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Reliability, Brittleness, Covert Understrength Factors, 
and Fringe Formulas in Concrete Design Codes 

Zdenek P. Bazant, F.ASCE1
; and Qiang Yu2 

Abstract: The paper analyzes the reliability consequences of the fact that the current design codes for concrete structure contain covert 

(or hidden) understrength (or capacity reduction) factors. This prevents distinguishing between different combinations of separate risks 

due to the statistical scatter of matelial properties, the error of the design formula, and the degree of brittleness of failure mode, and also 

makes any prediction of structural reliability (or survival probability) impossible. The covert formula error factor is implied by the fact 

that the design formula was calibrated to pass not through the mean but through the fringe (or periphery, margin) of the supporting 

experimental data. The covert material randomness factor is the ratio of the reduced concrete strength required for design to the mean of 

the strength tests. As a remedy, the covert understrength factor of design formula should be made overt, its coefficient of variation (based 

on the supporting test data) should be specified, and the type of probability distribution (e.g., Gaussian or Weibull) indicated (which then 

also implies the probability cutoff). Alternatively, the code could give the mean formula, specify its coefficient of variation and type of 

distribution, and either prescribe the probability cutoff or overtly declare the understrength factor. The mean of strength tests required for 

quality control should be figured out from the required design strength on the basis of a specified probitbility cutoff and the coefficient of 

variation of these tests. Fw·thennore, it is proposed that the currently used empirical understrength factor, which accounts mainly for the 

risks of structural brittleness (or lack of ductility), should be based on the expected maximum kinetic energy that could be imparted to the 

structure. The reliability integral taking into account the randomness of both the load and structural resistance is generalized for the case 

of multiple (statistically independent) understrength factors. Finally, it is pointed out that the currently assumed proportionality of the 

tensile and shear strengths to the square root of compressive strength of concrete is realistic only for the mean, but grossly underestimates 

the scatter of tensile and shear strengths. 
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Introduction and Present Status 

Improvements in the structure of safety provisions in building 

design codes otTer a much greater potential for advances in safety 

and economy than improvements in structural analysis. It makes 

little sense to use. for example, sophisticated finite element analy­

sis to improve the accuracy of structural analysis by 10% if the 

safety factors that must be applied to the results can be wrong by 

SO%. However, to realize this potential, the probabilistic consid­

erations behind the safety factors must take into account the new 

understanding of the failure process, especially with regard to 

brittleness. 

Beginning with the 1971 American Concrete Institute (ACI) 

concrete design code, two kinds of safety factors have been dis-
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tinguished: (a) the load factors, and (b) the strength (or capacity) 

reduction factors, the latter commonly called the understrength 

factors. In ACI code (ACI 2(02), the basic factored load cases are 

1.6L+ 1.2D and I.4D (D=dead load, L=live load). For very small 

structures, the live load totally dominates (L'$>D), and so the load 

that decides is essentially 1.6L. For very large structures, the self­

weight totally dominates (D '$> L). and so the load that decides is 

essentially I.4D. 

However, as pointed out by Bazant and Frangopol (2002) [and 

elaborated on by Novak and BaZant (2002)], I.4D is irrational. 

The actual errors in self-weight of structures (other than sabotage) 

can hardly justify more than 1.03D. and definitely not more than 

1.0SD. 

Because the self-weight is negligible for small structures and 

dominates for very large structures, the excessive self-weight fac­

tor 1.4 (instead of a rational value ~ 1.0S) represents a hidden size 

effect. Unfortunately, this size effect is applied indiscriminately to 

all types of failure. This is irrational. For example, ductile fail­

ures, such as flexure of underreinforced beams, need no protec­

tion from size effect, while the failures in shear, torsion, punch­

ing, compression crushing, tension, and bond slip of concrete 

need an even larger protection in the case of very large structures. 

As another example. prestressed concrete or high-strength con­

crete structures receive less protection than unprestressed or 

nonnal-strength reinforced concrete stlUctures because they are 

lighter, while they actually need more protection because they are 

more brittle. Besides, the shape of the size effect curve (i.e., a 

curve of the nominal strength of stt'ucture versus stt'ucture size) 
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that is generated by imposing an excessive self-weight factor is 

incorrect (giving too little size effect for medium size structures). 

The hidden size effect cannot simply be removed by reducing 

factor 1.4 to 1.03 or 1.05 because the hidden size effect partially 

compensates for the current lack of size effect in the code provi­

sions for brittle failures (an exception is the recent introduction of 

size effect for the pullout of anchors from concrete, in which case 

the self-weight load factors 1.4 as well as 1.2 should, of course, 

be reduced). 

If, on the other hand, a realistic size effect (i.e., the energetic 

size effect of quasi-brittle fracture mechanics) was introduced into 

the code provisions for brittle failures without simultaneously re­

moving the hidden size effect, it would unjustly penalize very 

large structures and also retain the current unjustified penalization 

of heavy structures compared to light ones of the same size (e.g., 

high versus low strength concretes, unprestressed versus pre­

stressed concretes). Therefore, a remedy will require collabora­

tion of statisticians with fracture mechanics experts. This point 

will not be discussed here any more because it has already been 

made (Bazant and Frangopol 2002). 

However, there are other irrational safety margins hidden in 

various strength reductions which arc implied but not explicitly 

stated in concrete design codes. The objective of this paper is to 

clarify them and propose the concepts to remedy them, while 

leaving the paramount problem of size effect aside for subsequent 

studies. 

