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Reliability is seen as a primary requirement when verifying probabilistic forecasts,
since a lack of reliability would introduce a systematic bias in subsequent decision-
making. Reliability diagrams comprise popular and practical diagnostic tools for
the reliability evaluation of density forecasts of continuous variables. Such diagrams
relate to the assessment of the unconditional calibration of probabilistic forecasts.
A reason for their appeal is that deviations from perfect reliability can be visually
assessed based on deviations from the diagonal. Deviations from the diagonal may,
however, be caused by both sampling effects and serial correlation in the forecast-
verification pairs. We build on a recent proposal, consisting of associating reliability
diagrams with consistency bars that would reflect the deviations from the diagonal
that are potentially observable even if density forecasts are perfectly reliable.
Our consistency bars, however, reflect potential deviations originating from the
combined effects of limited counting statistics and serial correlation in the forecast-
verification pairs. They are generated based on an original surrogate consistency
resampling method. Its ability to provide consistency bars with a significantly better
coverage against the independent and identically distributed (i.i.d.) resampling
alternative is shown from simulations. Finally, a practical example of the reliability
assessment of non-parametric density forecasts of short-term wind-power generation
is given. Copyright c© 2010 Royal Meteorological Society
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1. Introduction

Over the past few decades, one of the major breakthroughs in
forecasting meteorological variables for applications such as
weather derivatives and renewable energy generation comes
from the transition from point to probabilistic forecasting
(Gneiting, 2008a). One has to acknowledge the significant
contribution of some of the leading meteorological centres,

e.g. the National Centers for Environmental Prediction
(NCEP) and European Centre for Medium-Range Weather
Forecasts (ECMWF) in developing ensemble forecasting
systems, as well as a probabilistic view of meteorological
forecasting. For a detailed overview of ensemble forecasting
and the underlying probabilistic forecasting philosophy
developed in the meteorological community, the reader
is referred to Leutbecher and Palmer (2008) and references
therein. From a decision-making perspective, it has been
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shown that pricing weather derivatives based on density
forecasts would bring significant benefits (Taylor and
Buizza, 2006). In parallel for the example case of renewable
energy, the production of which is a direct function
of meteorological conditions, it is argued that optimal
management and trading of generated energy should be
based on probabilistic forecasts (Pinson, et al., 2007a).
The transition from point to probabilistic forecasts is not
only observed in the meteorological literature; probabilistic
forecasts are also becoming customary products in
economics and finance (Abramson and Clemen, 1995; Tay
and Wallis, 2000; Timmermann, 2000) or more generally
in management sciences. When considering continuous
variables such as wind speed, the most complete information
about the expected realization for a given lead time takes
the form of a density forecast (equivalently referred to
as predictive distribution), giving the probability density
function of the corresponding random variable. Having a
broader view of decision-making for real-world problems,
Gneiting (2008b) argues that for a large class of cost functions
of forecast users, optimal decisions relate directly to given
quantiles of predictive densities of the variable of interest.

In parallel to these developments towards probabilistic
forecasting and subsequent optimal decision-making, the
issue of probabilistic forecast verification has attracted
significant attention. For a recent overview of verification
methods for probabilistic forecasts of categorical and
continuous variables in atmospheric sciences, see Jolliffe and
Stephenson (2003). A primary requirement for probabilistic
forecasts relates to their calibration (equivalently referred to
as their reliability), which corresponds to their probabilistic
correctness. We hereby follow the paradigm introduced
by Gneiting, et al. (2007), i.e. based on maximizing the
sharpness of predictive distributions subject to calibration.
Note that this framework for probabilistic forecast
evaluation is different from that based on testing for correct
conditional coverage of density forecasts, as described in
Christoffersen (1998) and Diebold, et al. (1998), where
focus is given to one-step-ahead forecast only, in a time-
series framework. The calibration requirement mentioned
above calls for a thorough reliability assessment prior to
proceeding with sharpness. Even if considering the use of
proper scoring rules (see Bröcker and Smith, 2007b, among
others), calculating scores alone does not permit one to see
whether better score values come from higher reliability or
increased sharpness. A decomposition of these proper scores
into their reliability and sharpness components should then
be performed. A reliability assessment is necessary in order
to make sure that systematic bias is not introduced in further
decision-making.

A popular and straightforward way of assessing the
calibration of probabilistic forecasts is via the use of
reliability diagrams (Atger, 1998, 2004). The reliability
diagrams we consider here for the reliability assessment
of non-parametric density forecasts of continuous variables
consist of an equivalent cumulative version of the popular
probability integral transform (PIT) histograms, otherwise
called Talagrand diagrams, used for the verification
of ensemble forecasts (Hamill, 2001). An extensive
presentation of reliability diagrams for density forecasts
of continuous variables (and equivalently for ensembles) is
given in section 2.

Recently, for the case of probability forecasts of binary
events, Bröcker and Smith (2007a) have explained how

reliability diagrams may be misinterpreted, since even
for perfectly reliable probabilistic forecasts there will
always be deviations from the diagonal originating from
sampling effects. They have proposed an elegant framework
permitting one to easily integrate information about the
impact of sampling effects directly in reliability diagrams.
While their point is highly relevant, it is argued here that
it is not only counting statistics but also serial correlation
in forecast-verification pairs that affects the interpretation
of reliability diagrams produced from finite-size datasets.
Somehow, the methodology proposed by Bröcker and Smith
(2007a) is based on the fallacy that for reliable forecasts the
random variables with realizations given by the probability
integral transforms should be independent and identically
distributed (i.i.d.), U[0, 1]. It is true that, by definition,
a necessary condition for density forecasts to be reliable
is that such random variables are distributed as U[0, 1].
It is not a necessary condition, however, for successive
realizations to be independent. In the case of reliability
diagrams for probabilistic forecasts of binary events, it
might be acceptable to assume independence, as forecast-
verification pairs corresponding to a given probability
class may be sparsely and randomly distributed over the
verification period. It cannot be the case when assessing
the reliability of probabilistic forecasts of multicategorical
variables or density forecasts of continuous variables. This
will be illustrated by a simple practical example based
on climatology density forecasts in section 3. The role
of serial correlation and sampling effects has already been
hinted at by Pinson, et al. (2007b) for the case of the
verification of wind-power density forecasts, or by Hamill
(2001) when considering the verification of ensemble
forecasts of meteorological variables. Section 4 introduces
a methodology to provide consistency bars in the spirit
of Bröcker and Smith (2007a), but accounting for serial
correlation effects, using an original surrogate consistency
resampling method. Simulations in section 5 show how serial
correlation adds to the sampling effect, and demonstrate
the pitfall stemming from inference of the confidence
one may have in reliability diagrams based on an i.i.d.
assumption for probability integral transforms of reliable
density forecasts. It also evaluates the validity and accuracy
of the methodology introduced. The calibration assessment
of short-term forecasts of wind-power generation serves as
an illustrative application in section 6. Concluding remarks
end the article in section 7.

