

also plotted in Fig. 27 (marked as “Weight versus beta”).

Interestingly, these solutions mark the boundary to the

obtained NSGA-II solutions of this section. The support

of the optimization results obtained in this section by

those obtained from a different optimization task on the
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side-impact problem using the closest constraint strategy.
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Fig. 28. Tradeoff frontiers using the closest and multiple constraint strategies.

same problem provides confidence as to the accuracy

of the obtained solutions and efficiency of the proposed

procedure.

Fig. 28 shows a comparison of tradeoff frontiers obtained

using the closest constraint strategy and the multiple con-

straints strategy (with all constraints considered) for three

different reliability values. In all three cases, the difference

occurs near the minimum-weight region of the tradeoff fron-

tiers. The minimum-weight bondaries for both closest and all-

constraint strategies are plotted on the figure using dashed lines

taken from Fig. 21. Recall from Fig. 21 that for minimum-

weight solutions, the computation of reliability index using

closest constraint strategy is different from that for multiple

constraints using the Ditlevsen’s bound. However, surprisingly,

for most other regions of the tradeoff frontier, both strategies

find almost identical solutions, except that for βr = 3, there

is slight visible difference between the obtained fronts. To

understand this behavior better, we compute the distance of
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MPP from the current solution for each obtained tradeoff

solution for βr = 2 and plot them in Fig. 29. Here, the

MPP points for constraint g6 fall outside the range of the

figure and are not shown. It is clear that only one constraint

(g8) is critical for all tradeoff solutions and lies at a dis-

tance of 2 (thereby corresponding to a reliability index of

2). Since only one constraint is critical, there is not much

of a difference between the closest constraint and multiple

constraint strategies observed in Fig. 28. However, near the

minimum-weight region, the MPP for constraint g2 is at a

similar distance to that of constraint g8, and the presence of

two critical constraints make the reliability computation using

closest constraint strategy erroneous, thereby causing a shift

in the obtained frontier near the minimum-weight region. It is

also important to report that the multiple constraint strategy

with the redundant constraint consideration finds a frontier

which is indistinguishable from the one shown in Fig. 28 with

all constraints and is not plotted in the figure for brevity.

IX. CONCLUSION

In this paper, we have reviewed the recent classical methods

for handling uncertainties in arriving at reliable solutions,

instead of deterministic optimal solutions, in an optimization

problem involving uncertainty. By reviewing these method-

ologies, we have identified at least three different problem

domains in which the proposed evolutionary reliability-based

optimization approaches have an edge over their classical

counterparts. The problems have complexities—multimodality

and multiobjectiveness—which are difficult to handle using a

classical point-by-point approach. Here, we have developed a

couple of evolutionary optimization-based approaches for han-

dling probabilistic constraints under uncertainties in decision

variables and/or problem parameters to solve the problems to

satisfaction. The suggested methodology has considered both

accuracy of obtained solutions and computational overhead

by using a system reliability approach and by identifying

redundant constraints. On a number of test problems and

an automobile design problem, the proposed procedures have

shown their efficacy in quickly (about 67% savings in con-

straint computations) finding the desired reliable solution(s).

In the car side-impact design problem, a number of interesting

properties about the reliable solutions have been revealed. The

proposed evolutionary methods are compared with a state-

of-the-art classical methodology, and the niche of the former

in single and multiobjective reliability-based optimization has

been clearly demonstrated.

We have also compared two reliability computation

strategies—the closest constraint and all-constraint strategies.

The simulation results clearly show that when a single con-

straint determines the location of the reliable optimum, both

methods perform identically. However, if multiple critical

constraints exist near the optimum, the closest constraint strat-

egy overestimates the optimum, but the use of all-constraint

strategy is recommended.

This paper should encourage researchers and practitioners

in the area of classical reliability-based design optimization

to pay more attention to EA-based search and optimization

procedures and vice versa, a process which may lead to

the development of more such hybrid evolutionary-classical

RBDO approaches in the coming years.

