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Reliability-Constrained Area Optimization of VLSI
Power/Ground Networks Via Sequence of Linear

Programmings
Sheldon X.-D. Tan, Member, IEEE, C.-J. Richard Shi, Senior Member, IEEE,

Jyh-Chwen Lee, Member, IEEE

Abstract— This paper presents a new method of sizing the
widths of the power and ground routes in integrated circuits so
that the chip area required by the routes is minimized subject to
electromigration and IR voltage drop constraints. The basic idea is
to transform the underlying constrained nonlinear programming
problem into a sequence of linear programs. Theoretically, we
show that the sequence of linear programs always converges to
the optimum solution of the relaxed convex optimization problem.
Experimental results demonstrate that the proposed sequence-of-
linear-program method is orders of magnitude faster than the
best-known method based on conjugate gradients with constantly
better solution qualities.

I. INTRODUCTION

POWER /Ground (P/G) networks connect the power/ground
supplies in the circuit modules to the P/G pads on a chip.

An important problem in P/G network design is to use the
minimum amount of chip area for wiring power/ground net-
works while avoiding potential reliability failures due to elec-
tromigration and excessive IR drops. Specifically, we are con-
cerned with the problem of P/G network optimization where the
topologies of P/G networks are assumed to be fixed, and only
the widths of wire segments are to be determined. Several meth-
ods have been developed to solve this problem [6], [7], [8], [9].
However, to the best of our knowledge, none of these methods
have been incorporated into commercial computer-aided design
(CAD) tools and used by industry.

One major obstacle is that these methods are based on con-
strained nonlinear programming, a process known to be compu-
tationally intensive (NP-hard [12]). These methods are applica-
ble only to small size problems, while P/G networks in today’s
very large sale integration (VLSI) design may contain millions
of wire segments (therefore, millions of variables). On the other
hand, with the continuous shrinking of the chip feature size,
P/G network optimization is becoming increasingly important,
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since more and more portions of the chip area are dedicated to
power/ground routings, and the problems of IR drop and elec-
tromigration deteriorate.

In this paper, we present a new method capable of solving the
power/ground optimization problem orders of magnitude faster
than the best known method. Our method is inspired by a key
observation made by Chowdhury that if currents in wire seg-
ments are fixed, and voltages are used as variables, then the
resulting optimization problem is convex [8]. However, instead
of using the conjugate gradient method as in [8], we show that
the problem can be solved elegantly by a sequence of linear
programs. We prove that there always exists a sequence of lin-
ear programs that converge to the optimal solution of the orig-
inal convex optimization problem. Experimental results have
demonstrated that usually a few linear programs are required
to reach the optimal solution. The complexity of the proposed
method is proportional to the complexity of linear programming
(which can be solved in polynomial time [5], [12]). Therefore,
our method is scalable, i.e., the CPU time increases approxi-
mately polynomially with the size of a network. In practice,
we have observed that the new method is orders of magnitude
faster than the conjugate gradient method with constantly better
optimization results.

This paper is organized as follows. Section II reviews some
previous work. Section III describes the formulation of the P/G
network optimization problem. The new method is presented
in Section IV. Some practical considerations are described in
Section V. Experimental results from some large P/G networks
are summarized in Section VI. Section VII concludes the paper.

II. PREVIOUS WORK

It is generally assumed that the average current drawn by
each module is known and is modeled as an independent current
source (we do not consider the temporal correlations of current
sources). The constraints from reliability and design rules in-
clude:

1. IR voltage drop constraints,
2. metal-migration constraints,
3. minimum width constraints,
4. equal width constraints.

The problem of determining the widths of wire segments of a
P/G network to minimize the total P/G routing area subject to all
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these constraints is a constrained nonlinear optimization prob-
lem [6], [7].

In the method of Chowdhury and Breuer [6], resistance val-
ues and branch currents are selected as independent variables.
Both the objective function and the IR voltage drop constraints
become nonlinear. The augmented Lagrangian method com-
bined with the steepest descent algorithm [1] is used to solve
the resulting problem.