Examples of Existing Fringe Formulas in Concrete 
Design Codes 

To figure out..tl1e relationship of the design strength (or internal 

force) required by factored loads to the average internal force 

measured in failure tests, one must realize [as pointed out in 

Bazant (2003)] that concrete codes [including ACl (2002)] actu­

ally contain two kinds of understrength factors: overt and covert 
(or hidden). The overt ones are stated in the code explicitly, vis­

ible to all users, and are simply called the understrength (or 

strength reduction) factors. The covert ones [identified in BaZant 

(2003)] are two: (1) the formula-error factor, ifJf; and (2) the 

material randomness factor, ifJm' 

Covert Formula-Error Factor 

First consider, as an example, the classical formula for shear of 

longitudinally reinforced concrete beams without stirrups (or 

other shear reinforcement). It gives the shear strength (force) con­

tributed by concrete as 

(1) 

(better written in a dimensionally proper form as 
,..--

ve=2 psi H~ psi because the formula is valid only in psi); 

v c= Vel bwd; Vc= shear force capacity (or shear strength) provided 

by concrete (i.e., total shear force V minus the contribution of 

steel shear reinforcement); bw=web width; and d=depth of beam 

from its top surface to the longitudinal reinforcement centroid. 

Now note the way this currently prescribed code formula (ACI 

2002) was calibrated long ago by shear test data. As seen in Fig. 

1 (a) plotted from ACI (1962), the horizontal line for v c=2.JJ; was 

not set to match the optimum (least-squares) fit of the test data, 

i.e., it was not set to pass through the centroid of the test data 

cloud in Fig. I (a). [These small-beam data (194 points) are here 
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plotted directly from a table in that paper. These data also appear 

in Fig. 7.13 of Park and Paulay (1975), in Fig. 5.5.1 of Wang and 

Salmon (1998), in Fig. 6.8 of Nawy (2003), and in other subse­

quent books. But it must be warned that these subsequent plots 

differ from the original, and also from each other (they were 

adapted by deletions of many points, and by replacements of 

groups of points with single points, which produced an increase 

of the mean above the correct value). Furthermore, one must note 

that the ordinates in these subsequent plots use .Jl for 

what should be, according to ACI (1962), #c (in current ACI 

notation, fc= f~r)'] Eq. (1) was set to fit roughly the lower fringe 

(or margin) of the test data cloud, which is found to lie at about 

65% of the mean (or centroid) of the data cloud, denoted as Vc 

[see Fig. I (a)]. Based on the standard deviation of Vc data and the 

hypothesis of Gaussian distribution plotted in the figure, this cor­

responds to a 5% probability cutoff. Hence 

ifJf= v!vc = 0.65, Pcur = 5% (2) 

This ratio represents a covert. understrength factor. It will be 

called the formula-error factor because it accounts for the scatter 

in Fig. lea) which is caused mainly by the fact that the design 

formula ignores additional influences such as the size effect, steel 

ratio, and shear span, and also a host of other poorly understood 

parameters, such as the concrete mix parameters, aggregate and 

cement types, etc. [that this is the main cause of high scatter is 

documented by the fact that, when the main influences are taken 

into account by a more complex formula, the scatter band width is 

drastically reduced; see Bazant and Yu (2003, 2005a,b)]. The 

probability cutoff Petti = 5% means that 5% of the data in Fig. lea) 

is expected to be below the line 2 #C. No reason for setting the 

cutoff as 5% is known. 

A more accurate design for shear must take into account the 

size etIect, and also the effects of reinforcement ratio Pw and 

shear span al d. A formula of this type has recently been proposed 

and calibrated by Bazant and Yu (2003, 2005a,b); see the solid 

curve in Fig. l(b), showing the current database of committee 

ACI-445 with 398 data points for beams without stirrups [devel­

oped as an expansion of an older database of 296 points from 

Bazant and Kim (1984), and Bazant and Sun (1987)]. The choice 

of variables in the formula for the solid curve, which reads 

vc=vo(l +dldo)-1/2 (in units lb., in., psi), has made it possible to 

considerably reduce the scatter width (Bazant and Yu 2003, 

2005a,b), as seen by comparing this figure with Fig. lea), in 

which vo=fl,ifJtP;:8(l+dla).JJ;, fl,=13.3, and do=3800~d(,1f:.2/3 
if da is known. If da is unknown, do=33301j'C2/3 (here 

da=maximum aggregate size in inches, pw=steel ratio, 

dla=shear span). 

For the mean, we have ifJf= 1, but because the approach of 

ACI-445 is to pass the design formula at the 5% percentile of data 

rather than the mean, the solid curve in Fig. l(b) is reduced by 

factor ifJf= 10/13.3=0.76 to the dashed curve corresponding to 

the 5% probability cutoff (obtained under the hypothesis that the 

regression errors follow the Gaussian distribution). Note that the 

improved form of the design formula has made it possible to 

decrease considerably the scatter bandwidth. Consequently the 

covert understrength factor, ifJf=0.76, is much higher than the 

value 0.65 implied for small-size beams by the current code 

(which in tum is still too high for large beams designed according 

to the current code). This documents that factor ifJf takes into 
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Fig. 1. (a) ACI (1962) small-beam database used to justify the current ACI code fonnula for shear force capacity Vc due to concrete in reinforced 

concrete beams with and without stirrups, and reductions specified or implied by ACI-318-02 standard (2002) that were justified by this database. 

(b) ACI-445 database for shear force capacity V= Vc ("shear strength" in ACI terminology) of beams without stirrups. with optimum fit by size 

effect law, and (c) by an approximation with straight asymptotes (after Ba!ant and Yu 2003, 2005a,b). (d) Example of scatter of 12 compression 

strength tests (l,.=mean strength=f;.,. in ACI notation . .f~.=specified strength used in design). (e) Probability density and cumulative distributions 

of load and resistance of structure, entering the reliability integral. 

account primarily the error scatter of the mathematical formula. 

The better the formula. the closer to 1 is its covert understrength 

factor, i.e .• the formula-error factor. 

