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 As a result of technological advances in robotic systems, electronic sensors, 
and communication techniques, the production of unmanned aerial vehicle 
(UAV) systems has become possible. Their easy installation and flexibility 
led these UAV systems to be used widely in both military and civilian 
applications. Note that the capability of one UAV is however limited. 
Nowadays, a multi-UAV system is of special interest due to the ability of its 
associate UAV members either to coordinate simultaneous coverage of large 

areas or to cooperate to achieve common goals/targets. This kind of 
cooperation/coordination requires a reliable communication network with a 
proper network model to ensure the exchange of both control and data 
packets among UAVs. Such network models should provide all-time 
connectivity to avoid dangerous failures or unintended consequences. Thus, 
the multi-UAV system relies on communication to operate. Flying ad hoc 
network (FANET) is moreover considered as a sophisticated type of wireless 
ad hoc network among UAVs which solved the communication problems 

into other network models. Along with the FANET’s unique features, 
challenges and open issues are also discussed especially in the routing 
protocols approach. We will try to present the expected transmission account 
metric with a new algorithm for reliability. In addition to this new algorithm 
mechanism, the metric takes into account the relative speed between UAVs, 
and thus the increase of the fluctuations in links between UAVs has been 
detected. Accordingly, the results show that the function of the AODV 
routing protocol with this metric becomes effective in high mobility 

environments. 
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1. INTRODUCTION  

The progresses on miniaturization technologies in addition to the development in both 

communications and embedded systems have paved the way for producing various types of low-cost UAVs 

[1, 2]. Unmanned aerial vehicles (UAVs) is an aircraft that flies either fully autonomous (without any human 

intervention) or remotely (controlled by a ground base station) to operate in a wide range of missions and 

emergencies. The operational experiences with UAVs have shown that their technologies open new ways not 

only for military applications but also for civilian applications. This includes, but is not limited to, radio 

source localization [3], surveillance [4, 5], transportation of suspended loads [6, 7], persuading pollution-free 

area [8], disaster scenarios [9], relaying for ad hoc networks [10], search and destroy missions [11], 

https://creativecommons.org/licenses/by-sa/4.0/
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reconnaissance and surveillance, maintaining of the weapon systems network, combat support [12], the 

exploration of oil and gas [13]. Recently, the surge in the number of mobile data traffic because of IoT will 

impose the utilization of UAVs as key components of upcoming 5G and beyond 5G (B5G) networks [14]. 

The distinct features of UAVs can potentially facilitate wireless broadcast or point-to-multipoint 

transmissions within these cellular architectures [15].  

In the last decade, single-UAV systems had been utilized in different applications. While the 

number of UAV increases, the design of efficient network architecture becomes a vital issue in single-UAV 

systems to solve. By means of the technological advancement in avionics and micro-electromechanical 
systems, the utilization of the multi-UAV system to perform missions has been emerged [16]. The size, type, 

and configuration of UAV are altered based on the applications nature [17]. Due to the flexibility, easy 

installation, and also relatively small operating expenses of UAVs [18], the large scale of UAV applications 

has proliferated vastly within the last few years. It's worth noting that using multiple UAVs instead of a 

single one yields a wide range of advantages, which we will try to summarize them as follows [19-23]: 

- Multiple simultaneous interventions 

- Low detectability 

- Increasing accuracy 

- High scalability 

- Greater efficiency 

- Low cost 

- Complementarities of team members 
Accordingly, groups of UAVs are of special interest due to their ability to coordinate simultaneous 

coverage of large areas or cooperate to achieve common goals [24]. In any system involving multiple 

autonomous vehicles, the concept of coordination and cooperation plays an important role. In general, there 

are two types of coordination, i.e., temporal and spatial coordination. In temporal coordination, UAVs are 

synchronized with each other, and it is required in a wide range of applications such as object monitoring. 