Dutta and Marek-Sadowska [9] used only resistance values
as variables. All the constraints expressed in terms of nodal
(terminal) voltages and branch currents, which have to be ob-
tained by explicitly solving an electrical network, become non-
linear. The feasible direction method [4] is employed to solve
the nonlinear optimization problem. At each iteration step, ex-
tra effort is required to solve the electrical network for nodal
voltages and branch currents, as well as their gradients by nu-
merical differentiation.

Chowdhury [8] proposed a very interesting approach where
both the nodal voltages and the branch currents are selected as
variables. The optimization problem is solved iteratively in two
stages. In the first stage, all the branch currents are fixed, and
this leads to a convex programming problem solved by the con-
jugate gradient method [1]. In the second stage, all the nodal
voltages are assumed fixed with branch currents as variables,
and this leads to a linear programming problem. In compari-
son with other methods, this method is more general and more
efficient. Unfortunately, the conjugate gradient method is not
efficient enough to solve large size power/ground optimization
problems arising in today’s VLSI design.

A method proposed by Mitsuhashi and Kuh [11] further ex-
tends power/ground network optimization to include P/G net-
work topology selection. In this paper, we assume that the
topology is fixed.

III. PROBLEM FORMULATION AND GENERAL

OPTIMIZATION PROCEDURE

Our work follows the formulation and the general optimiza-
tion procedure of Chowdhury [8]. His results are first reviewed
briefly in this section.

A. Problem Formulation

Let G = {N, B} be a P/G network with n nodes N =
{1, ..., n} and b branches B = {1, ..., b}. Each branch i in
B connects two nodes i1 and i2 with nodal voltages Vi1 and
Vi2 such that current Ii flows from i1 to i2. Let li and wi

be the length and width of branch i. Let ρ be the sheet re-
sistivity. Then resistance ri of branch i can be expressed as:
ri = Vi1−Vi2

Ii

= ρ li
wi

. The total P/G routing area, which is the
objective function to be minimized, can be expressed as

f(V, I) =
∑

i∈B

liwi =
∑

i∈B

ρIil
2
i

Vi1 − Vi2
. (1)

Instead of using widths wi, i ∈ B, as variables, we choose to
solve for branch current Ii and nodal voltages Vi1 and Vi2. The
constraints to be satisfied are as follows.

1) The IR drop constraints.

Vj ≥ Vj,min if node j is connected to a power pad.

Vj ≤ Vj,max if node j is connected to a ground pad. (2)

where Vj,min and Vj,max, j = 1 . . . n, are given con-
stants.

2) The minimum width constraints.

wi = ρ
liIi

Vi1 − Vi2
≥ wi,min, (3)

where wi,min, i = 1 . . . b, are given constants.
3) The current density constraints (electromigration).

For a fixed thickness σ of a layer, this constraint for
branch i can be expressed as [3] |Ii| ≤ wiσ. It can be
re-written as the following nodal voltage constraint:

|Vi1 − Vi2| ≤ ρliσ. (4)

4) Equal width constraints. The constraint can be written
as wi = wj for segment i and segment j. In terms of
nodal voltages and branch currents, we have

Vi1 − Vi2

liIi

=
Vj1 − Vj2

ljIj

. (5)

5) Kirchoff’s current law (KCL).
∑

i∈B(j)

siIi = 0, (6)

for each node j = {1, ..., n} and B(j) is the set of indices
of branches connected to node j and si is 1 if the current
direction for branch i is toward node j and -1 otherwise.

P/G network optimization is to minimize (1) subject to con-
straints (2), (3), (4), (5), and (6). It will be referred to as prob-
lem P. Problem P is a constrained nonlinear optimization prob-
lem.

B. Relaxed Two-Step Optimization Procedure

To reduce the complexity of solving problem P, Chowdhury
proposed the following relaxed two-step optimization proce-
dure:

• Problem P1: Assuming that all branch currents are fixed,
the objective function becomes

f(V) =
∑

i∈B

αi

Vi1 − Vi2
, (7)

where αi = ρIil
2
i , subject to constraints (2), (4), (5)1 and

the following constraint

Vi1 − Vi2

Ii

≥ 0. (8)

The constraint ensures that the current direction will not
change during the optimization process.