Fig. 1 (c) shows a simplification of the fOlmula proposed by 

Bazant and Yu (2003, 2005a,b). It replaces a smooth curve by two 

straight lines-the asymptotes of the size effect law. and is de­

fined as Vc =fJ.'Pfv'i::min{2,5/#}. The penalty for this simplifica­

tion is that factor 'Pf for a 5% cutoff is reduced from 0.76 to 0.61. 

As another example, ACI (2002) code article D.5.2.2 for the 

breakout axial force Nb in pullout of anchors may be mentioned. 

This recently adopted article, which features. in the cunent ACI 

Code. the first and only design formula incorporating the size 

effect on the nominal strength (in fact the size effect of LEFM 

type, which is the strongest possible), was not set to pass at the 

mean of the scatter bandwidth of the data from anchor pull-out 

tests (Fuchs et al. 1995). Rather. it was set to pass at the 5 (7<:, cutoff 

(fractile.) of the scatter bandwidth; so. Pcut=5% in this case. As far 

as known, the choice of a 5% cutoff was based simply on intuitive 

judgment. It is not known why a smaller cutoff than that for beam 

shear was not chosen. 

Covert Material Randomness Factor 

Second, consider the compression strength of concrete. Its value 

used as input to the design code fonnulas does not represent the 

average. Ie. of the measured concrete compression strength val­

ues. Rather, it represents the so-called specified strength. f;, the 

value of which corresponds roughly to a 9% probability cutoff 

(fractile) of the strength distribution, as can be figured out from 

Article 5.3.2.2 of ACI (2002). The value of I~ lies close to the 

fringe (or margin, periphery) of the cloud of strength data mea­

sured [Fig. I (d)], and is expressed as 

I~· = min(J~. - km'O.r, 1c - k~flf+ 500 psi) (k", = 1.34,k~, = 2.33) 

(3) 

if/~ ""'5,000 psi (the first argument governs if 'Of> 505 psi, which 

is usually the case). Here lc=average uniaxial compressive 

strength of concrete measured on 6 in. (l51 mm) diameter cylin­

ders (denoted by ACI as f~'); and 'Of=standard deviation of the 

compression strength tests of the given concrete. If the strength 

data for the given concrete are insufficient to assess 'Of. ACI 

(2002) code allows taking the difference lc-f; as 1.000 psi for 

l. < 3.000 psi, as 1.200 psi for 3,000 psi ""'I; "'" 5.000 psi, and as 

O.lf~ + 700 psi for I; > 5,000 psi (1 psi=6.895 Pa). If the first ar­

gument in Eq. (3) governs, the ratio 

(4) 

is a covert understrength factor taking into account material ran­

domness, and will therefore be called the material randomness 

factor. From Article 5.3.2.2 of ACI-3JS-02 code (ACI 2(02), it 

can be figured out that, approximately 

'Pm = 0.75 (5) 
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Wm = 19 %, Prob(strength < 'P,JJ = PCl/t = 9.0% (6) 

The value of 0.75 coincides with the ACI (2002) code value ex­

actly when .1 .. =4,800 psi. For ]c=6,000 psi, the ACI rule gives 

'Pm=0.80, and for ],,=4,200 psi. it gives 'Pm=0.714: for 

f~=3,000 psi, ACI specifics a discontinuity, such that 4,200 psi is 

reduced to 3,000 psi. and 3,999 psi to 2,999 psi (however, this is 

a problematic specification, unsuitable for computer analysis, be­

cause the discontinuity would cause divergence of design optimi­

zation and sensitivity analysis programs). The approximate values 

W,. = 19% and {lC/1I = 9% represent the coefficient of variation of 

strength expected by the code and the corresponding approximate 

cutoff probability, that is, the probability of compression strength 

being less than 'PI .. (i.e., less than f;.). These values were figured 

out, for ]c=4,800 psi, and for a Gaussian distribution of strength, 

from the fact ACI (2002) implies the 1,200 psi reduction of the 

mean strength to be equivalent to l.3431 where ll/=standard 

deviation of compression strength. 

As for the cutoffPcU/=9% implied by the choice of 1.34, no 

scientific reason is known, though. It is also unclear why this 

cutoff should be different from that recently introduced for anchor 

pullout. 

Overt Understrength Factor in Current Code 

What is the main purpose of the overt understrength factors in the 

current ACI code, denoted here as 'P? It is certainly not to take 

into account the randomness of strength because this is done by 

the covert understrength factor 'Pill (material randomness factor). 

Neither is it to take into account the lormula errors because this is 

done by the covert understrength factor 'PI (formula-error factor). 

What appears to be the main purpose is to take into account 

the risk of failure and the seriousness of its consequences. Com­

pare the overt understrength factors 'P specified by the code for 

various types of failure: for beam shear failure it now is 0.75 (it 

was 0.85 until 2002); for column failure, which can also be brittle 

if concrete is getting crushed (and often puts the entire structure at 

risk of failure). it is also 0.75; for tensile failures of plain con­

crete. which is highly brittle, it is 0.55; and for flexural failure of 

under-reinforced beams, which is non brittle, or ductile (and does 

not put the whole structure at risk), it is 0.9. 

How to Eliminate Deficiencies of Fringe 
Design Formulas 

There are two potent reasons for eliminating fringe (peripheral, 

marginal) formulas from the design code: (1) to distinguish prop­

erly among the risks of many possible designs and failure modes; 

and (2) to render statistical reliability analysis of design possible. 

Distinguish Different Risks for Different Designs 

In the allowable stress design, it was impossible to distinguish 

between load uncertainty and structural resistance uncertainty, 

and among the different uncertainties for different load combina­

tions and different degrees of brittleness. The purpose of intro­

ducing the load factor resistance design (LFRD) four decades ago 

was to distinguish between these uncertainties. 