However, in spatial coordination, the coordination deals with the idea of sharing the space among multiple 

UAVs to ensure safe performance for each UAV and coherent with respect to each of the potential obstacles 

in addition to the plans of other UAVs. Sharing resources is therefore the main issue. To have an 

accomplished coordination, there exists the other concept known as cooperation. Cooperation means 

provision common collaborative behaviors by using centralized or decentralized (distributed) architectures 

[25-27] to produce a coordinated mission. Therefore, a group of homogeneous or heterogeneous UAVs can 
interact with each other and execute the missions as a single entity. In order to ensure global coherence 

within the whole system, one main requirement is to have successful coordination and cooperation by sharing 

information as mentioned in [28]. Typically, two types of information are shared by a multi-UAV system, 

one of which involves command and control messages. Despite these types of messages, have low bandwidth 

requirements, command and control messages must be exchanged with minimal delay and error for effective 

team coordination. The second type is the mission data which is remotely sensed and gathered by the 

airborne sensors on UAVs and then transmitted to fusion centers [29]. It is worth noting that the fusion center 

process, exploits, and disseminates the mission data. Thus guaranteeing that UAVs are in communication 

most of the time during the mission and sharing the information is critical for a multi-UAV system to 

function properly. 

Accordingly, the network and communication systems are the fundamental components of the 
multi-UAV system. As a result of the fact that this system is rapidly developing and the scope of its usage 

grows greatly, networked communication will become the most crucial issue that needs vast interest from 

researchers. Moreover, the communication environment deviates significantly from traditional wireless 

networks regarding mobility degree, networking models, and communication requirements. The main 

objective of this paper is to explain FANET as a distinct ad hoc network family. Moreover, to present a new 

algorithm for calculating the routing metric, which provides more reliability in high mobility environments. 

The rest of the paper is organized as follows. In Section 2, we present the networking in a multi-UAV 

system. In Section 3, we explain our algorithm for calculating the routing metric in FANET. In Section 4, we 

provide the experiment of using this algorithm and the acquired results from the simulation. The last sections 

are devoted to the conclusions and references. 

 

 

2. NETWORKING IN A MULTI-UAV SYSTEM 

UAVs have become promising mobile platforms due to its capabilities to navigate simultaneously or 

autonomously in uncertain environments. On the side as depicted in Figure1. A network with flying nodes 

requires synergistic interactivity between the four design-principle dimensions: control system, network & 
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communication, information sharing, and situational awareness [30]. Thus, bringing a group of UAVs into a 

team requires significant coordination efforts to perform a given objective. For that reason, each UAV readily 

guarantees to be placed appropriately with respect not only to its neighbors but also to its tasks within the 

mission plan, which imposes the existence of a precise decision-maker (controller) for both path planning and 

task allocation in addition to the availability of efficient network system. Two important concepts in the 

multi-UAV system should be mentioned; one of which is coupling, and the other is networking.  

Indeed, networking readily characterizes the communication status among UAVs as well as the 

ways in which the data are transmitted within the whole system, while coupling takes into account how 

relationship exists among UAVs. Figure 2 shows that there are two types of coupling in a multi-UAV system. 

The first type is a physical coupling while the other is not physical, and therefore we can call it a logical 
coupling. Describing the characteristics of the data transmission over the entire multi-UAV system plays an 

important role in selecting a networking architecture for the best performance. Therefore, there exist different 

networking architectures proposed and emerged [31]. 

 

 

 
 

Figure 1. Design principles of network with flying nodes 

 
 

 

 

Figure 2. Coupling types in multi-UAV system a) Physical coupling, b) Formations, c) 

Swarms, d) Intentional cooperation 
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The simplest one is to have direct communication links between UAVs and a single ground station 

in a star topology, where a ground station is simply responsible for creating the communication between 

these UAVs as well as coordinate their motions. It is however worth noting that communication ranges of 

UAVs, which certainly depend on movement, terrain structure, and dynamic environmental conditions, 

certainly restrict the operation area. Moreover, the usage of a ground control station (GCS) might result in 

traffic congestion that accordingly influences system functionality. Figure 3 depicts a multi-UAV system 

simply employing direct communication architecture. 