2. Reliability diagrams for non-parametric density
forecasts of continuous variables

Using t as the time index, we denote the stochastic process of
interest by {Yt} and the time series of observed realizations
by {yt}. Each random variable Yt can take values in C ⊂ R,
with for instance C = R

+ for the case of wind speed.
For simplicity, it is assumed that random variables and
corresponding realizations are equally spaced in time. Also,
it is considered that focus is on this stochastic process at a
single location only, as reliability assessment of probabilistic
forecasts for spatial fields would also be impacted by spatial
sampling and correlation effects that are not treated here.
Discussions on these spatial effects can be found in Wilks
(1995) and in Jolliffe and Stephenson (2003).

We denote the density forecast for the stochastic process
of interest issued at time t for lead time t + k by f̂t+k|t(y),
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and the related cumulative distribution function by F̂t+k|t(y).

f̂t+k|t(y) is a forecast of the probability distribution function
of Yt+k given the information set available at time t, which
may be derived from ensemble forecasts or from some non-
parametric statistical forecasting techniques, e.g. quantile
regression. In a general manner, if no assumption is made
about the shape of predictive distributions, a non-parametric
density forecast f̂t+k|t(y) can be summarized by a set of m
quantile forecasts:

f̂t+k|t(y) = {q̂(αi)
t+k|t | 0 ≤ α1 < . . . < αi < . . . < αm ≤ 1},

(1)

that is, with chosen nominal proportions αi spread on the

unit interval. In turn, a quantile forecast q̂(αi)
t+k|t with nominal

proportion αi is defined by

PF̂t+k|t

[
yt+k < q̂(αi)

t+k|t
]

= αi, αi ∈ [0, 1]. (2)

Both forecasts and observations are available for a limited
time period T ⊂ N

+ used for forecast verification. Note
that for ensemble forecasts with exchangeable members,
non-parametric density forecasts can also be defined as
in (1). In such cases, by ordering the J ensemble members
in ascending order, the jth member gives the quantile
with nominal proportion αj = j/(J + 1). The (continuous)

density forecast f̂t+k|t(y) can then be built by interpolation
through the set of quantiles.

For a given forecast horizon k, the core concept behind the
use of reliability diagrams for evaluating density forecasts of
continuous variables is that the series of predictive densities
{f̂t+k|t(y)} are reliable if and only if the random variable
Zt,k = F̂t+k|t(Yt+k) is distributed U[0, 1]. In practice this is
performed by studying the realizations of Zt,k that are given
by the sequence {zt,k} of probability integral transforms,
with zt,k = F̂t+k|t(yt+k).

Such a definition of reliability actually corresponds
to an unconditional calibration of the density forecasts,
since no distinction is made between different time
points in the dataset, or other conditions that may affect
density forecast reliability. This contrasts with the idea of
conditional calibration introduced by Christoffersen (1998)
and Diebold, et al. (1998) for the case of density forecasts
in a time-series context. It also contrasts with the idea of
conditional reliability assessment presented by Pinson, et al.
(2007b) and the idea of forecast stratum introduced by
Bröcker (2009). Both Pinson, et al. (2007b) and Bröcker
(2009) base their argument on the fact that for the case of
nonlinear processes the reliability of probabilistic forecasts
may be influenced by a set of external factors, or may even
simply vary as a function of the forecasts themselves. What
we refer to as unconditional calibration thus corresponds
to the overall probabilistic bias of the density forecasts as
discussed by Murphy (1993) and Taylor (1999), for instance,
or to what Gneiting, et al. (2007) refer to as probabilistic
calibration.

A consequence of the fact that reliability diagrams relate
to an unconditional calibration assessment is that one
cannot assume that the sequence of probability integral
transforms {zt,k} for a sequence of reliable forecast densities
and corresponding verifications is i.i.d. This would be the
case only if, for each given time of the evaluation set, density

forecasts were equal to the true conditional densities of the
stochastic data generating process (Diebold, et al., 1998;
Gneiting, et al., 2007).

In practice, since non-parametric density forecasts as
defined by (1) consist of a collection of quantile forecasts
for which the nominal proportions are known, evaluating
the reliability of density forecasts is achieved by verifying
the reliability of each individual quantile forecast. Let us

introduce in a first stage the indicator variable ξ
(αi)
t,k . Given a

quantile forecast q̂(αi)
t+k|t issued at time t for lead time t + k,

and the verification yt+k, ξ (αi)
t,k is given by

ξ
(αi)
t,k = 1{yt+k < q̂(αi)

t+k|t} = 1{zt,k < αi}

=
{

1 if yt+k < q̂(αi)
t+k|t ,

0 otherwise.
(3)

It can be appealing to project into the standard Gaussian
domain by using an inverse normal transformation, i.e. one
based on the inverse probit function �−1,

�−1 : p →
√

2erf−1(2p − 1), (4)

with erf−1 the inverse error function. The resulting random
variables and corresponding realizations are denoted Z̃t,k

and z̃t,k, respectively, with simply Z̃t,k = �−1(Zt,k) and
z̃t,k = �−1(zt,k). Considering {z̃t,k} instead of {zt,k} for
assessing the calibration of density forecasts has some
advantages discussed in the literature (Berkowitz, 2001) for
hypothesis testing or for studying potential serial correlation.
In the present case, it will permit us to apply classical tools
from linear time-series analysis. Consequently, the indicator
variable introduced in (3) can be equivalently defined as

ξ
(αi)
t,k = 1{z̃t,k < q(αi)

G }, (5)

with q(αi)
G the quantile with proportion αi of a standard

Gaussian distribution. In the following, we will equivalently
consider the possibility of working with the indicator
variable definitions of (3) and (5) in order to assess the
reliability of density forecasts.

The time series {ξ (αi)
t,k } is a binary sequence that

corresponds to the series of hits (if the verification yt+k lies
below the quantile forecast) and misses (if otherwise) over

the evaluation set. It is by studying {ξ (αi)
t,k } that one can assess

the reliability of a time series of quantile forecasts. Indeed,

an estimate âk,i of the actual proportion ak,i = E[ξ (αi)
t,k ], for

a given horizon k, is obtained by calculating the mean of the

{ξ (αi)
t,k } time series over the test set

âk,i = 1

N

N∑
t=1

ξ
(αi)
t,k = n(αi)

k,1

n(αi)
k,0 + n(αi)

k,1

, (6)

where N is the number of time indices in T, and where
n(αi)

k,1 and n(αi)
k,0 correspond to the sum of hits and misses,

respectively. They are calculated with

n(αi)
k,1 = #{ξ (αi)

t,k = 1} = ∑N
t=1 ξ

(α)
t,k , (7)

n(αi)
k,0 = #{ξ (αi)

t,k = 0} = N − n(α)
k,1 . (8)
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Figure 1. Episode with wind-speed measurements at Horns Rev: (a) time series with wind-speed hourly averages and (b) the cumulative distribution
function corresponding to what would be an ideal climatology density forecast.

This measure of observed proportion serves as a basis
for drawing reliability diagrams for density forecasts of
continuous variables, which give the observed proportions
âk,i of the quantile forecasts against the nominal ones.
They therefore consist of quantile–quantile (Q–Q) plots,
which are a classical diagnostic tool in the statistical
literature. A particular feature of this definition of reliability
diagrams is that each quantile is evaluated individually,
which will allow us to define a consistency bar for each
nominal proportion independently of the other quantiles.
Our consistency bars are then pointwise consistency bars.
Also, note that the reliability diagrams we consider here
are for density forecasts of continuous variables and thus
somewhat different from those considered for probabilistic
forecasting of binary/categorical variables (Bröcker and
Smith, 2007a). The argument developed in the present
article regarding the fact that serial correlation effects
should be accounted for is still valid, however. In parallel,
the methodology described below can be straightforwardly
applied for the case of the verification of ensemble forecasts,
owing to the definition employed for non-parametric density
forecasts.