Now a similar situation arises for the fringe formulas. The 

random scatter of material strength and the error of the design 

formula (which is due partly to oversimplification of the mechan-
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ics of failure, and partly to incompleteness of its understanding), 

have different sources and separate effects on design safety. Fur­

thermore, both are different from the effect of the degree of 

brittleness on the risk of catastrophic failure. 

Therefore, separate understrength factors are needed in order 

to distinguish among these different effects. 

Render Probabilistic Reliability Assessments Possible 

If the type of distribution (e.g., Gaussian, Weibull) is known, the 

statistical distribution of a random variable is fully characterized 

by the mean and the coefficient of variation. But if a fringe for­

mula is presented in a design code without specifying: 

(1) Its probability cutoff (or percentile); and 

(2) Its coefficient of variation, w. 

It is impossible to reconstruct the mean and standard deviation 

(nor the st,mdard error of regression). This in tum makes it im­

possible to predict the mean structural response and its standard 

deviation, thus making reliability analysis of the structure 

impossible. 

At reliability conferences, many investigators, unsuspecting of 

the hidden fringe nature of the existing code formula, simply take 

that formula as the mean predictor, infer its coefficient of varia­

tion intuitively or by some analogy, and proceed straight away to 

make sophisticated reliability calculations. Unfortunately, such 

calculations are doomed to be nothing more than a mere math­

ematical exercise, yielding erroneous and misleading probabilistic 

estimates of structural reliability. 

Based on the current structure of codes, correct estimation of 

structural reliability would not be easy. The analyst would have to 

search first for the detailed test data that were oliginally used by 

the code-making committee to calibrate its formula. but such data 

are often hard to find. Then he would have to conduct statistical 

regression of these data to reconstruct the mean prediction from 

the fringe formula in the code. Only after that, he could engage in 

a meaningful reliability analysis of the structure. 

To render structural reliability estimates possible. it is inevi­

table to introduce changes in the design code. For the formula 

understrength factor, there are two options: 

• Option J. Keep the existing fringe design formula unchanged, 

but make it in the code absolutely clear that the design formula 

is a fringe estimate. At the same time, specify in each code 

article the factor 'Pr that is necessary 10 scale up the formula 

back to the mean of the scatter band of test data, and further 

indicate in each article the type of probability distribution 

(e.g., Gaussian or Weibull) and either the probability cutoff 

associated with 'PI or the coefficient of variation of test data 

(one of which implies the other). 

• Option 2. Scale up each current hinge formula so that it would 

follow the mean of the scatter band of the test data (e.g., the 

mean beam shear strength or mean anchor strength), and im­

pose a requirement to usc additional understrellgth factor 'PI' 
specifying either its probability cutoff or coefficient of 

variation. 

As for concrete strength tests, their mean value that must be 

achieved to pass quality control should be determined from the 

required design strength on the basis of a specified probability 

cutotT and the coefficient of variation of these tests. 

Being tacit about the fringe nature, the code makers unwit­

tingly invite misleading estimates of structural reliability (as well 

misinterpretation of test results and forensic evidence). As an 

example, Fig. 1 (b) shows the new ACI-445 database for shear 

failure of beams without stirrups, along with the curves of the 



mean prediction and the fringe prediction by a new improved 

formula proposed for the code by Bazant and Yu (2003, 2005a,b) 

(this formula, by virtue of taking into account several additional 

influencing factors, achieves a much reduced coefficient of 

variation). 

Design Criterion Implied by Codes: 
Apparent and Actual 

To sum up, the design criterion according to ACI (2002) appears 

to have the form 

max(1.6L + 1.2D,1.4D; ... ) ~ 'f'Fred ('f' = 0.75) (7) 

where L,D=intemal forces due to live and dead design loads; 

1.6,1 04,1.2 = well-known load factors specified by the code; and 

Fred=certain empirically reduced value of the internal force rep­

resenting the structural resistance with a certain small, but un­

specified, probability cutoff. However, based on the foregoing 

discussion, the actual form of the design criterion implied by the 

code is 

max(1.6L + 1.2D, lAD; ... ) ~ 'f''f'fP,ii' ('f'f= 0.65, 'f'm = JOj5) 

(8) 

where F=the mean (average) value of the internal force at failure. 

For reliability analysis, this needs to be translated into failure 

probability, which we discuss next. 

Reliability Analysis with Several Understrength 
Factors 

The objective of reliability analysis is to make all the empirical 

load factors and understrength factors superfluous by calculating 

the failure probability PF for the given random loads and all ran­

dom properties of the structures with given statistical distribu­

tions. The reliability-based design requires designing the structure 

so that PF' under random loads of given statistical properties, 

would not exceed a given extremely small value such as 10-7 (in 

other words, if 10 million identical structures were built, not more 

than one would be expected to fail under these loads). 

If we take into account only (1) the randomness of load, cor­

responding to the load factors; and (2) the randomness of struc­

tural resistance, corresponding to a single understrength factor 'f' f' 

then the failure probability is, according to Freudenthal et al. 

(1966), calculated as follows (see also, e.g., Ang and Tang 1984; 

Madsen et al. 1986; Haldar and Mahadevan 2000) 

Here P= load or loading resultant, R=resistance of structure in the 

sense of P, and (TN=cNPI bD=nominal structural strength (where 

D=structure size or characteristic dimension, b=structure thick­

ness or width, c,,=dimensionless constant chosen for conve­

nience); CTN represents a load parameter having the dimension of 

stress [in the example of beam shear in Figs. I (a-c), CTN is set to 

be equal to u C' which is the ACI notation for shear strength of 

concrete]; p(CTN) is the probability density distribution of load P, 

described in terms CTN; R(CTN) = cumulative probability distribution 

of structural resistance, which is desclibed also in terms of CTN and 

corresponds to the usual ACI understrength factor 'f' [Fig. l(e)]. 