1Constraint (5) was not considered in [8].
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• Problem P2: Assuming that all nodal voltages are fixed,
the objective function becomes

f(I) =
∑

i∈B

βiIi, (9)

where βi =
ρl2

i

Vi1−Vi2

, subject to (3), (5), (6), and the fol-
lowing fixed current direction constraint

Ii

Vi1 − Vi2
≥ 0. (10)

Chowdhury showed that problem P1 can be converted to an
un-constrained convex programming problem and solved by the
conjugate gradient method. P2 is a linear programming prob-
lem. Therefore, solving P is to start with an initial feasible
solution, then iteratively solve P1, then P2.

IV. NEW LINEAR-PROGRAMMING BASED ALGORITHM

The new method uses a sequence of linear programmings to
solve the nonlinear programming problem P1. In this section,
we present the method and prove that it always converges to the
optimum solution of problem P1.

The basic idea is to linearize nonlinear objective function (7).
To see this, we define branch voltage drop variable as vi =
sign(Ii)(Vi1 − Vi2) for each branch i, where sign(x) = 1 if
x > 0 and sign(x) = −1 if x < 0. Note that vi ≥ 0. Then
in terms of vi, i = 1, ..., b, the objective function (7) can be
expressed as

f(v) =
∑

i∈B

|αi|

vi

, (11)

where v = {v1, v2, ..., vb}
T . Suppose that we have an ini-

tial feasible solution V0 and corresponding v0 satisfying all the
constraints. We then take the Taylor expansion of f(v) around
v0 and keep only the constant and linear terms. The resulting
objective function is called g(v),

g(v) = f(v0) +
∂f(v0)

∂v
(v − v0) =

∑

i∈B

2|αi|

v0
i

−
∑

i∈B

|αi|

v0
i

2 vi.

(12)
Instead of minimizing f(v), we minimize g(v) as long as these
two functions satisfy the following property:

g(X) > g(Y ) =⇒ f(X) > f(Y ), (13)

where =⇒ means imply. This requirement essentially says that
as long as we reduce g(X) we always can reduce f(X).

To motivate our method, we first consider each individual
term in the objective function (11), which has the following
form h(x) = c/x, x > 0, where c is a constant and c > 0. Fig-
ure 1 draws function h(x) = c/x with c = 1 and its linearized
first-order Taylor expansion function H(x) at expansion point
x0 = 0.04. We note that both h(x) and H(x) are monoton-
ically decreasing functions in x in the range (0,∞) with the
property that h(x) > H(x).

Considering f(v) and g(v), we have the following two opti-
mization scenarios:

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
−50

0

50

100

x

 1/x and its first order Taylor’s expansion at 0.04

H(x) = 1/x0 − 1/(x0^2)*(x−x0)

 h(x) = 1/x

Fig. 1. h(x) = 1/x and its first-order expansion at 0.04.

1. If all the branch voltage drops, vi, increase after opti-
mization, we have f(v0) > f(v) and g(v0) > g(v). Be-
cause all the terms in both f(v0) and g(v0) monotonically
decrease as each vi increases, property (13) is always sat-
isfied.

2. If only some branch voltage drops increase and others
decrease or stay unchanged, then property (13) may not be
satisfied due to the fact that for x < x0, h(x) will increase
very quickly, while H(x) only increases linearly. As a
result, we may end up with f(v) > f(v0) while g(v) <
g(v0).
In this case, we can limit the solution space to the neigh-
borhood of v0 such that property (13) holds by imposing
the following constraint for each branch i:

ξ · v0
i ≤ vi ≤ (2 − ξ) · v0

i , (14)

where ξ is called the restriction factor, 0 < ξ < 1. As
will be shown in Theorem 1, we can always satisfy prop-
erty (13) by choosing v to be sufficiently close to v0 (ξ
is close enough to 1) as g(v) is essentially the first-order
approximation of f(v).