When visually inspecting the calibration from reliability
diagrams, a common intuitive thought is that the
closer the observed proportions to the diagonal the
better. This is because asymptotically, as the number of
forecast-verification pairs tends towards infinity, one wishes
that

lim
N→∞

âk,i = αi, ∀i, (9)

implying that observed proportions asymptotically equal
nominal ones. In practice, however, evaluation sets
consisting of forecast-verification pairs are of finite (and
often quite limited) size, and it is not expected that observed
proportions lie exactly along the diagonal, even if the density
forecasts are perfectly reliable. This issue is discussed in detail
in Jolliffe and Stephenson (2003) and Bröcker and Smith
(2007a), while a more general discussion on the uncertainty
of verification measures can be found in Jolliffe (2007).
Our contribution concerns the fact that not only sampling
effects but also serial correlation in sequences of forecast-
verification pairs may affect the observed reliability of even
perfectly reliable density forecasts of continuous variables.
A simple mathematical proof of that effect is given in
Appendix A.

3. Example of serial correlation in probability integral
transforms for reliable probabilistic forecasts

Consider here the issue of density forecasting of some
continuous meteorological variable, say wind speed, at a
forecast horizon k. It is common knowledge that climatology
comprises a benchmark density forecast, which has the nice
property of being well calibrated, and the characteristic of
having no resolution because it consists of unconditional
density forecasts (see for instance the discussion in Pinson
and Madsen, 2009a). Figure 1(a) depicts a time series of
mean hourly wind speed at the Horns Rev wind farm in
Denmark over a period of almost 1000 h.† This offshore
wind farm has been the first large-scale offshore wind farm
worldwide, and has hence motivated a number of studies
for e.g. the characterization of local wind characteristics
(Vincent, et al., 2009) or the (probabilistic) forecasting of
its power output (Pinson and Madsen, 2009a). The time
series of wind speed is normalized by the maximum wind
speed observed over the period, consequently taking values
in [0, 1].

For any time t in this dataset, a perfectly reliable
climatology density forecast f̂t+k|t(y) for a given look-ahead
time k can be obtained by defining it from the distribution
of wind-speed hourly averages over the period of 10 000 h.
The corresponding cumulative distribution function F̂t+k|t
is represented in Figure 1(b). This is obviously not the
way an actual climatology density forecast would be built,
since it would be based on a long-record time series
of past measurements. For the purpose of our example,
however, the climatology density forecast we build is similar
in essence to actual climatology forecasts based on long
records of data because it is a unique unconditional
density based on recorded data; we ensure it is perfectly
calibrated by relying on the measurements themselves.
As a consequence, if one were producing a reliability
diagram for evaluating the calibration of such density
forecasts, the observed proportions would exactly lie on
the diagonal.

Following the discussion of section 2, the calibration
assessment of density forecasts with reliability diagrams
is based on studying the distribution of the random

†Wind-speed measurements with a 10 minute resolution for the
Horns Rev wind farm may be freely obtained at the website
http://www.winddata.com/
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Figure 2. (a) Rank correlogram for the sequence of probability integral transforms and (b) linear correlogram of their inverse normal transformations.
The dashed lines give the critical values at a 5% level of significance.

variables Zt,k = F̂t+k|t(Yt+k), the realizations of which
are given by the probability integral transforms zt,k =
F̂t+k|t(yt+k). Intuitively, since it is expected that time series
of hourly wind-speed averages will exhibit a significant
autocorrelation pattern (see discussion in Vincent, et al.,
2009), and since such time series are transformed
through a monotonic (strictly) increasing function, an
autocorrelation pattern is also expected to be present in
the time series {zt,k} of probability integral transforms. This
argument also applies to the corresponding time series
{z̃t,k}.

The density forecasts defined by F̂t+k|t(y) are by
construction perfectly reliable: we thus have Zt,k ∼ U[0, 1].
For random variables distributed U[0, 1], it appears
more relevant to define autocorrelation in terms of rank
correlation for various lags. It is depicted here in Figure 2(a).
In parallel, Figure 2(b) shows the linear correlogram
for the time series {z̃t,k}. One sees from Figure 2 that
the rank and linear correlograms, in the uniform and
Gaussian domains, respectively, look very similar. This is in
agreement with the comment of De Oliveira (2003) that,
surprisingly, transformations may not significantly affect
an observed (serial or spatial) correlation structure. Most
importantly, one notices that autocorrelation values appear
to be significantly positive (at a 5% significance level) for
lags up to 24 h, and significantly different from zero for other
lags. This confirms the statement made in section 1 that, even
if a necessary condition for density forecasts to be reliable
is that Zt,k ∼ U[0, 1], successive random variables (and
corresponding probability integral transforms) do not have
to be independent. A consequence of this result is that such
correlations should be taken into account when performing
hypothesis testing about the reliability of density forecasts,
or alternatively when issuing consistency or confidence bars
whilst inferring the observed reliability. Note also that, as
mentioned by Diebold, et al. (1998), one could look at
the correlograms of centred probability integral transforms
at the power j, j ≥ 2 in order to observe dependences in
higher order moments, i.e. mainly for variance, skewness
and kurtosis.

4. Consistency bars using surrogate consistency resam-
pling

Let us recall Bröcker and Smith (2007a), following
Smith (1997), who introduced the proposal of generating
consistency bars for reliability diagrams. The idea of
consistency resampling is extended here to also account
for a correlation pattern in the {zt,k} time series. The aim of
our consistency bars is then, for each of the quantile forecasts
that make up density forecasts, to reflect the possible
range (for a given confidence level (1 − β)) of observed
proportions for this quantile if it were indeed reliable,
given the temporal dependences observed in the forecast-
verification pairs induced by the process and forecasting
system of interest. From a hypothesis-testing point of view,
one could say that having the observed proportion of
quantile forecasts (for a given nominal proportion) within
the range of consistency bars implies that one cannot reject
the hypothesis of these quantile forecasts being reliable.
This paradigm translates to accepting that there may be a
number of perfectly reliable forecast systems for the time
series of measurements of interest, and that the combination
of forecasts and verifications may induce different types of
dependence structure in the time series {zt,k} of probability
integral transforms.

The surrogate consistency resampling method belongs to
the more general class of resampling methods for dependent
data. For an overview of those methods, see e.g. Lahiri (2003).
An important advantage of this surrogate approach is that
complete time series are simulated based on their spectrum,
instead of considering subsamples or blocks. An alternative
to the use of surrogate consistency resampling would be
to employ a model-based consistency resampling approach,
where the general class of autoregressive moving average
(ARMA(p, q)) models could be envisaged for modelling
the underlying process in the {z̃t,k} time series. A subtle
issue in this case would relate to the optimal selection
of the autoregressive and moving-average orders p and q.
Model mis-specification could have a dramatic impact on
the quality of the generated consistency bars. An additional
advantage of the surrogate approach is that by construction

it can be ensured that surrogate time series {z̃(.)
t,k} will be

Copyright c© 2010 Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 77–90 (2010)



82 P. Pinson et al.

distributedN(0, 1); this would not be the case if we employed
a model-based approach.