Even though a negative structural resistance makes no sense 

physically, the lower limit of the integral is written as -00 in order 

to allow the use of Gaussian distribution, which has nonzero 

(albeit totally negligible) tail values in the negative range (note 

that if the lower limit were written as 0, the Gaussian density 

distributions would not be normalized, i.e., their integrals w~uld 

not be exactly I). If a distribution with a nonnegative threshold, 

such as Wei bull, is considered, then the lower limit of the integral 

can be replaced by O. 

Eq. (9) is proven as follows: The probability that a nominal 

strength is not larger than CTN is R(CTN), and the probability that the 

loading would produce a nominal stress within the infinitesimal 

interval (CTN,CTN+dCTN) is p(CTN)dCTN' So the joint probability of 

simultaneous occurrence of both is R(CTN)[P(CTN)dCTNl Failure oc­

curs if the inequality R < P is met in any infinitesimal interval. 

Hence the contributions to failure probability from all these inter­

vals need to be summed, which leads to integral (9). 

The deterministic design must ensue as the special case for 

R(CTN)=H(CTN-Ilii~) and p(CTN)=8(CTN-'f''f'fPmiiN) where H de­
notes the Heaviside step function, and 8 the Dirac delta function; 

j.L= load factor (e.g., 104 for dead load), ii~= nominal stress 
produced by load (as deterministic load parameter), and 

ii N= nominal strength characterizing the deterministic structural 

resistance. Indeed, Eq. (9) in this case yields PF=O for 

j.Lii~< 'f''f'fPmiiN and PF= 1 for j.Lii~> 'f''f'fPmiiN' i.e., 

PF=H(j.LCT~-'f''f'fPmCTN) (10) 

The type of statistical distribution must be decided by probabilis­

tic fracture analysis. In BaZant (2003), it is argued that R(CTN) 

ought to be the Weibull distribution for brittle failures of large 

concrete structures, while for extrapolation to zero structure size 

(D~O), R(iTN) ought to gradually approach the Gaussian distri­

bution. The free parameters of any statistical distribution are its 

mean and coefficient of variation. This underscores the impor­

tance of using formulas that give the mean of the data as well as 

the coefficient of variation. When only a fringe formula is given, 

the mean of the distribution is unknown; hence R(CTN) is indeter­

minable, the integral in Eq. (9) is incalculable, and thus statistical 

reliability analysis is impossible. 

Eq. (9) is the standard reliability integral. This integral is lim­

ited to the case of a single understrength factor 'f' corresponding 

to distribution r(CTN)' Taking multiple understrength factors into 

account. we may write 

CTN= 'f'IjJF(xJ,) =j{'f'IjJF(XJ,) ~ CTN] (J 1) 

where Jt= mean material strength and J( 'f' ,1jJ, X) = function of 

three independent random variables; X represents material ran­

domness, assumed to have Gaussian distribution with Weibull 

tail, IjJ represents the error of the fOlIDula (or the theory), which 

may be assumed to be Gaussian, and 'f'=structural brittleness 

factor, corresponding to the understrength factor in the current 

codes, which may have a Gaussian core with grafted Wei bull tail 

of size-dependent length. The resistance CDF may be expressed 

as 

where F' (X J/) = aF(X Jt) I ax and V designates the domain in 
which 'f'IjJF(X ,ft) ~ CT N' V=complicated domain, hard to specify 

analytically. Nevertheless, integral (12) may be easily approxi­

mated numerically, e.g., by Monte Carlo simulations 

(in which any random simulation for which R;a: P or 
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c.pIjIF(x,f) > aN is simply excluded). The standard deviation, 

characterizing the central patt of the PDF. may be estimated. in 

view of statistical independence of c.p. I~ and X. as follows: 

(13) 

This may be used to anchor the distribution of R if its type is 

known. 

The splitting of failure probability PF into several probabilities 

corresponding to the separate understrength factors c.p, 1Ji. and X 

has one benefit-it reduces the length of the far-off tails of the 

distributions which must be known to calculate PF (Bazant 2003). 

Structures must be designed for an extremely small probability of 

failure such as PF= 10-7
• For this purpose. the tails of both p(aN) 

and r(aN) need not be known up to 10-7
; for being able to obtain 

such PF from the integral in Eq. (9). it suffices if these tails arc 

known up to about 10-6 (as determined computationally at North­

western by S. Pang. personal communication, 2003). Failures of 

such a small probability can hardly be verified by testing. But 

splitting the understrength probabilities into several random vari­

ables c.p. 1Ji. and X. and assuming their statistical independence, the 

tails of the individual probability density distributions need to be 

known only up to about (10-6)113, i.e .• up to about 10-2, which is 

within the reach of experimental verification. 

Approximating Brittleness Effect by Reducing 
Dynamic Strength 

In discussing the (overt) understrength factor c.p, we have accepted 

the prevailing. though vague. opinion that brittleness (or lack of 

ductility) causes a reduction of load capacity of softening struc­

tures. To put this opinion on a solid foundation, it is necessary to 

consider the unwanted random disturbances to the structures, 

which can be either static, such as imperfections, or dynamic, 

such as the maximum kinetic energy. K. that can be randomly 

imparted to the structure by earthquake, impact, blast. or wind 

gust. 