There exist the other three possible network architectures proposed for the multi-UAV system as 
depicted in Figure 4. These types are satellite, cellular, and ad hoc each of which solves or alleviates the 

problems in the direct link approach. Recently, one of the most prestigious technologies in communication 

and networking is FANET. It is a kind of self-organized wireless network carried by a group of UAVs each 

of which is a small flying robot [32]. FANET can be considered as a special form of mobile ad hoc network 

(MANET). Moreover, it can also be considered as a subgroup of vehicular ad hoc network (VANET). It is 

worth mentioning that setting up an ad hoc network among UAVs imposes challenging issues and needs 

some additional requirements different from those a traditional network needs. 

 

 

 
 

Figure 3. Direct communication architecture 

 

 

   
(a) (b) (c) 

 

Figure 4. Basic communication architecture (a) Satellite, (b) Cellular, (c) FANET  

 

 

3. ROUTING METRIC IN FANET 

Over the years, there exists a huge body of works on routing protocols for wireless multi-hop 

networks such as FANET. These protocols implement discovering the route path and then routing the 

messages despite that the nodes are mobile and the link quality varies. To improve the performance of 

routing protocols, there have been proposed many link-quality routing metrics. Each metric can be readily 

considered as a set of measurements that are contributed into the route computation algorithms to estimate 
new weights for each hop/link in the routes. The weights, once aggregated, discourage selecting a route going 

through heavily loaded regions of the network topology. 

 

3.1.   Current metric in FANET 

One of the main effects on the routing protocol functions is the pace of network topology changes. 

The routing protocols must be able to update routing tables or cashes dynamically based on these changes on 
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topology [33]. The dynamic nature of FANET results in frequent changes in the network topology and thus 

makes the routing process among UAVs in FANET a daunting task that needs to be addressed by researchers. 

Therefore, the data routing between UAVs undergoes a serious challenge or issue. In spite of FANET is a 

subcategory of MANET or VANET, Most of their protocols are not directly applicable for FANET [34]. In 

fact, some specific ad-hoc networking protocols have been implemented and some of the previous ones have 

been modified in order to be feasible in FANET. 

The minimum hop count is the metric that is most commonly used by the ad hoc routing protocols. 

It enables the routing protocols to choose the minimum length path among different paths. Thus, the 

performance of these protocols is increased by reducing the effects of the successive hop transmission 

interference on multi-hop paths. These effects actually come from the fact that the middle nodes in a path 
cannot receive the packets from the previous node and sending it to the next one at the same time. However, 

due to the choice of minimum length paths is done regardless of the differences in quality of paths' links, 

these paths may be slow. As a result of that, we can say that the minimum hop count performs well whenever 

the shortest route is also the fast route with a low loss ratio. 

In [35], Douglas S. J. De Couto et al. proposed using the expected transmission count (ETX) metric 

to overcome the minimum hop count problem. Routing protocols with ETX metric choose the routes with 

high end-to-end throughput by minimizing the expected total number of transmissions (including 

retransmissions) required to deliver a packet to the ultimate destination. ETX metric incorporates not only the 

effects of both interference the successive links of a path and link loss ratios, but also the loss ratios between 

the two directions of each link. The ETX of a link is calculated by using the forward (𝑟𝑓 ) and reverse (𝑟𝑟) 
delivery ratios of the link: 

 

𝐸𝑇𝑋 =
1

𝑟𝑓 𝑟𝑟 (1) 

 

The measured probability that a data packet successfully arrives at the recipient is 𝑟𝑓  while 𝑟𝑟 is the 
probability that the ACK packet is successfully received. Thus, the best routes are the ones that have the 

smallest ETX and not necessarily to be with the least number of hops. If all links forming route “R” are 

errorless, ETX(R) will be equal to the number of hops in “R”. Although of these ETX features, Using ETX is 

not reactive enough to cope with very dynamic wireless ad hoc networks, such as multi-UAV networks 

(FANET). For solving this problem, the (ETX) metric must be weighted by using a factor that takes into 

account the relative speed & direction between nodes. In [36], Rosati et al. presented the Predictive-OLSR 

protocol. The Predictive-OLSR is a proactive link-state routing protocol with the capability to enable 

efficient routing in very dynamic conditions. It is an extension of the Optimized Link-State Routing (OLSR) 

protocol [37]. As in OLSR protocol, this protocol uses receiving ratios (𝑟𝑓 and 𝑟𝑟) to measure the quality of 
wireless links. By using a Hello packet as a link probe in addition of using exponential moving average 