4.1. Basics of the surrogate method

The basis of our surrogate consistency resampling method is
related to the amplitude-adjusted Fourier transform (AAFT)
algorithm described by Theiler, et al. (1992). This algorithm
is based on the assumption that the observed time series are
a monotonic transformation of realizations from a linear
Gaussian process. It is indeed the case that for reliable
density forecasts the time series {zt,k} are a monotonic
transformation of {z̃t,k}, for which each of the realizations
are generated from N(0, 1). The consecutive steps of the
AAFT algorithm can be described as follows.

(1) The time series {zt,k} is rescaled and transformed
(while ensuring that ranks in the data are conserved)
to obtain a linear Gaussian process with the time series
of realizations {z̃t,k}.

(2) A Fourier-transform-based algorithm is employed to

obtain a Gaussian surrogate time series {z̃(.)
t,k}, by

randomizing the phases. The Gaussian surrogate time

series {z̃(.)
t,k} has the same marginal distribution and

correlogram as the time series {z̃t,k}.
(3) {z̃(.)

t,k} is transformed back to the domain of the original

time series, leading to the surrogate time series {z(.)
t,k},

but with a slightly different autocorrelation function
and power spectrum.

A sound property of the AAFT algorithm is that the
surrogate time series have the same periodogram and
marginal distribution as the original time series {zt,k} of
probability integral transforms, hence also ensuring they
have a similar correlogram. For a more detailed description
of the surrogate data method and the AAFT algorithm, the
reader is referred to Theiler, et al. (1992). Potential deviations
in the marginal distribution or in the spectrum can be
corrected by employing the iteratively refined surrogate
method of Schreiber and Schmitz (2000). The core of the
method, i.e. the phase scrambling, is further discussed in
Davison and Hinkley (1997).

One can consider directly employing this surrogate
method for generating a set of surrogates that are distributed
U[0, 1] and have the same correlogram as the sequence of
observed probability integral transforms. This would be
done by first transforming the sequence {zt,k} to U[0, 1]
(while preserving the ranks) and then employing the
AAFT algorithm for generating a set of surrogate Gaussian
time series. The last step, consisting of transforming
back the Gaussian surrogates to U[0, 1], can actually be
avoided, owing to the equivalence in the definition of the
indicator variable from (3) and (5). The counting necessary
for building consistency bars can then be equivalently

performed using the surrogate time series {z(.)
t,k} or {z̃(.)

t,k}.
If one directly employs the above method for generating

surrogate time series, however, the resulting surrogates will
not be sampled from the true process behind {z̃t,k}, but
merely from the periodogram obtained from a limited
sample. Consistency bars generated from this method would
thus not be valid. Consequently, a proposal method for
surrogate consistency resampling from the true process
behind {z̃t,k} is described below. It consists of first identifying
the true process behind {z̃t,k} with spectral analysis, and then

generating surrogates having periodograms sampled from
the smooth spectrum of the process.

4.2. Smooth spectrum and periodogram sampling

Since the core of the surrogate data method relates to the
phase scrambling of a linear Gaussian process, a spectral
analysis framework appears relevant for characterizing the
process {Z̃t,k}. We use g(ω) to denote the spectrum of
the linear Gaussian process {Z̃t,k}, with ω the angular
frequency and IN (ω) the periodogram of the time series
{z̃t,k}. The periodogram IN (ω) corresponds to the sample
spectrum observed from {z̃t,k} and is not a consistent
(though unbiased) estimate of g(ω). A consistent estimate
can be obtained instead as a smooth spectrum based on
truncated periodograms and lag windows. While only the
main equations and results are given here, the reader is
referred to Madsen (2007) for more extended developments.

The smooth-spectrum estimate ĝ(ω) of g(ω) based on the
time series {z̃t,k} is given as

ĝ(ω) = 1

2π

k=N−1∑
k=−(N−1)

λkCk exp(−iωk), (10)

where Ck is the sample autocorrelation for lag k and λk is
a lag window, permitting a reduction in the influence of
further lags on the estimate of the spectrum. While there
exist a large number of potential lag windows, the class of
general Tuckey windows is considered here, defined by

λk =
{

1 − 2a + 2a cos (πk/M) , |k| ≤ M,
0, |k| > M,

(11)

where M is the truncation point and a the parameter
controlling the shape of the lag window. In particular
here we employ the Tukey–Hanning window, defined by
a = 1/4. Deciding on an appropriate truncation point M
may be quite difficult, as this relies on the expertise of the
practitioner. It will be shown from the simulations below
that the surrogate consistency resampling method proposed
is not that sensitive to the choice of M. A limited expertise in
relation to the expected serial correlation structure present
in the {z̃t,k} time series can provide a relevant guess.

When the smooth-spectrum estimate ĝ(ω) is obtained,
it can be used for generating a number of realistic

periodograms for the surrogate time series {z(.)
t,k}. For that,

let us recall here some properties of the periodogram for
linear Gaussian processes:

(i) the periodogram values IN (ωp), with ωp = (2π/N)p,
p = 1, . . . , N/2, the so-called fundamental frequen-
cies, are independent;

(ii) 2IN (ωp)/g(ωp) ∼ χ2(2), p �= 1, N/2;
(iii) IN (ωp)/g(ωp) ∼ χ2(1), p = 1, N/2.

Property (i), relating to the independence of periodogram
values for the fundamental frequenciesωp (i.e. those defining
the orthogonal basis of the Fourier series), is actually a crucial
property behind the phase scrambling in the surrogate data
method introduced above (Davison and Hinkley, 1997;
Theiler, et al., 1992). In parallel, the smooth-spectrum
estimate ĝ(ω) can be plugged into properties (ii) and (iii)

in order to simulate periodograms I(.)
N (ωp) for the surrogate

time series {z(.)
t,k}, from independent random draws of χ2(1)

and χ2(2) random variables.
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4.3. Surrogate consistency resampling

A full description of the surrogate consistency resampling
method is given here based on the elements introduced in the
above paragraphs. Again, consider the question of reliability
assessment of a sequence {f̂t+k|t (y)} of density forecasts (for
a given forecast horizon k), for a corresponding time series
{yt+k} of observations. Following the paradigm introduced
above, one accepts that even if this set of density forecasts
were reliable, the forecast-verification pairs would induce
a temporal correlation structure in the time series {zt,k} of
probability integral transforms.

The first step of the surrogate consistency resampling
approach is to rescale the time series {zt,k} so that they
have a marginal distribution U[0, 1] with a rank-preserving
transformation, thus not altering its rank correlogram. The
rescaled time series are then projected into the standard
Gaussian domain by using the inverse probit function. It is
assumed that the obtained time series {z̃t,k} is a sample of
what would be the sequence of realizations coming from
the forecast-verification pairs if the forecasting system were
indeed reliable. The smooth spectrum ĝ(ω) of the related
linear Gaussian process {Z̃t,k} is estimated given the choice of
a truncation point M. The jth resampling cycle then consists
of the following steps.