APPENDIX

DESCRIPTION OF THE CAR SIDE-IMPACT PROBLEM

Seven decision variables (x1 to x7) and four stochastic

parameters x8 to x11 are described as follows:

x1: Thickness of B-Pillar inner (0.03);

x2: Thickness of B-Pillar reinforcement (0.03);

x3: Thickness of floor side inner (0.03);

x4: Thickness of cross members (0.03);

x5: Thickness of door beam (0.05);

x6: Thickness of door beltline reinforcement (0.03);

x7: Thickness of roof rail (0.03);

x8: Material of B-Pillar inner (0.006);

x9: Material of floor side inner (0.006);

x10: Barrier height (10);

x11: Barrier hitting position (10).

The quantity in bracket shows the standard deviation of sto-
chastic variation of each variables. The optimization problem
formulation is as follows:

Min.
(x1,...,x7)

f (x) = Weight

s.t. g1(x) ≡ Abdomen load ≤ 1 kN;

g2(x) ≡ V ∗ Cu ≤ 0.32 m/s;
g3(x) ≡ V ∗ Cm ≤ 0.32 m/s;
g4(x) ≡ V ∗ Cl ≤ 0.32 m/s;
g5(x) ≡ upper rib deflection ≤ 32 mm;

g6(x) ≡ middle rib deflection ≤ 32 mm;

g7(x) ≡ lower rib deflection ≤ 32 mm;

g8(x) ≡ Pubic force ≤ 4 kN;

g9(x) ≡ Vel. of V-Pillar at mid. pt. ≤ 9.9 mm/ms;
g10(x) ≡ Front door vel. at V-Pillar ≤ 15.7 mm/ms;
0.5 ≤ x1 ≤ 1.5, 0.45 ≤ x2 ≤ 1.35;

0.5 ≤ x3 ≤ 1.5, 0.5 ≤ x4 ≤ 1.5;

0.875 ≤ x5 ≤ 2.625, 0.4 ≤ x6 ≤ 1.2;

0.4 ≤ x7 ≤ 1.2.
(24)
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The functional forms of the objective function and constraints
are given below:

f (x) = 1.98 + 4.9x1 + 6.67x2 + 6.98x3

+ 4.01x4 + 1.78x5 + 0.00001x6

+ 2.73x7, (25)

g1(x) = 1.16 − 0.3717x2x4

− 0.00931x2x10 − 0.484x3x9

+ 0.01343x6x10, (26)

g2(x) = 0.261 − 0.0159x1x2

− 0.188x1x8 − 0.019x2x7

+ 0.0144x3x5 + 0.87570.001x5x10

+ 0.08045x6x9 + 0.00139x8x11

+ 0.00001575x10x11, (27)

g3(x) = 0.214 + 0.00817x5

− 0.131x1x8 − 0.0704x1x9

+ 0.03099x2x6 − 0.018x2x7

+ 0.0208x3x8 + 0.121x3x9

− 0.00364x5x6 + 0.0007715x5x10

− 0.0005354x6x10 + 0.00121x8x11

+ 0.00184x9x10 − 0.018x2x2, (28)

g4(x) = 0.74 − 0.61x2 − 0.163x3x8

+ 0.001232x3x10 − 0.166x7x9

+ 0.227x2x2, (29)

g5(x) = 28.98 + 3.818x3

− 4.2x1x2 + 0.0207x5x10

+ 6.63x6x9 − 7.77x7x8

+ 0.32x9x10, (30)

g6(x) = 33.86 + 2.95x3

+ 0.1792x10 − 5.057x1x2

− 11x2x8 − 0.0215x5x10

− 9.98x7x8 + 22x8x9, (31)

g7(x) = 46.36 − 9.9x2 − 12.9x1x8

+ 0.1107x3x10, (32)

g8(x) = 4.72 − 0.5x4 − 0.19x2x3

− 0.0122x4x10 + 0.009325x6x10

+ 0.000191x11x11, (33)

g9(x) = 10.58 − 0.674x1x2

− 1.95x2x8 + 0.02054x3x10

− 0.0198x4x10 + 0.028x6x10, (34)

g10(x) = 16.45 − 0.489x3x7

− 0.843x5x6 + 0.0432x9x10

− 0.0556x9x11 − 0.000786x11x11. (35)
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