There arc two possible causes of postpeak softening on the 

load-deflection diagram: (I) either instability (nonlinear geometri­

cal effects). as in buckling of a cylindrical shell under axial com­

pression; or (2) fracturing. as in shear, torsion. punching, or 

compression crushing of concrete. In this regard. it must be noted 

that while imperfections have an enormous effect on the static 

peak load and postpeak response of cylindrical shells [Fig. 2(a)], 

see Bazant and Cedolin (1991, Chapter 7), they have only a mod­

est effect on the static peak load and postpeak response of frac­

turing structures [Fig. 2(b)]. Consequently, the static imperfection 

viewpoint cannot be used to judge the effect of insufficient 

ductility. 

First let us take the dynamic viewpoint and consider the typi­

cal load-deflection diagrams of concrete structures, shown in Fig. 

3. Fig. 3(a) shows the load-deflection diagram for a structure with 

unlimited ductility, e.g., for the flexural failure of an under­

reinforced beam. If a kinetic energy K of any magnitude is im­

parted to the structure, its peak load would not decrease. 

Then consider the load-deflection diagrams with softening 

shown in Figs. 3(b-d). Assume that the structure is in equilibrium 

under a constant load at point A. The horizontal line 

AB=dynamic (nonequilibrium) passage at constant load PAt 

which occurs if a certain kinetic energy K is imparted to the 

structure (e.g., by earthquake, impact, blast, or wind gust). The 

ditl'ercncc in P between the equilibrium curve and the passage 
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Fig. 2. Comparison of imperfection effects in (a) thin shell buckling 

and (b) quasibrittle fracture. (c and d) Two shapes of load-deflection 

peaks and load drop based on imparted kinetic energy K. 

AB = inertia force causing deceleration of the structure in the 

sense of P. The area WAH above line AB represents the energy 

absorbed by the structure during the nonequilibrium load­

deflection passage AB. If WAB > K, the passage AB cannot get 

completed and thus the structure will not fail under such load PA­

If, however, WAH=K, the passage AB will get completed and the 

structure will reach the softening equilibrium state B which is 

unstable under controlled load (Bazant and Cedolin 1991) and 

leads to failure. 

If the imparted kinetic energy K is fixed, then area WAH' and 

thus also load P A at which the structure fails, depends on the 

roundness or sharpness of the peak of the load-detlection dia­

gram. This is clear by looking at Figs. 3 (b-d). in which all the 

UN (a) (b) (c) (d) 

<---;0-_,1)-..." r"'~' ~~' ~+ 
UN~~e~, 
0"0 A 

AB~oo 

(f) 
I 

(g) (h) 

~~ A B: Static ductility 

Dimensionless deflection 

Fig. 3. (a-d) Dependcnce of maximum load and dynamic ductility on 

peak morphology and on kinetic energy K imparted to the structure. 

(e-h) Dependence of static ductility AB on peak morphology, 

postpeak, and structural stiffness C. 



shaded areas WAB above the passage AB are equal. The sharper 

the peak, or the steeper the postpeak, the smaller is load P A at 

which the structure fails. 

If the value (or distribution) of J( to be used for comparison of 

different types of failure is specified (e.g., by some future design 

code), one could use this simple reasoning for estimating the load 

capacity decrease caused by brittleness (or lack of ductility). 

Under dynamic excitation such as earthquake, J( cannot exceed 

the maximum elastic strain energy Vel that can be stored in the 

structure, which equals P6/2Ce where Po=maximum statically 

applied load [Figs. 3(a and b)) and Ce=elastic stiffness of the 

structure. Therefore the imparted kinetic energy J( that could be 

prescribed by the code could be expressed as 

(14) 

Here 1') is some empirical constant not larger than 1 (which could 

further be generalized to a random variable of a given distribu­

tion). In this manner, the reduction of maximum load [or reduc­

tion of nominal structural strength, /:1<JK' Figs. 3(b-d)] approxi­

mating the effect of limited ductility could be evaluated precisely. 

This would make possible a simple but unambiguous comparison 

of structural designs with different ductility. 

It should be noted that the load capacity reduction due to 

brittleness (or insufficient ductility) comes in addition to the size 

effect, which is purely static. If the equilibrium load-deflection 

diagram of a structure exhibits postpeak softening (and if the 

softening does not have geometric cause such as buckling), then 

there is always size effect (because distributed fracturing is un­

stable and must localize into a fracture process zone and a crack, 

and because the fracture process zone or crack causes stress re­

distribution before maximum load, with energy release). The size 

effect, causing a decrease, 3<JN, of nominal structural strength, is 

illustrated in Figs. 3(c and d). 

Note that, in fracture mechanics, brittleness is usually under­

stood as the proximity to LEFM in tenns of size effect [see 

BaZant and Planas (1998) for size effect of type 1; and Bazant and 

Pang (2005) for types 1,2, and 3]. This is a more precise measure 

of brittleness but would be harder to calculate in concrete design. 

concepts of Static and Dynamic Ductility 
of Structures 

Since the subject of brittleness, or lack of ductility, inevitably 

came up, it should be pointed out that stability analysis can be 

used to formulate an alternative, static. concept of the under­

strength factor reflecting the differences in brittleness among vari­

ous failure types. Aside from dynamic ductility, the concept of 

which was outlined in the preceding section on the basis of Eq. 

(14), a static assessment of brittleness of a structure or structural 

member can be made in the manner proposed by Bazant (1976) 

and further explored by Bazant and Becq-Giraudon (1999) and 

Bazant et al. (1987) (see also Bazant and Planas 1998; Bazant 

2002). This is illustrated in Fig. 3 too. 

Stability is lost when the tangent of the load-deflection dia­

gram has slope C, that is equal to -Ce , where -Ce represents the 

stiffness the rest of the structure, i.e., a structure obtained by 

extracting the failing member (or softening zone). If the line of 

slope -C, is not tangent at any point to the load-deflection dia­

gram [as in Fig. 3(e)], the static ductility is unlimited. In Figs. 