On the other hand, an increase in any branch voltage drop
vi, i ∈ {1, ..., b} always decreases f(v) and g(v) according to
scenario 1. This implies that the upper bound in (14) is redun-
dant, and we can combine the solution space, where relation
(13) holds in both scenarios, into a single space:

ξ · v0
i ≤ vi. (15)

In terms of nodal voltages, the linearized objective function
and the restriction constraint can be rewritten as:

g(V) =
∑

i∈B

2αi

(V 0
i1 − V 0

i2)
−

∑

i∈B

αi

(V 0
i1 − V 0

i2)
2
(Vi1−Vi2), (16)

ξ · sign(Ii)(V
0

i1 − V 0
i2) ≤ sign(Ii)(Vi1 − Vi2). (17)

Note that constraint (17) does not necessarily require that
nodal voltage Vix, i ∈ {1, ..., n}, be close to their initial val-
ues. Because constraint (17) already implies constraint (8), we
have the following optimization problem, denoted as P3:



4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL 22, NO. 12, DECEMBER 2003

minimize (16):

g(V) =
∑

i∈B

2αi

(V 0
i1 − V 0

i2)

−
∑

i∈B

αi

(V 0
i1 − V 0

i2)
2
(Vi1 − Vi2),

subject to

(2) : Vj ≥ Vj,min if node j is connected to a power pad,

Vj ≤ Vj,max if node j is connected to a ground pad,

(3) :
Vi1 − Vi2

Ii

≤
ρli

wi,min

,

(4) : |Vi1 − Vi2| ≤ ρliσ.

(5) :
Vi1 − Vi2

liIi

=
Vj1 − Vj2

ljIj

,

(17) : ξ · sign(Ii)(V
0

i1 − V 0
i2) ≤ sign(Ii)(Vi1 − Vi2).

Problem P3 is a linear programming problem. For conve-
nience, we use Γ to denote the feasible region of problem P3
defined by (2), (3), (4), (5), and (17). We use Ω to denote the
feasible region of problem P1 as defined by constraints (2), (3),
(4), (5), and (8). Clearly Γ ⊆ Ω.

Ω
Γ0

Γ1

Γ2

Γ3

X0
X1

X2
X3

Xmin

X4

Fig. 2. An illustration of sequence of linear programmings.

The procedure for solving problem P1 can be transformed to
the problem of repeatedly choosing ξ and solving P3 until the
optimum solution is found. This sequence of linear program-
ming process is illustrated in Fig. 2 in terms of solution space
of problem P1 (Ω) and solution spaces of problem P3 (Γ0 to
Γn). Xmin is the global minimum of convex problem P1. It
shows how the new method approaches the global minimum by
several linear programming processes iteratively.

The entire optimization procedure is summarized as follows:
New Power/Ground Network Optimization Algorithm

1) Analyze network G to obtain initial Vk, Ik for k = 0.
2) Construct the minimum width constraints (3), current

density constraints (4), equal width constraints (5), ad-
ditional constraints (17) using Ik.

3) Minimize g(Vk) subject to constraints (2), (4), (5), (3),
and (17) by a sequence of linear programmings, record
the result as Vk

l , l begins from 1. If f(Vk
l ) > f(Vk

l−1),
perform line search along the direction d = (Vk

l−1 −

f(Vk
l )) until f(Vk

l ) ≤ f(Vk
l−1). Record the result from

the last iteration l as Vk+1.
4) Construct the minimum width and its companion con-

straint (3), (5), and (10) using Vk+1 for each branch.

5) Minimize objective function (9) subject to the constraints
(3), (5), (6), and (10) by linear programming and record
the result as Ik+1.

6) If |f(Vk+1, Ik+1) − f(Vk, Ik)| < ε, ε is the termination
criterion, then stop, otherwise set k = k + 1 and goto step
2.

For the new P/G optimization algorithm, we have the follow-
ing theoretical result:

Theorem 1: There exists a ξ so that step 3 always converges
to the global minimum in Ω.
The proof of this theorem can be found in the Appendix.

Although we show theoretically that given g(Vk
l ) < g(Vk

l−1)

we can always find a ξ in step 3 such that f(Vk
l ) < f(Vk

l−1).
But in practice, it is not very efficient to find such a ξ by repeat-
edly decreasing ξ and solving P3 in case of f(Vk

l ) ≥ f(Vk
l−1).

In our implementation, we perform one-dimensional line search
to find the solution point.

Specifically, given Vk
l and Vk

l−1, we define the search direc-
tion as dk

l = Vk
l − Vk

l−1. Line search finds an α ∈ [0, 1] such
that

f(αdk
l + Vk

l−1) < f(Vk
l−1), (18)

αdk
l +Vk

l−1 becomes new Vk
l for the next iteration. This can be

accomplished by any line search algorithm. In our implemen-
tation, the golden section method [10] is used.