(1) Generate a surrogate periodogram I
(j)
N (ωp) from the

smooth spectrum ĝ(ω).
(2) Employ a Fourier-transform-based algorithm to

generate a surrogate time series {z̃(j)
t,k} by randomizing

the phases of the surrogate periodogram I
(j)
N (ωp).

(3) Calculate the observed proportions for each of the
quantiles with nominal proportions αi, i = 1, . . . , m
of the density forecasts using (6), based on the

surrogate time series {z̃(j)
t,k}, yielding the surrogate

observed proportions â
(j)
i,k, i = 1, . . . , m. Note that one

can obtain surrogate time series of probability integral

transforms {z(j)
t,k} and of verifications {y(j)

t+k} by inverse
transformation.

This resampling cycle is repeated a number of times B
and yields an empirical distribution of surrogate observed
proportions for each quantile of the density forecasts. Let
us define Ĝi,k as the cumulative version of this empirical
distribution. Ĝi,k is a non-parametric estimate of what
would be the distribution of proportions that could be
observed for the dataset considered, for the quantile with
nominal proportion αi, if it were reliable and given the serial
correlation structure induced by the forecast-verification
pairs. Given the chosen confidence level (1 − β), the lower
and upper bounds of the consistency bars are given by

ai,k = Ĝ−1
i,k (β/2), (12)

āi,k = Ĝ−1
i,k (1 − β/2). (13)

The same argument as that developed by Bröcker and
Smith (2007a) applies here, implying that, by construction,
the surrogate time series of probability integral transforms
directly relate to a hypothetical sequence of forecast densities

{f̂ (j)
t+k|t(y)} that would be reliable in view of the corresponding

time series {y(j)
t+k} of verifications. This is since it is imposed

that surrogate time series {z̃(j)
t,k} are drawn from a N(0, 1)

distribution. In addition, consistency bars can be gener-
ated for all quantile forecasts in parallel –they are pointwise
consistency bars, since as explained in section 2 the cali-
bration assessment is individually performed for each each
quantile with a given nominal proportion. There is, finally,
no binning effect to be considered, as the calibration of all
quantiles is verified against the same number of observations,
corresponding to the number of time indices in T.

5. Simulations

In this section simulations are performed, allowing us to
demonstrate the pitfall stemming from inference of the
confidence one may have in reliability diagrams based
on an i.i.d. assumption when issuing consistency bars.
Simulations are also employed to demonstrate the validity
of our approach before applying it to real-world test cases
and data. The simulation set-up is described first, followed
by simulation results and related comments.

5.1. Simulation set-up

The simulations are performed based on {z̃t,k} time series
only (i.e. based on linear Gaussian processes), since the
conversions from N(0, 1) to U[0, 1] (using the probit
function �) and from U[0, 1] to the original domain of the
observations are strictly monotonic, thus preserving ranks
and counts. As a consequence, observed proportions of
quantile forecasts are equivalent if calculated in the original,
uniform or Gaussian domains.

Imagine generating a time series of {z̃t,k} of length N for
which each realization is drawn from a standard Gaussian
distribution N(0, 1) and with a linear correlogram ρ(h), h
being the difference between time indices. By definition, such
a time series of probability integral transforms projected into
a standard Gaussian domain corresponds to that for a reliable
density forecasting system. Two types of correlograms are
considered: on the one hand a dampened exponential
correlogram ρd(h), corresponding to a stationary first-order
Markovian process, and on the other hand a correlogram
ρs(h) taking the form of a dampened exponential with
oscillations, reflecting a seasonality in the sequence of
probability integral transforms in the standard Gaussian
domain. The damped exponential is simply given by

ρd : h → exp(−τh), τ > 0, (14)

with τ the parameter controlling the steepness of the
exponential decay. In parallel, the dampened exponential
with oscillations is defined by

ρs : h → 1

2

{
cos

(
2πh

p

)
+ 1

}
exp

(
−2τh

p

)
, τ , p > 0,

(15)

with τ being the same type of parameter, while p controls
the period of oscillations. For the case of ρd(h), τ is set
to τ = 0.3, while ρs(h) is parametrized with τ = 0.6 and
p = 12. The corresponding correlograms are depicted in
Figure 3.

As explained in the above section, when one is calculating
observed proportions of quantiles composing density
forecasts from a time series {z̃t,k} of limited size, with
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Figure 3. Dampened exponential (with and without oscillations) correlograms used in the simulations.
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Figure 4. Reliability diagrams giving examples of the observed proportions of reliable forecasting systems for two different correlation structures in the
time series {z̃t,k} (consisting of 400 successive realizations). (a) Correlogram ρd; (b) correlogram ρs.

correlograms ρd or ρs, there will clearly be deviations from
the diagonal, even though {z̃t,k} relates to a reliable forecast
system. This is illustrated in Figure 4 for a time series
{z̃t,k} of 400 realizations having correlograms ρd or ρs (in
Figure 4(a) and (b), respectively). The nominal proportions
for the quantiles composing density forecasts are chosen as
ranging from 0.05–0.95 with a 0.05 increment. The three
different curves in Figure 4(a) and (b) correspond to the
observed proportions for three different draws of {z̃t,k} for
each of the two correlograms.

Note that we have chosen in the present article to present
reliability diagrams in the most classical manner, that is, by
depicting observed against nominal probabilities. As argued
by Bröcker and Smith (2007a), Bröcker (2009) or Pinson,
et al. (2007b), however, one may present such diagrams in
a different manner in order to focus on the area around the
ideal diagonal case. In particular, the proposal by Bröcker
and Smith (2007a) and Bröcker (2009) of plotting reliability
diagrams on probability paper may be seen as attractive,
owing to the simplicity of presentation and interpretation
of consistency bars. Considering some other presentation
of reliability diagrams would not call for any change in the
methodology described for the derivation of consistency
bars.

For both correlograms, one notices that for certain draws
the observed proportions may lie fairly close to the diagonal,
while for some other draws they may be quite far from
this same diagonal. This is while they all relate in the same
way to reliable forecast systems. It can also be seen from
Figure 4 that for a stronger correlation pattern like ρs
deviations from the diagonal may be larger. This suggests
that serial correlation in forecast-verification pairs magnifies
the sampling effects.

Given a chosen correlogram, a number m of linear
Gaussian time series {z̃t,k} (of length N) are generated.
Consistency bars are produced based on i.i.d. consistency
resampling, and are based on the surrogate consistency
resampling method described above. It is arbitrarily chosen
to focus on 90% consistency bars (that is, for (1 − β) = 0.9),
partly because it is the nominal coverage rate considered by
Bröcker and Smith (2007a) and partly because this is a quite
common choice for a number of real-world applications.
Note that similar simulations could be performed for
other nominal coverage rates (1 − β) in order to verify
the quality of generated consistency bars. Over the m
time series, one counts the number of times the observed
proportions for quantile forecasts that make up reliable
density forecasts (i.e. the quantile of a standard Gaussian
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distribution) lie below and above the consistency bars.
This provides us with an approach to verify their actual
coverage.