3(f-h), the static ductility is finite because a tangent point, B, 

exists. So, the static ductility may be defined by the ratio of the 

length CAB of horizontal segment AB in Figs. 3(f-h) to the elastic 

deflection under load P A at point A, i.e., by 

CAB 

PAIC, 
(15) 

For the case of insufficient dynamic ductility discussed in the 

preceding section. simple fonnulas are also possible if the post­

peak load drop /:1P is not too large. One may discern two possible 

cases of load-deflection diagrams: (1) a discontinuous change of 

slope at peak; or (2) a smoothly rounded peak. In the former case, 

shown in Fig. 2(c) 

12K 
/:1P = \j r:t=r=T c:-c; 

and in the latter case. shown in Fig. 2(d) 

/:1P= ~~J(K 

(16) 

(17) 

where Ce , C,=prepeak (elastic) and postpeak (softening) stiff­

nesses of the structure associated with load P; K = d2 P I du2 

= curvature of smooth static load-deflection diagram at peak load; 

and u=load-point deflection of structure. 

True Safety Factor and Its Obscuring Effect 
on Forensic Evidence 

The overall safety factor Il. is defined as the mean of failure test 

data divided by the mean (or unfactored) design load. For shear 

failure of longitudinally reinforced concrete beams without 

stirrups, the 'overa)) safety factor currently is 

Il. = 1.6/(0.75 X ~0.75 X 0.65) = 3.8 for small size (18) 

r--
Il. = 1.4/(0.75 X vO.75 X 0.65 X 2.0) = 1.7 for large size 

(19) 

where the fonner applies to small beams. totally dominated by the 

live load, and the latter to large beams. totally dominated by the 

self-weight. In the latter case, the neglected size effect factor has 

been considered as 2.0. Factors 1.6 and 1.4 are the load factors; 

0.75 is the (overt) understrength factor II' for shear failure; 0.65 is 

the covert understrength factor qlf for the error of the current 

fonnula; and ,r0:i5 is the covert understrength factor qlm for ma­

terial strength randomness. 

In view of the scatter width seen in Fig. I (a), the individual 

safety factors, defined as the ratios of the failure load of indi­

vidual beams to the un factored (or mean) design load, vary within 

the following ranges: 

Il.indiv = from 2.3 to 6 for smaJI size (20) 

Il.indiu = from 1.05 to 2.8 for large size (21) 

The very large values of these safety factors explain why there 

have not been many more structural collapses, despite the inad­

equacy of the design procedure (especially the neglect of size 

effect). They also reveal that, in concrete engineering (by contrast 

to aeronautical engineering), one mistake in design or construc­

tion is usually not enough to bring the structure down. 

The size effect factor can hardly be more than 2, and so the 

size effect alone does not suffice to cause the collapse of any 

structure if the material strength and fonnula error have nearly 
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mean values. To produce collapse, the material strength and for­

mula errol' must simultaneously have values of small probability, 

far from the mean. Thus, at least two, and typically three, simul­

taneous mistakes or lapses of quality control are needed to make 

a concrete structure collapse. Such situations might be rare, but 

they can happen, and doubtlessly will. 

For example, in the case of catastrophic sinking of the Sleipner 

oil platform in a Norwegian fjord in 1991, which was due to shear 

failure of a thick tricell wall, there were three simultaneous mis­

takes. The governmental investigating committee recognized (1) 

an incorrect reinforcement detail in the tricell; and (2) incorrect 

meshing which caused a simultaneous mistake of about 35% in 

the shear force at critical location obtained from elastic finite 

element analysis. But on top of that, there must have been a size 

effect factor of about 1.4, which was ignored. Although reported 

by Bazant (on February 14, 1992) to the design firm (Det Norske 

Veritas), this factor was unfortunately omitted from the govern­

mental report (Jacobsen and Rosendahl 1994). The two aforemen­

tioned mistakes seem sufficient to explain collapse only if the 

covert understrength factors are ignored. If they are not ignored, 

the third mistake, omission of size effect, becomes necessary to 

explain collapse. 

As documented by the foregoing example, the covert under­

strength factors, if ignored, have the unfortunate effect of obscur­

ing the forensic evidence after a disaster, especially with respect 

to the size effect. If the failure can be blamed on one or two 

simple mistakes other than the neglect of size effect, it is seduc­

tive to skip the analysis of fracture propagation and size effect in 

disaster investigations. 

It is conceivable that a number of disasters might not have 

occurred, despite other mistakes, if the size effect were properly 

taken into acco\lnt in design. 

How to Judge whether an Experiment Supports 
the Code 

Aside from the original ACI (1962) test data, Fig. 1 (a) also shows 

two data points (Collins and Kuchma 1999; Angelakos et al. 

2001; Bentz, personal communication, 2003), obtained in shear 

tests of rather large beams (of depth d= 1.89 m), one without and 

one with minimum stinups (as specified by ACI-318-02). The test 

without stirrups was immediately accepted as a proof that the size 

effect must be introduced into the code. 

On the other hand, the beam with minimum stirrups, otherwise 

identical, failed at V c=1.84-Jj=2.12{f;. This is 6% higher than 

the required design strength vc=2{f;. Based on this fact, many 

experts in ACI concluded that minimum stirrups suffice to make 

the design safe without any consideration of size effect. However, 

a mere look at Fig. 1 (a) reveals that such a conclusion is false. 

Indeed, when the presence of the covert understrength factors 

is taken into account, the conclusion is entirely different. Just 

compare visually the test result for minimum stirrups to the cloud 

of small beam data in Fig. 1 (a), on which the design formula 2,ff; 
was based. If there were no size effect, the test would be ex­

pected, on the average, to lie in the middle of the strength distri­

bution shown in the figure. The statistical e;pectation of a safe 

value of Vc in the test is not 2{f; but 2-../f;/(O.65VO.75), i.e., 

3.55 fie or 3.1-Jj. 