(EMA), 𝑟𝑓  is computed as shown below: 

 

{
𝑟𝑙

𝑓
= 𝛼ℎ𝑙 + (1 − 𝛼)𝑟𝑙−1

𝑓

𝑟0
𝑓

= 0 
 (2) 

 

where 𝛼 denotes a link-quality aging (0 ≤ 𝛼 ≤ 1) and where the coefficient ℎ𝑙 is defined as 

 

ℎ𝑙 = {
1 if 𝑙th Hello packet received

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (3) 

 

Due to the EMA, a node takes an amount of time before noticing the degradation of a wireless link 

quality. During this time, it will continue route packets and thus yielding an interruption of the service. To 

overcome this problem, predictive-OLSR redefines the 𝐸𝑇𝑋 metric to be a Speed-Weighted 𝐸𝑇𝑋 metric by 

using the relative speed between two nodes and also using a fresh GPS information to improve the routing. 

Thus, the 𝐸𝑇𝑋 had shown as below: 

 

𝐸𝑇𝑋𝑖,𝑗 =  
𝑒

𝑣
𝑙
 𝑖,𝑗

𝛽

𝑟𝑓 𝑟𝑟  (4) 

 

{
𝑣𝑙

𝑖 ,𝑗
=  𝛾 𝑤𝑙

 𝑖,𝑗
+ (1 − 𝛾)𝑣𝑙−1

𝑖,𝑗

𝑣0
𝑖 ,𝑗

= 0 
 (5) 
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where 𝛾 and 𝛽 denote a predictive-OLSR (P-OLSR) parameter (0 ≤ 𝛾 ≤ 1) and a non-negative parameter, 

respectively. Moreover, 𝑣𝑙
𝑖,𝑗

 and 𝑤𝑙
𝑖,𝑗

 denote the relative speed and the instantaneous relative velocity, 

respectively, between UAVs i and j. 

Whenever the two UAVs 𝑖 and 𝑗 are closer to each other, the relative speed will be negative, thus 

the 𝐸𝑇𝑋 is weighted by a factor smaller than 1. Conversely, the relative speed will be positive and the 𝐸𝑇𝑋 is 

weighted by a factor larger than 1 when UAV 𝑖 and 𝑗 move away from each other. As stated in [38], the  
P-OLSR is currently used as a FANET-specific routing protocol. Within the P-OLSR, the routing follows the 

topology changes without interruptions. By comparing with OLSR, P-OLSR succeeds in providing a reliable 

multi-hop communication in very dynamic wireless ad hoc networks where OLSR mostly fails. Another 

extension to the (OLSR) protocol is a directional optimization link state routing protocol (DOLSR) [39]. It is 

a novel routing protocol that is used in UAVs with a directional antenna. DOPLR capable of decreasing the 

end-to-end delay by reducing the number of the multipoint relays in the network, and thus the number of 

overhead packets will be reduced. As a result, the overall throughput of FANET is increased. Moreover, the 

simulation shows that the performance of DOLSR is better than both OLSR and AODV in terms of end-to-

end delay. The other approach in FANET routing protocol is the use of reactive routing protocols (RRPs) 

such as ad hoc on-demand distance vector (AODV). As mentioned in [40], [41], ad hoc on-demand distance 

vector (aodv) is a reactive protocol that forms the path only whenever there is data to send. This protocol is 
adaptive to severe link conditions, low network utilization, and memory overhead. AODV is capable of 

preserving the bandwidth consumed in the proactive routing protocol (PRP) as a result of periodically 

updating the routing table. Indeed, the problem of efficiently routing messages (commands and data) between 

UAVs is a significant challenge in itself for FANET. Moreover, it is further exacerbated as the number of 

UAVs grows, as wireless link qualities continuously fluctuate under fading, and as the network topology 

rapidly changes. It is paramount to route the messages to its destination with adequate data rate capacity, 

minimal delay and with minimal number of dropped packets. Thus, the problem of the delay in addition to 

other issues such as cost overhead to establish the multi-hop route, reliability in case of high mobility, etc., 

are remained to be studied and analyzed by the researchers to find better solutions satisfying all FANET 

requirements. 