5.2. Simulation results

In the following we carry out simulations for time series
of length N = 400 time steps with correlograms ρd or
ρs. Counts performed on such short time series will
clearly be affected by the correlation patterns, as illustrated
in Figure 4. In order to verify the coverage rate of
the consistency bars, m = 1000 different time series are
generated for each type of correlogram. Comparison is
made between consistency bars generated from an i.i.d.
consistency resampling method and those generated from
the surrogate consistency resampling method introduced
above. For this latter case, a benchmark consists of
consistency bars generated from the true spectrum of the
generated time series. In parallel, consistency bars generated
from the estimated smooth spectrum (with various values
of the truncation point M) are also evaluated. A number
of B = 1000 surrogate time series are used for deriving
consistency bars for each of the m time series. As is the case
for any computer-intensive resampling method, the number
of replications B should be chosen sufficiently large in order
to obtain realistic confidence bounds, though not too large,
in order to keep computational time reasonable. The values
of the truncation points are chosen from an expert guess
based on the analysis of the periodograms of the time series
{z̃t,k}, as would be done for real-world applications. For
the case of the correlogram ρd, potential expert guesses
could be M = {12, 24, 36} while for the case of the ρs
correlogram, they could consist of M = {24, 36, 48, 60}. It
is often said that a reasonable choice for M is such that
M = 2

√
N (Upton and Cook, 2002, pp. 324-325), which

would translate to M = 40 here. The corresponding results,
consisting of the observed coverage of consistency bars, are
gathered in Tables I and II for the correlograms ρd and ρs,
respectively.

In both cases, one clearly sees that there is a significant dif-
ference between i.i.d. and surrogate consistency resampling
methods in terms of observed coverage of the generated
consistency bars. As expected, the lack of coverage is more
significant as the correlation pattern is stronger, i.e. for the
correlogram ρs. This is an illustration of the pitfall stem-
ming from assuming independence when serial correlation
is indeed present in the sequence of forecast-verification
pairs. Such lack of coverage could translate to concluding a
lack of calibration of density forecasts over the period con-
sidered, while in fact the observed deviation from perfect
reliability cannot be deemed significant.

When employing the surrogate consistency method
with the true spectrum of the time series {z̃t,k} in order
to generate surrogate time series, the observed coverage
of the consistency bars is very close to the target
90% nominal coverage. Furthermore, when employing
the estimated smooth spectrum instead, the coverage of
generated consistency bars is also close to the target
90% nominal coverage. Choosing a truncation point that
is too small results in underrepresenting the correlation
structure present in the sequence of forecast-verification
pairs, leading to the generation of consistency bars that are
too narrow. By making a reasonable guess for the truncation
point, i.e. M = {24, 36} and M = {48, 60} for the case of

the correlograms ρd and ρs, respectively, the generated
consistency bars appear to have an acceptable coverage. It
is true that for practical real-world verification studies it
might be difficult to pick an optimal truncation point (as
would be the case for any spectral analysis study in any case),
but a reasonable guess from the practitioner should provide
a sufficiently accurate estimate of the spectrum, leading to
appropriate consistency bars.

6. Application to the reliability assessment of density
forecasts of wind-power generation

Wind power is the renewable energy with the fastest
growth over the last few years. It has a significant share
in the electricity generation mix in a number of European
countries, most notably in Denmark and Spain. The optimal
integration of this renewable energy into the existing
electricity system requires forecasts for various ranges of
horizons depending on the decisions to be made, i.e. from
a few minutes ahead for the control of wind-farm output
to several days ahead for offshore maintenance planning.
The forecasts that are used most today have an hourly
resolution up to 48–72 h ahead, are employed for the
trading and management of the wind-power generation
and are issued based on one or several forecasts of
relevant meteorological variables for the site(s) of interest.
If considering lead times from few minutes up to 2 h ahead,
forecasts are then generated from purely statistical methods
relying on local measurements only, as for instance in
Gneiting, et al. (2006) and Pinson and Madsen (2009b).
For an overview of motivations, techniques and practical
experience with wind-power forecasting, the reader is
referred to Giebel, et al. (2003) and Costa, et al. (2008).
Among the various types of forecasting products employed
for wind-energy management, maintenance planning and
trading, non-parametric density forecasts are becoming
more and more popular, since benefits from their use
have been demonstrated (Pinson, et al., 2007a; Matos
and Bessa, 2009). This is because the loss functions of
forecast users commonly differ from the classical quadratic
loss function, for which point forecasts relating to the
conditional expectation are optimal. Such loss functions
may also vary in time due to the changes in the structure and
dynamics of electricity markets. As wind-power generation
is a nonlinear and bounded process, predictive densities
may be highly skewed and with heavy tails (Lange, 2005),
and hence be difficult to model accurately with known
parametric families of density functions (see the discussion
by Pinson, 2006). This has motivated the development of a
large number of non-parametric methods for wind-power
density forecasting, based on statistical methods and/or
ensemble forecasts (see Bremnes, 2006; Møller, et al., 2008;
Nielsen, et al., 2006; Pinson and Madsen, 2009a, among
others).

We consider here non-parametric density forecasts of
wind-power generation for the whole installed capacity
in Western Denmark, which approximately represents
Pn =2.5 GW over the period considered. All forecasts and
measurements are normalized by this nominal capacity,
and therefore expressed in percentages of Pn. Forecasts are
issued hourly, and have an hourly temporal resolution up to
a forecast length of 43 h. The point forecasts of wind-power
generation were provided by the wind-power prediction
tool (WPPT) as described in Nielsen, et al. (2002), while
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Table I. Summary of the observed coverage rate of the 90% consistency bars generated with either i.i.d. or surrogate consistency resampling
methods, for time series with correlogram ρd. Consistency bars are for a set of quantiles defining non-parametric density forecasts. Surrogate
consistency resampling based on the true spectrum of the time series is used as a benchmark. For the surrogate consistency resampling method
using the estimated smooth spectrum, several expert guesses on the truncation point M are considered. Note that asymptotically as m and B tend

towards infinity the observed coverage rate for proportions αi and (1 − αi) should be the same. The differences here are due to sampling effects.

αi i.i.d. Surrogate (M = 12) Surrogate (M = 24) Surrogate (M = 36) Surrogate (true)

0.05 66.7 86.7 90.2 91.1 90.4
0.10 61.4 88.0 88.7 88.9 90.2
0.15 59.0 84.8 87.3 89.0 90.7
0.20 58.4 85.5 87.7 88.6 90.5
0.25 56.4 85.3 88.1 88.7 89.8
0.30 57.6 85.0 86.8 88.9 89.9
0.35 55.2 84.8 87.9 87.9 89.7
0.40 56.0 85.6 88.7 89.1 90.5
0.45 56.7 86.3 89.2 88.6 89.7
0.50 56.3 86.0 88.3 88.7 90.6
0.55 54.6 87.2 88.3 88.7 89.4
0.60 54.0 86.9 88.9 89.4 88.9
0.65 55.8 86.5 89.5 89.8 89.4
0.70 54.4 85.4 88.8 89.8 89.3
0.75 56.5 85.6 88.1 89.6 89.1
0.80 59.7 86.3 88.8 90.9 89.2
0.85 59.3 86.1 89.4 89.2 89.8
0.90 61.2 87.5 90.0 89.2 90.0
0.95 65.1 88.8 91.1 90.4 90.6

Table II. As Table I, but for ρs.