So, unless the single test is a chancy rare result lying at the tail 

of probability distribution (which would be an overoptimistic as-

sumption that would have to be proven by further testing), the 

correct conclusion is that, even for shear with minimum stirrups, 

the safety margin is insufficient, much smaller than required for 

small beams, and that there is a large size effect, albeit not as 

large as for beams without stimlps. Compared to the average of 

vc=3.55«', the reduction of Vc due to size effect on the tested 

beam with minimum stirrups was about (3.55-2.12)/3.55 or 

40%, which is not negligible at all. 

This real-life example shows that cognizance of the cove~t (but 

real and necessary) under-strength factors is essential for inter­

preting test results. 

Incorrect Use of #c in Estimating Scatter in Shear . 
or Tension 

The empirical factor {f; is in ACI code ubiquitous. Because of 
r 

approximate proportionality of mean tensile strength .7', to ~Z., 
this factor appears in all the formulas for failures governed by 

tensile or shear strength of concretc. 

Proportionality to {f; is often also considered in estimates of 

statistical scatter. However, this is incorrect. What is overlooked 

is that the proportionality to ~f~. has been experimentally estab­

lished only for the mean strength and gives incorrect results if 

applied to the scatter. Because 

(22) 

a direct use of factor ..jf~ indicates the coefficient of variation of 

tensile and· shear strengths to be one-half of the coefficient of 

variation of the compression strength. But this is patently untrue, 

for it is known that the coefficient of variation of tensile and shear 

strength is actually not less than the coefficient of variation of 

compression strength of concrete. So, the coefficient of variation 

of random variable r m('Pm) in Eq. (4) must not be assumed to be 

less than the coefficient of variation of compression strength of 

concrete. 

Cons~uently, the design code should expressly warn that the 

factor -../f; in all of its formulas guarding against failures associ­

ated with tensile Of shear strength of concrete may be used only 

for calculating the mean load capacity, but not for calculating the 

standard deviation of load capacity of structure from the standard 

deviation of compressive strength of concrete. 

Conclusions 

1. In addition to the explicit understrength (or capacity reduc­

tion) factor taking into account mainly the consequences of 

brittleness of stmcture, two covert understrength factors are 

implicit in concrete design codes. One is the formula-error 

factor, implied by the fact tllat the design formula (e.g., the 

formula for beam shear capacity) does not represent the 

mean fit (least-squares fit) of the data cloud but is made to 

pass at the lower fringe (margin, periphery) of the data cloud. 

The other is the material ralldomness factor implied by de­

signing structures on the basis of the reduced strength of 

concrete (i.e., the specified compression strength, f:" lying at 

the lower fringe of strength data), rather than the mean of 

material strength data and their variance. 
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2. One undesirable consequence of the use of fringe fonnulas in 

the current codes is that it is impossible to distinguish the 

different risks of diverse combinations of 

• The degree of brittleness (or lack of ductility) of structural 

failure; 

• The inevitable random scatter of material strength; and 

• The error of the design fonnula (stemming from oversim­

plification and incomplete understanding of the mechan­

ics of failure). 

The situation is similar to that which existed prior to the intro­

duction LFRD. 

3. Another undesirable consequence is that the use of fringe 

fonnulas (with unspecified covert understrength factors and 

probability cutoffs) renders meaningful probabilistic esti­

mates of structural reliability impossible. 

4. To rectify the code, the covert understrength factor of design 

fonnula should be overtly stated, its coefficient of variation 

(based on the test data used by the committee to calibrate the 

fonnula) should be specified, and the type of probability dis­

tribution (e.g., Gaussian or Weibull) indicated (the type of 

distribution, coefficient of variation, and the understrength 

factor then imply the probability cutoff). Alternatively, the 

code could give the mean formula, specify its coefficient of 

variation and type of distribution, and either prescribe the 

probability cutoff or overtly declare the understrength factor. 

The mean of strength tests required for quality control should 

be figured out from the required design strength on the basis 

of a specified probability cutoff and the coefficient of varia­

tion of these tests. 

5. If all the understrength factors and the associated probability 

distributioIUl can be assumed to be statistically independent 

(which seems reasonable), the reliability integral giving the 

failure probability of structure can be easily generalized. 

6. The standard (overt) understrength factor in tlle current codes 

reflects mainly the effect of structural brittleness (or lack of 

ductility). For this purpose, a rigorous definition of ductility 

is needed. It is proposed to base it on the magnitude of ki­

netic energy that can be imparted to the structure (by earth­

quake, impact, blast, or wind gust). This kinetic energy can 

be assumed to be equal to a certain percentage of the maxi­

mum elastic strain energy that can be stored in the structure 

(which can always be calculated). If this percentage is speci­

fied, the reduction of structural strength (i.e., the under­

strength factor for brittleness) can be described by simple 

formulas, one for the case of sharp peak with a sudden 

change of the slope of the load-deflection diagram, and the 

other for a smoothly rounded peak. 

7. The reports evaluating previous disasters should be regarded 

with reservations because of a possible omission of size ef­

fect as a contributing factor. The overall safety factors for 

brittle failures of concrete structures are so large that several 

simultaneous mistakes are nonnally necessary to cause col­

lapse. If the covert understrength factors are disregarded, it is 

easy to put all the blame on one or two other mistakes, and 

thus systematically overlook the mistake that does not fit the 

established thinking. 

8. The proportionality of tensile and shear strengths of concrete 

to .fie, as used in ACI (2002) code, is justified only for the 

mean. Its use grossly underestimates the statistical scatter, 

particularly the coefficient of variation of tensile and shear 

strengths. 
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