We note that a similar technique, called successive linear
programming (SLP) [1], was first proposed by Griffith and
Stewart to solve problems in oil and chemical industries [10].
A similar idea was also used by M. Sarrafzadeh, et. al., to com-
pute the best delay budget constraints for timing-driven place-
ment [13].

V. PRACTICAL CONSIDERATIONS AND IMPLEMENTATION

ISSUES

In this section, we describe some practical considerations on
how to apply the proposed method to optimize power/ground
networks in practice.

• Algorithm scalability. In practice, the number of linear
programmings needed to reach the optimum solution is
only a few. Thus the time complexity of our method is
proportional to that of linear programming. It is known
that linear programs can be solved in polynomial time us-
ing the interior point method [1]. This makes our method
very promising for optimizing very large P/G networks.

• Input data scaling. For practical P/G networks, the mod-
ule currents are usually in the range of 1×10−9A. Branch
currents and branch voltages could become very small
without using scaling. This would cause some numerical
problems for linear program solvers. In our implementa-
tion, scaling is used.

• Converting power networks to ground networks.
Power networks should be transferred into ground net-
works to further improve the numerical stability. This is
due to the fact that voltage drops close to zero can be rep-
resented more precisely than the voltage drops close to any
other values. For example, the voltage drop of 2.5× 10−5

has to be represented by 4.999975 if the source voltage is
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5 volt. If we apply data scaling by multiplying 105 to all
the voltage drops, 2.5× 10−5 become 2.5 which are more
linear-solver friendly than 4999975. As 499975 can eas-
ily lead to ill-conditions or round errors in solving liner
equations. It can be shown that a power network can be
transferred into a ground network by using the following
transformation rules:

1. short-circuit all the VDD pads to the ground,
2. inverse the directions of all the independent current

sources.

• Zero branch voltages. The branch voltage vi in objective
function (11) can be zero or take a very small numerical
value. In this case, we just simply ignore the branch (and
its incident nodal voltages and branch currents) in the ob-
jective function and all the constraints. The corresponding
branch will take the minimum width after the optimiza-
tion.

VI. EXPERIMENTAL RESULTS

A CAD tool for P/G network optimization has been devel-
oped based on the proposed sequence-of-linear-programming
method. For comparison, Chowdhury’s conjugate gradient
method [8] has also been carefully implemented2. A set of P/G
networks with ten to more than ten thousand segments has been
tested. All experiments are performed on a SUN workstation
with 296MHz clock rate.

Table I compares the result of the new algorithm with that of
the conjugate gradient method. No equal width constraints are
considered here since Chowdhury’s conjugate gradient method
cannot handle these constraints well. In Table I, columns 1
to 3 list, respectively, the P/G network name, the number of
nodes in the P/G network, (#node), and the number of branches,
(#bch). Notice that name pg100x100 means that the circuit con-
sists of 100 rows and 100 columns P/G strips. So the sizes
of the circuits in terms of nodes are approximately equal to
#rows × #columns as shown in column 2. The number of
iterations (#iter) (solving P1-P2) , CPU time in seconds (CPU),
and the reduced chip area of the original area in percentage
(area reduced (%)) are reported in columns 4, 5 and 6 for the
new algorithm and columns 7, 8 and 9 for the conjugate gradi-
ent method. For example, for P/G network pg20x20, the new
method reduces the chip area used by 90.6%, while the con-
jugate gradient method reduces the chip area used by 85.3%.
Note that the area improvement strongly depends on the origi-
nal layouts.

We have the following observations:
• For large P/G networks pg3x500, pg300x10, pg100x100,

the conjugate gradient method finds solutions that use chip
areas much more than that of the new method.

• The new algorithm is orders of magnitude faster than the
conjugate gradient method.

• We have observed that for all the P/G networks tested, with
one iteration, the new algorithm is able to reduce most of
the chip area that can be reduced, i.e., finds a solution that

2In fact, our research was motivated by our initial attempt in applying the
conjugate gradient method for power/ground network optimization in an indus-
try setting.

is very close to the optimum. Figure 3 shows how the
objective function decreases with the number of iterations
for an example network.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.005

1.01

1.015

1.02

1.025

1.03

# iteration

f(
x
)/

f_
m

in
(x

)

scaled cost vs #iterations for new algorithm

Fig. 3. The cost reduction with the number of iterations.