 

3.2.   Reliability-based expected transmission count (ReLX) 
The channel quality from one UAV to another UAV is defined as how much volume of information 

could be transmitted, namely, with a small bit error rate (𝐵𝐸𝑅). As it is understood from the definition of the 

quality, the channel quality has an averaging meaning about the volume size of information that could be 

transmitted. In literature, most of the existing routing protocols rely on the link quality, i.e. the forward and 

reverse channel qualities at the same time. The protocols are about the route selection from all available 

routes between any pair of two nodes. Routing protocols are optimized to take into account the quality of 

route selection. However, during the transmission, the information is subjected to the effects that certainly 

change. Within this context, the link reliability comes into the light. Almost all routing protocols are not 

optimized out of the reliability scope. The channel reliability from one UAV to another one is defined as how 

much a volume of information could be successfully transmitted. Let us consider two channels whose 
qualities are the same (i.e. their BER are the same). Note that the bit errors have occurred during transmission 

over a channel could be sequential; the group of successive errors is called burst-error. In the second channel, 

the bit errors are separated from each other by successful transmission, i.e. the bit errors are distributed along 

the transmitted bit sequence. In consequence, the reliability of the second channel is better than the first 

channel even if their qualities are the same. In order to characterize the reliability of the link based on the 

burst error-length (i.e., burst loss situation) in addition to the speed and direction of UAVs, we will try to 

define our routing metric to be a speed and reliability-based metric. Our metric will be consisted of two parts 

𝑆𝑝𝐷 and 𝑀𝑜𝐵𝑋 as follows: 

 

𝑅𝑒𝐿𝑋 = 𝑆𝑝𝐷 ∗ 𝑀𝑜𝐵𝑋 (6) 

 

where 𝑆𝑝𝐷 denotes the relative speed between two nodes, which is the numerator in (4), 𝑀𝑜𝐵𝑋 denotes the 

predicted number of transmissions/retransmissions required to send a packet over the link. In this routing 

metric, we provide a new method for calculating the probability of delivery ratio (𝑃). Also, we suggest a new 

algorithm to detect the most reliable links among the links with equal quality. For calculating the delivery 

ratio for forward or reverse channel, each node will probe the channels with its neighbors by sending probe 

packets to them within a time window (𝑇). Then, the nodes count the successful probe packets (𝑝𝑐𝑘𝑠) that 

received from its neighbors in each slot time (τ), and divide it by the total probe packets (𝑝𝑐𝑘𝑡). 
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𝑃 =
𝑝𝑐𝑘𝑠

𝑝𝑐𝑘𝑡
, (7) 

 

𝑝𝑐𝑘𝑡 =
𝑇

𝜏
 (8) 

 
Accordingly, each attempt to transmit a probe packet can be considered as a Bernoulli trial. The 

probability of successful transmission in forward and reverse channels 𝑃𝑠 is considered as the probability 

density function (𝑃𝐷𝐹) of the transmission attempts, while the probability of failed transmission 𝑃𝑓 can be 

considered as the complementary probability of 𝑃𝑠: 

 

𝑃𝑠 = 𝑃𝑓𝑟  𝑃𝑟𝑣 (9) 

 

𝑃𝑓 = 1 − 𝑃𝑠 (10) 

 

where 𝑃𝑓𝑟  denotes the delivery ratio of the forward channel, 𝑃𝑟𝑣 denotes the delivery ratio of the reverse 

channel. Based on the Information theory, we will try to define our metric (𝑀𝑜𝐵𝑋) in a mathematical method 

instead of the intuitional method. Depending on the average amount of information contents obtained from 𝑃𝑠 

and 𝑃𝑓, we define the 𝑀𝑜𝐵𝑋 as follows: 