αi i.i.d. Surrogate Surrogate Surrogate Surrogate Surrogate
(M = 24) (M = 36) (M = 48) (M = 60) (true)

0.05 57.7 86.8 88.4 88.2 91.1 90.9
0.10 53.7 84.4 86.6 87.9 90.4 90.8
0.15 52.0 83.3 85.9 87.5 90.4 90.0
0.20 50.8 82.6 85.7 87.0 90.2 90.7
0.25 51.1 83.1 86.1 86.7 90.5 90.7
0.30 48.7 83.5 86.9 87.5 90.0 90.5
0.35 46.6 83.2 86.7 87.6 91.0 89.3
0.40 45.8 83.4 86.5 87.3 90.3 90.1
0.45 46.3 83.2 86.7 87.1 90.7 90.6
0.50 45.4 83.3 85.8 87.6 90.1 90.6
0.55 46.4 82.9 86.2 88.4 90.5 89.8
0.60 45.5 83.0 85.9 88.0 89.8 89.4
0.65 47.8 83.2 86.7 88.7 89.7 89.8
0.70 47.7 83.0 87.3 88.9 89.2 90.0
0.75 48.5 83.2 86.2 89.6 88.6 89.8
0.80 51.1 83.9 87.3 90.1 89.1 90.3
0.85 51.8 84.1 87.5 88.8 89.3 90.0
0.90 54.8 85.5 87.2 88.2 88.2 88.9
0.95 59.9 86.4 88.8 89.7 89.8 91.7

the non-parametric density forecasts were generated based
on the adapted resampling method initially described in
Pinson (2006). The period for which both measurements and
forecasts are available runs from the beginning of January
2006 until mid-November 2007. Figure 5 depicts an example
with wind-power point forecasts issued on 8 January 2007
at noon and related non-parametric density forecasts, as

well as the corresponding measurements. Density forecasts
take the form of a set of central prediction intervals
(centred in probability around the median) with increasing
nominal proportions from 10% to 90%. They thus are
defined by 18 quantile forecasts with nominal proportions
from 5% to 95% with a 5% increment, except for the
median.
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Figure 5. Example of non-parametric density forecasts of wind-power generation for the whole of Western Denmark (issued on 8 January 2007 at noon)
in the form of a river-of-blood fan chart. Density forecasts are represented as a set of central prediction intervals with increasing nominal proportions.
Power values are normalized by the total wind capacity Pn for the region. Measurements and point forecasts are also depicted.

Three different sets of forecast series are arbitrarily selected
from the two years that were available. These three periods
span autumn 2006 and spring and summer 2007. The
first two sets consist of 600 forecast series, while the latter
one consists of 800 forecast series. The reliability of non-
parametric density forecasts is studied based on reliability
diagrams in the form of those presented in section 2.
Each lead time is considered individually. Inspection of
the periodograms and correlograms of the {z̃t,k} time series
suggests that truncation points between 36 and 60 h could be
relevant for the first two sets of forecast series, while M may
take values between 72 and 96 h for the case of the last set,
for all forecast horizons. A common value of 48 h is selected
for the first two sets, while a value of 84 h is picked for the
third one. As shown and discussed in section 5, the width
of the generated consistency bars is not highly sensitive to
the choice for M. A sufficiently large number B of surrogate
time series is chosen as B = 1000.

Let us focus for instance on the calibration assessment of
42 hour ahead density forecasts of wind-power generation,
which is summarized in Figure 6. After the series of
probability integral transforms is converted to having a
normal distribution, with a rank-preserving transformation,
the smooth spectra of the time series obtained related to the
three sets of forecast series are estimated with the method
described in section 4.2. These smooth-spectrum estimates
are gathered in Figure 6(a). Significant differences can be
observed among these smooth-spectrum estimates. While
the smooth spectrum estimated for set 1 could relate to
a first-order Markovian process with a moving average,
that for set 2 is typical of a second-order Markovian
process. Finally, for set 3 the estimated smooth spectrum
can be seen as that of a first-order Markovian process with
seasonalities. This therefore makes us expect different widths
for the consistency bars that are generated. The reliability
diagrams for the three sets of forecast series are depicted
in Figures 6(b), (c) and (d). Consistency bars, generated
using the methods described in Section 4, are depicted as
pointwise consistency bars informing us, for each nominal
proportion of the quantile forecasts that make up non-
parametric density forecasts, about consistent deviations

that can be expected even if such forecasts are perfectly
reliable.

The three sets of consistency bars indeed have different
widths, thus reflecting the effect of the identified correlation
structures on the potential range of observed proportions
for perfectly reliable density forecasts. They are generally
tighter for set 2, for which the smooth spectrum takes the
form of that for a simple second-order Markovian process.
Notice that the larger consistency bars are for the set with the
most forecast series (set 3), illustrating the fact that it is not
because more forecast series are available that one should
expect smaller consistency bars, again due to the stronger
correlation pattern present for that set.

Let us now interpret these reliability diagrams. If
consistency bars were not available, one would subjectively
appreciate the observed deviations from the diagonal and
decide on acceptable reliability (or not) of the various
quantile forecasts that make up non-parametric density
forecasts. One would then certainly accept all quantile
forecasts to be reliable over set 3. In contrast, quantile
forecasts with nominal proportions between 0.45 and 0.8 for
set 1 and with nominal proportions between 0.1 and 0.65 for
set 2 would be deemed as non-reliable owing to an increased
deviation between the ideal diagonal case and observed
proportions. Now consider the sets of consistency bars. For
sets 1 and 3, the observed proportions of all quantiles that
make up density forecasts lie within the consistency bars,
even though deviations from the diagonal are of different
magnitudes. This does not tell us that the quantile forecasts
are reliable, but inversely that it cannot be concluded that
they are not reliable (for a 10% level of significance). This
goes against the subjective evaluation given previously. In
contrast, for set 2 the fact that observed proportions for
quantile forecasts with nominal proportions between 0.1
and 0.55 lie outside the consistency bars confirms that
quantile forecasts for such nominal proportions should not
be considered as reliable.

Copyright c© 2010 Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 77–90 (2010)



88 P. Pinson et al.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4(a)

Angular frequency [rad/s]

A
m

pl
itu

de
 

Set 1
Set 2
Set 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nominal

O
bs

er
ve

d

 

 

Observed
Ideal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nominal

O
bs

er
ve

d

 

Observed
Ideal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nominal

O
bs

er
ve

d

 

Observed
Ideal

(b)

(c) (d)

Figure 6. Example results from the reliability assessment of 42 hour ahead non-parametric density forecasts of wind-power generation. The smooth-
spectrum estimates related to the three sets of forecast series are gathered in (a). Reliability diagrams with consistency bars for a 90% confidence level are
depicted in (b), (c) and (d) for sets 1, 2 and 3.

7. Concluding remarks

Focus has been given to the question of the calibration
assessment of density forecasts of continuous variables,
originating from ensemble forecasts or statistical methods,
with reliability diagrams. It has been explained that
employing such reliability diagrams relates to the evaluation
of unconditional calibration. In many applications one
should acknowledge the presence of serial correlation in
the sequence of probability integral transforms even for
reliable density forecasts, in turn induced by the sequence
of forecast-verification pairs.