Analysis:
• Theoretically, both the conjugate gradient method and

the sequence-of-linear-programming method should con-
verge to an optimal solution. However, in practice, due to
the numerical problem inherent in the conjugate gradient
method, the conjugate directions may deteriorate during
the process of optimization such that the algorithm gets
stuck at a solution far away from the optimum. In our im-
plementation, we reinitialize the direction vector if no im-
provement can be made along the present direction. This
process is repeated until the reinitialized direction cannot
further reduce the cost function.

• The way the penalty function is constructed also affects
the solution quality of the conjugate gradient method. Af-
ter solving problem P2 for branch currents by linear pro-
gramming, some widths of P/G segment may be reduced to
a minimum value. Those segments will lead to the infinite
penalty cost and the infinite conjugate direction vector, the
whole process will stall after only one P1-P2 iteration.
Therefore, it is hard for the conjugate gradient method to
find the optimal solution. As a remedy, in our implemen-
tation, we slightly increase the required minimum width
value when solving P2.

• In the experiments above, the restriction factor ξ is set to
0.85. Recall that the feasible region Γ for linear program
P3 is controlled by ξ. The closer ξ to 1, the smaller the
region Γ, and the better g(V) approximates f(V). This
implies that the total number of linear programming itera-
tions (solving P1-P3) will increase, but the chance to find
the minimum solution of the original problem increases.
On the other hand, if we reduce ξ closer to 0, the feasi-
ble region Γ of problem P3 enlarges. Then the linearized
function g(V) may not be able to approximate the original
function f(V) well. As a result, the sequence of linear pro-
grammings may converge to a solution with the cost higher
than the optimum one. This observation has been con-
firmed by the experiment on the example network pg4x4
without using line search in step 3 as shown in Figs. 4
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TABLE I
COMPARISON OF THE NEW ALGORITHM AGAINST THE CONJUGATE GRADIENT METHOD.

P/G network #node #bch new algorithm conjugate gradient speedup
#iter CPU time area reduced(%) #iter CPU time area reduced(%)

pg4x4 17 23 2 0.4 95.1 12 117.3 95.0 239.3
pg20x20 402 439 3 4.33 90.6 24 17554.1 85.3 4082.3
pg3x500 1502 1505 2 64.6 52.1 22 9035.5 29.2 139.9

pg300x10 3002 3599 2 237.6 93.7 25 10811.7 85.9 45.5
pg100x100 10002 10199 2 1801.8 80.7 24 52597.1 49.6 29.2

and 5.
In addition to Γ, the number of linear programs in P3 also
depends on the initial solutions as shown in Fig. 1. But
for the given P/G networks, we find that it takes a few
(less than 10) linear programs to reach a solution for all
the cases. Therefore, the new algorithm converges very
quickly.
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Fig. 4. The number of linear programs versus ξ (xi).
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Fig. 5. The final cost versus ξ (xi).

Table II describes the results of applying the new algorithm
to the same set of P/G networks but with practical equal-width
constraints. Here we require widths of all the wire segments
along the same chain to be equal. The number of such con-
straints, #eq-consts, is listed in the second column for each
network. Not surprisingly, we can see from the table that the
area reduced may not be as much as we can achieve without

equal-width constraints. In comparison to the instances with-
out equal-width constraints, the CPU time used can be more
(pg100x100) or less (pg300x10). The reason for using less CPU
time as in case of pg300x10 is due to the reduction of number
of iterations in solving P3 since a reduced search space is con-
sidered. The reason for more CPU time as in case pg100x100 is
due to more constraints in each linear program and more CPU
time for each iteration.

VII. CONCLUSIONS AND FUTURE WORK

A sequence-of-linear-programming based method has been
proposed and implemented for determining the widths of wire
segments in a power/ground network so that the chip area re-
quired by the power/ground network is minimized while ensur-
ing IR voltage drops and electromigration constraints. We have
shown theoretically that the new method is capable of finding
the solution as good as that by the best known method base on
conjugate gradient scheme. Experimental results have demon-
strated that the proposed method is orders of magnitude faster
than the best-known method with constantly better quality so-
lutions.