 

𝑀𝑜𝐵𝑋 = 1 + 𝜑 × 𝜙 × 𝑙𝑜𝑔2(𝑃𝑠) (11) 

 

𝜑 =
𝑃𝑠

𝑃𝑓
 (12) 

 

𝜙 =
𝑙𝑜𝑔10(2)

𝑙𝑜𝑔10( 𝑃𝑓)
 (13) 

 

It is worth noting that the value of 𝜙 is always negative and the value of 𝜑 is always positive. When 

the value of 𝜑 increases on a positive side, the value of 𝜙 decreases on a negative side. With this context, the 

product of them is roughly equal to -1. Consequently, the equation of 𝑀𝑜𝐵𝑋 can be mathematically 

expressed as: 

 

𝑀𝑜𝐵𝑋 = 1 − 𝑙𝑜𝑔2(𝑃𝑠) (14) 

 

By observing Figure 5, we can note that the behavior of 𝑀𝑜𝐵𝑋 metric is mostly equal to the 

behavior of the expected transmission count (𝐸𝑇𝑋) metric over the values of the probability of delivery ration 

(𝑃𝑠). Also, we can note that 𝑀𝑜𝐵𝑋 metric curve is slowly changed when the link variability at a high level, 

while the basic 𝐸𝑇𝑋 is dramatically changed. Accordingly, the bits that are needed for representing the 

𝑀𝑜𝐵𝑋 values will be less than these bits for basic 𝐸𝑇𝑋 metric values, and thus it reduces the size of the 

control messages that convey these values. 𝑀𝑜𝐵𝑋 will decrease the consumption amount of network 

resources such as bandwidth, energy, memory, and overhead. This will have a significant positive impact, 
especially in networks that suffer from a lack of resources such as wireless sensor networks [42, 43]. In 

wireless sensor networks, the sensor nodes are much more resource-constrained. As a result, the heavy-

weight routing protocols as those used in other networks may not suitable for using them in WSNs. The 

limited communication and computational resources of the sensor nodes need to utilize the routing protocols 

with minimum probe packet size, energy consumption, memory, and overheads. UAV calculates the 

probability of delivery ratio within fixed slots without consideration of the fluctuation of the channel quality 

caused by the high mobility of UAVs. 

In terms of the reliability concept, 𝑀𝑜𝐵𝑋 has not have the capability of detecting the reliable links 

aptly, i.e., burst-loss situation yet. A reliable link within the wireless multihop networks will be a link with 

ordered forward and reverse channels as much as possible. For example, let us check the value of 𝑀𝑜𝐵𝑋 and 

𝐸𝑇𝑋 of two links within a network. The main time window belonging to two links consists of 20 slots. 

Where each of these two links includes a forward and reverse channel. The patterns that these channels look 

like are as shown in Figures 6 and 7.  
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Figure 5. Relationship between ETX and MoBX 

 

 

Although of the differences in channel patterns and their fluctuation in the connectivity on these two 

links, the values of 𝐸𝑇𝑋 and 𝑀𝑜𝐵𝑋 for both links are 4 and 3 respectively. Accordingly, we need to combine 

an algorithm to the available routing protocols of FANETs in order to enable them to detect the link’s 

fluctuations. This algorithm will increase the value of 𝑀𝑜𝐵𝑋 for the links with high disordered, and thus 

enables 𝑅𝑒𝐿𝑋 metric to select the links with high reliability. 
 

 

 
(a) 

 

 
(b) 

 

Figure 6. Forward and reverse channels for the first link (a) Forward channel, (b) Reverse channel 

 

 

 

 
(a) 

 

 
(b)  

 

Figure 7. Forward and reverse channels for the second link (a) Forward channel, (b) Reverse channel 
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By using our algorithm in Figure 8, the main window time will be divided into sub-windows with a 

changeable width. The width of this sub-windows depends on the quantity of information getting from 

delivery ratios of successful probe packets. Whenever this information value exceeds a predefined threshold, 

the new sub-window is created and new information is calculated. The threshold represents the acceptable 

disorder within the sub-window. At the end of the main window time, the average of these probabilities 

(ratios) is computed. Depending on the average probabilities for both forward and reverse channels that 

UAVs have calculated, the value of 𝑀𝑜𝐵𝑋 for the network links will be defined as mentioned in (14). By 

using threshold equals to 0.2, the values of 𝑀𝑜𝐵𝑋 of the two links from the previous example will be about 4 

and 6 respectively. Thus, increasing the fluctuations in links between UAVs, increasing the value of 𝑀𝑜𝐵𝑋. 