We have built on an interesting proposal by Bröcker and
Smith (2007a) consisting of associating reliability diagrams
with consistency bars. Consistency bars here reflect the
potential impact of both limited counting statistics and
serial correlation on what would be the observed reliability
of a perfectly reliable forecast system over the set of available
observations. An original surrogate consistency resampling
method has been introduced and evaluated for that purpose.
The presence of serial correlation clearly increases the width
of consistency bars. Even though the serial correlation
pattern has to be estimated (here in the frequency domain),

it has been demonstrated from simulations that the actual
coverage of our consistency bars is close to their intended
nominal coverage.

The consistency bars that have been considered in the
present article are pointwise consistency bars. This means
that they relate to the individual reliability assessment of
the quantile forecasts (for a given nominal proportion) that
make up non-parametric density forecasts. As a possible
extension of the work presented here, one may consider the
definition of consistency envelopes, which in contrast would
relate to the simultaneous reliability assessment of quantile
forecasts with various nominal proportions (thus for the full
densities) in a multiple hypothesis-testing framework.

Our most important message here is not that one should
mandatorily use the approach introduced for generating
consistency bars, but instead that one must consider the
potential effect of serial correlation in reliability assessments.
Indeed, it has been shown that assuming independence
of the sequence of probability integral transforms clearly
leads to an underestimate of the range of potentially
observed proportions for a perfectly reliable probabilistic
forecasting system over the period of interest. One may
decide on one’s own method of modelling or accounting for
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serial correlation, potentially simulating different plausible
serial correlation patterns and assessing their impact on
the width of consistency bars. Note that the question of
interdependence among forecast-verification pairs should
also be considered when focusing on probability forecasts
for binary events. It might be that interdependence is not
an issue for a large number of cases, but one should still be
aware of this potential issue before applying i.i.d. resampling
methods.

For the surrogate consistency resampling method
developed, only one parameter, i.e. the truncation point M,
has to be selected for the estimation of the smooth spectrum.
This is the price to pay for capturing the interdependence
structure in the sequence of probability integral transforms.
Even though the selection of M may call for some statistical
(and/or signal processing) expertise from the practitioner,
the actual coverage of consistency bars is not highly sensitive
to the choice for M, especially if consistency bars are to be
used for visual assessment of density-forecast calibrations
and not for thorough hypothesis testing. In parallel, the
number B of replications of the consistency resampling
method, which corresponds to the number of surrogate time
series to be generated, should be chosen sufficiently large, e.g.
B ≥ 1000. Since computational power is rapidly increasing,
picking a large value for B should not be a problem. For
reference, only 4 min were necessary for generating the
reliability diagrams with consistency bars of section 6 with
Matlab, i.e. for time series of length 600 and 800 with the
number of surrogates B = 1000.

Unconditional calibration is only one aspect of proba-
bilistic forecast verification. It is a crucial aspect, however,
as a probabilistic bias in density forecasts would directly
translate to a bias in decisions to be made from such prob-
abilistic forecasts. If one is strict about forecast verification,
density forecasts that cannot be deemed as reliable should
not be considered further for decision-making. Fortunately,
one can easily correct for a lack of unconditional calibra-
tion, with e.g. conditional parametric models (Nielsen, et al.,
2006) or smoothed bootstrap (Hall and Rieck, 2001). For
the case of the application considered, the use of consistency
bars has permitted us to carry out a reliability assessment
of non-parametric density forecasts of wind-power gen-
eration, with results stronger than those obtained before,
i.e. solely based on subjective evaluation of the deviation
between observed proportions and the ideal diagonal case of
reliability diagrams. We intend to promote the use of consis-
tency bars as a generic feature of reliability diagrams for the
evaluation of density forecasts of wind-power generation.

Acknowledgements

The work presented has been partly supported by the
European Commission under the SafeWind Project (ENK7-
CT2008-213740), and by the Danish Research Council for
Technology and Production Sciences (grant no. FTP-274-
08-0573), which are hereby acknowledged. The authors
would like to thank DONG Energy and Vattenfall Denmark
for originally providing the wind-speed measurements for
the Horns Rev wind farm. The authors are also grateful
to Energinet.dk, the Transmission System Operator in
Denmark, for providing wind-power measurements for
Western Denmark, and to ENFOR A/S for the wind-power
(point) forecasts. Acknowledgments are due to two reviewers
and one associate editor, whose suggestions and comments

permitted us to enhance the article. Acknowledgments are
finally due to Henrik Aa. Nielsen and James W. Taylor, as
well as Tilmann Gneiting, for fruitful discussion about the
reliability of ensemble and density forecasts.

Appendix

A mathematical proof of the effect of serial correlation
on the size of consistency bars

In this appendix a simple mathematical proof is given of the
effect of serial correlation on the size of consistency bars.
More precisely, we show here that for any type of correlation
in the sequence of forecast-verification pairs, the consistency
bars are wider than in the i.i.d. case.

Let us focus, without loss of generality, on a given nominal
proportion αi. The forecast horizon k is omitted in the
developments below in order to lighten the notations. In

view of the definition of the indicator variable ξ
(αi)
t in (3), it

appears that ξ
(αi)
t is the realization at time t of a Bernoulli

random variable with parameter αi. As a consequence, the
observed proportion âi is a realization of a random variable
defined as the sum of Bernoulli trials, scaled by the number
of trials N , which here is the length of the evaluation period.
Below, we will denote this sum by Xi or X̃i, for the i.i.d. and
correlated cases, respectively.

In the case where there is no serial correlation
present in the sequence of forecast-verification pairs, the
corresponding Bernoulli trials are i.i.d. By definition, the
sum Xi of N i.i.d. Bernoulli trials with chance of success
αi follows a binomial distribution, Xi ∼ B(N , αi). The first
two moments of the distribution of the proportion Xi/N are
then given by

E [Xi/N] = αi, (A.1)

var [Xi/N] = αi(1 − αi)

N
. (A.2)

In contrast, when serial correlation is present in the
sequence of forecast-verification pairs, the corresponding
Bernoulli trials cannot be independent. In such a case, it is
known that the sum X̃i of N dependent Bernouilli trials can
be modelled with a beta-binomial distribution, see e.g. Ahn
and Chen (1995) or Tsai, et al. (2003). This distribution is
defined as

X̃i ∼ B(N , θ) (A.3)

with

θ ∼ Beta(αi, σ θ ). (A.4)

Note that, for the sake of simplicity, the beta distribution
Beta(αi, σ θ ) in the above is characterized by its mean αi

and variance σ θ , instead of its two shape parameters.
Consequently, the first two moments of the distribution
of the proportion X̃i/N are given by

E
[
X̃i/N

] = αi, (A.5)

var
[
X̃i/N

] = αi(1 − αi)

N

(
1 + N − 1

σ θ + 1

)
. (A.6)

Since necessarily N > 1 and σ θ > 0, one has

var
[
X̃i/N

]
> var [Xi/N] , (A.7)
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meaning that, whatever αi, the distribution of proportions in
the case of serial correlation will have a higher second-order
moment than if there were no correlation. Such distributions
will in any case be centred on αi and symmetric around it.
Therefore, for any confidence level (1 − β), consistency bars
will be wider if serial correlation is present in the sequence
of forecast-verification pairs.
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