In this work, we model P/G networks as resistor-only net-
works. We notice that capacitive and inductive induced tran-
sient voltage fluctuations are major concerns for P/G networks
in current and future technologies. However, we view our P/G
optimization technique as one essential step toward designing
robust power delivery networks. It was shown in [2] that tran-
sient voltage noise on some P/G segments can be efficiently
suppressed by adding decoupling capacitors (decaps) around
those P/G wires. Such decap allocation scheme will make the
resulting P/G grids more like resistive networks as decaps serve
as low-pass filters. The IR drops due to the DC components of
the voltages on the P/G networks and electromigration related
current density problems have to be addressed by wire sizing or
topology changes. Further work will be extended towards P/G
network optimization with capacitive and inductive parasitics
driven by time-varying current sources.

Acknowledgment: The authors wish to thank Dr. Li-Peng
Yuan, Dr. Dragos Lungeanu of Synopsys Corporation, and Pro-
fessor Ernest Kuh of University of California, Berkeley for sev-
eral helpful discussions on power/ground network design.

APPENDIX

Let f(x) be the objective function of problem P1 and g(x) be
the linearized version of f(x). Consider an initial starting point
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TABLE II
EXPERIMENTAL RESULTS OF RUNNING THE NEW ALGORITHM WITH EQUAL WIDTH CONSTRAINTS.

P/G network #eq-consts #iter CPU percentage of area reduced

pg4x4 12 2 0.3 50.0
pg20x20 56 2 5.2 90.3
pg3x500 503 2 366.9 51.1

pg300x10 200 2 198.4 93.7
pg100x100 397 2 5154.2 80.6

x0 and a solution point x found by solving LP problem P3.
Let Γ denote the feasible region of problem P3 defined by

(2), (3), (4), and (17). Since Γ is a function of restriction factor
ξ defined in (17), we also rewrite it as Γ(ξ).

We begin our proof by first proving the following lemma.
Lemma 1: For each x0, there exists a ξ and a nonempty

vicinity Γ(ξ) of x0 such that if g(x) < g(x0), x ∈ Γ(ξ), then
f(x) < f(x0).

Proof: Let d = x − x0 be the moving direction. According
to the Taylor expansion, we have

f(x0 + αd) = f(x0) + α∇f(x)d + o(α) (19)

where o(α) is a lower order infinity than α, i.e.

lim
α→0

o(α)

α
= 0.

Notice that g(x) = g(x0) + ∇f(x0)(x − x0) and g(x) < g(x0)
as given by Lemma 1, so

g(x0) − g(x) = −∇f(x0)(x − x0) > 0, (20)

∇f(x0)(x − x0) = ∇f(x0)d < 0. (21)

Rewriting (19), we have

f(x0 + αd) = f(x0) + α(∇f(x)d +
o(α)

α
). (22)

It is easy to see that we can always select a small enough α such
that

∇f(x)d +
o(α)

α
< 0. (23)

Hence
f(x0 + αd) < f(x0). (24)

As we can make ξ as close to one as possible, thus |d| as
small as possible, we can always obtain a ξ so that α can be 1,
i.e. f(x0 + d) < f(x0). If ξ = 1, there still exists a nonzero
d such that g(x0 + d) < g(x0). Therefore, it must follow that
f(x0 + d) < f(x0) as both f(x) and g(x) are monotonically
decreasing functions in x. Lemma 1 is proved.

Now, we are ready to prove Theorem 1.
Theorem 1 There exists a ξ so that step 3 always converges to
the global minimum in Ω.
Proof: For function f(x) =

∑n

i=1
1
xi

, the truncated linear Tay-
lor expansion around x0 is g(x) =

∑n

i=1(
1

x0i

− xi−x0i

x2

0i

). Ac-

cording to Lemma 1, given an initial point x0 = Vk
l , one can

always find a non-empty vicinity of x0, by increasing ξ close

enough to 1 such that minimizing the linear expansion g at Vk
l+1

also decreases the original function f .
Hence a decreasing sequence {f(Vk

1), f(Vk
2), .., f(Vk

l )} is
generated and guarantees to converge to a local minimum.
Since f(X) is a convex function, the local minimum is also
the global minimum, therefore step 3 in the new algorithm will
converge to the global minimum in Ω.
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