 

 

 
 

Figure 8. Algorithm for MoBX 

 

 

4. EXPERIMENTS AND RESULTS 

To evaluate the performance of 𝑅𝑒𝐿𝑋 metric, we used NS2 simulator. We compared our metric 

𝑅𝑒𝐿𝑋 with 𝐸𝑇𝑋 metric in two mobility values in terms of throughput and average packet delay over a 

simulation time equals to 100 sec. The simulation was performed on a 1000 * 500 m field of 25 UAVs. Each 

UAV is provided with an omnidirectional antenna (OmniAntenna), which conforms to IEEE 802.11. Thus, 

each UAV has a range of 250 m in the absence of obstacles and a nominal bandwidth of 20 Mbps. The two-
ray ground model is the radio propagation model that is used in our simulation. UAVs exchange probe 

packets after being initiated and uses CBR traffic as source traffic. In addition to the delivery ratios that are 

carried by the probe, each probe will contain the position information too. Each source sends out packets 

with a size of 512 bytes. In our simulation, each UAV has a priority queue with a maximum capacity of 50 

packets, which gives priority to routing protocol packets. 
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In our simulation, the mobility model used is a Random Waypoint model with two maximum speed 

values: 𝑚𝑜𝑏1 equals to 25 m/sec, and 𝑚𝑜𝑏2 equals to 50 m\sec. The UAVs are initially placed at random 

positions except for the senders and receivers, which initial with fixed positions at the edge of the simulation 

area and in the opposite direction. The aim of the residence the senders and receivers at the edge is to make 

the control message and data packet circulate over the largest possible number of intermediate nodes. It's 

worth noting that all results of our simulation are the cumulative results of these two senders and receivers. 

Established links should be as reliable as possible to avoid data packet loss and thus decreasing in throughput 
and increasing delay. This means that maintaining and sensing the link should be robust against burst loss or 

the transient connectivity between UAVs in a network. 

A link-state routing protocol such as OLSR tries to detect the transient connectivity among the 

nodes by using the link hysteresis techniques. However, the hysteresis technique provides a more robust link 

sensing at the cost of more delay before establishing links. For the distance vector routing protocols such as 

AODV, there is no technology is used to provide robust links. Even if the AODV concerns the link quality by 

using the 𝐸𝑇𝑋 metric instead of the hop count metric, it will remain unable to capture the transient 

connectivity. The 𝑅𝑒𝐿𝑋 metric enables AODV routing protocol from detecting the distribution pattern of 

receiving probe packets over a time window and increases the quality metric value for these links that has 

irregular distribution even if these links have the same 𝐸𝑇𝑋. By increasing the mobility value, the disorder of 

the pattern is grown and thus the quality of routing metrics decreased and its effectiveness. However, 𝑅𝑒𝐿𝑋 

provides an observed high performance over the 𝐸𝑇𝑋 metric when with the second mobility 𝑚𝑜𝑏2 is applied. 

Offer guarantees to application concerning the time taken to transfer data packets from source to 

destination is one of the main purposes of all routing protocols. It is very important to consider the capacity 

of the routing protocol to transmit data packets from the source to the desired destination node when we want 

to evaluate the performance of this protocol. We can define the throughput as the number of successfully 

received packets in a unit of time. 𝑅𝑒𝐿𝑋 for many reasons we mentioned before will provide a higher 

throughput than the 𝐸𝑇𝑋 in both mobility values as shown in Figure 9. 
 

 

 
 

Figure 9. Throughput comparison 

 

 
Indeed, one of the main purposes of all routing protocols is to offer guarantees to application 

concerning the time taken to transfer data packets from source to destination. Thus, we try to evaluate the 

delay parameter for the AODV protocol with: 𝑅𝑒𝐿𝑋 and 𝐸𝑇𝑋 metrics and compare the results when we 

utilize the two mobility values (𝑚𝑜𝑏1 and 𝑚𝑜𝑏2). Indeed, the delay parameter gives the average time 

necessary to transfer a packet from source node to destination. It is worth noting that the more spread out the 

UAVs are, the lower the possibility of finding a route. We can note from Figure 10 that the average delays in 

these two metrics are close to each other until the second 20. When the UAVs begin to move a far from each 

other and the possibility of establishing a robust route is decreased, the average delay will increase in 𝐸𝑇𝑋 

metrics more than the 𝑅𝑒𝐿𝑋 metric. The main reason behind the results that have been got, is the 𝐸𝑇𝑋′𝑠 
selection of the links with the lowest reliability, which therefore result to need for additional time for 

launching a new route discovery and retransmission loss packets. 

Most of the UAVs are Li-ion powered that has inadequate battery lifetime and very little payload 

potential. Accordingly, power is one of the other key issues in the unmanned aerial vehicle communication 
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networks. The network lifetime decreases or increases depending on the energy consumption of wireless 

nodes, and thus the energy-efficient mechanism is needed in these types of networks [44]. By using the 

AODV protocol with ReLX and ETX metrics, we try to evaluate and compare the power consumption of our 

UAVs network in two mobility values mob1 and mob2. We can note from Figure 11 that the power 

consumption in these two metrics are close to each other although the ReLX needs more computational time 

for each sub-window. The main reason behind this fact that the AODV routing protocol with the ETX metric 

needs additional time to re-establish the route within the network and then retransmitting loss packets. 

However, when the mobility value is increased, we can note that the power consumption of the ReLX is 

slightly less than with the ETX metric. 

 
 

 
 

Figure 10. Delay comparison 

 

 

 
 

Figure 11. Power consumption comparison 

 

 

5. CONCLUSION 
UAVs have seen unprecedented levels of growth over the past 20 years with military applications 

dominating the field. However, UAVs have recently played a major role in a broader range of civilian 

applications and have gained popularity over traditional full-size piloted aircraft. Progressively, UAVs need 

to cooperate with each other in order to perform complex tasks especially in areas that are relatively 

inaccessible from the ground. Thus, a multi-UAV system has emerged that has many advantages beyond a 

single UAV system. Information sharing, which means communication, is one of the most challenging design 

issues in the multi-UAV system. There are therefore lots of communication architectures, such as cellular and 

satellite, each of which has been proposed to create links among UAVs in the system. Despite all the 

advantages offered by these cellular and satellite-based communication architectures, they are suffering a lot 

of the main issues/problems such as a limited communication range and scalability. In order to overcome 

these problems, FANET architecture, which is an ad hoc network among nodes in a multi-UAV system, has 
been proposed as the best solution possessing many merits and also challenges each of which must be taken 

into account by any researcher working in this area. The dynamic nature of FANET results in frequent 
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changes in the network topology and thus makes the routing process among UAVs in FANET a daunting task 

that needs to be addressed by researchers. Within that context, we developed the idea behind the 𝐸𝑇𝑋 metric 

in a mathematically way and applied a new metric called 𝑅𝑒𝐿𝑋. Indeed, the 𝑅𝑒𝐿𝑋 is a speed and reliability-

based metric that takes into account the quality and the reliability of the forward and reverse channels of any 

links within a network. It has the capability to detect the channel variability by considering the burst errors 

length until a predefined threshold. As shown in our comparison using different mobility values, 𝑅𝑒𝐿𝑋 helps 
a routing protocol to select the high reliability and qualitative routes among the available routes, and hence 

improve the overall network performance. Accordingly, FANET represents a new era of ad hoc networks, 

which will offer a wide range of future applications to the community. It is worth saying that, lots of 

researchers and practitioners should study this type of ad hoc network to find solutions for the most 

challenging problems such as routing protocols in FANET. 
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