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Scales with varying degrees of measurement reliability are often used in the context of multistage

sampling, where variance exists at multiple levels of analysis (e.g., individual and group). Because

methodological guidance on assessing and reporting reliability at multiple levels of analysis is currently

lacking, we discuss the importance of examining level-specific reliability. We present a simulation study

and an applied example showing different methods for estimating multilevel reliability using multilevel

confirmatory factor analysis and provide supporting Mplus program code. We conclude that (a)

single-level estimates will not reflect a scale’s actual reliability unless reliability is identical at each level

of analysis, (b) 2-level alpha and composite reliability (omega) perform relatively well in most settings,

(c) estimates of maximal reliability (H) were more biased when estimated using multilevel data than

either alpha or omega, and (d) small cluster size can lead to overestimates of reliability at the between

level of analysis. We also show that Monte Carlo confidence intervals and Bayesian credible intervals

closely reflect the sampling distribution of reliability estimates under most conditions. We discuss the

estimation of credible intervals using Mplus and provide R code for computing Monte Carlo confidence

intervals.
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Reliability has been defined alternatively as the squared corre-

lation between true and observed scores (e.g., Lord & Novick,

1968, p. 61) or as the ratio of a scale’s true score variance to its

total variance (e.g., McDonald, 1999). These definitions are math-

ematically equivalent when the observed score’s variance is pos-

itive (e.g., de Gruijter & van der Kamp, 2008; Raykov & Marcou-

lides, 2011), and both assume access to a scale’s true score

variance. Because true score variance is unknown and can only be

estimated from observed data, most reliability estimates rely on

the assumption that observed covariances necessarily represent

true score variance.

Reliability estimates are only as trustworthy as the information

used to estimate them, however, and estimating reliability from

data collected through multistage sampling necessarily confounds

within- and between-cluster item variance (i.e., within-group vari-

ance and between-group variance). As such, multistage sampling

may lead to biased reliability estimates when the assumption of

independent residuals is violated (e.g., Snijders & Bosker, 1999).

Multistage sampling occurs when cases are randomly sampled

from higher order units that are themselves sampled from a larger

population of such units. For example, an education researcher

might recruit several schools, select a sample of classrooms from

each school, then obtain samples of students from each classroom

(e.g., Connor et al., 2010). Multistage sampling results in hierar-

chically structured data (e.g., students nested within classrooms),

making residuals dependent in the presence of between-cluster

variation. Scores on key variables from children in a given class-

room might be more alike than those of children in different

classrooms, for instance. Ignoring hierarchical data structures can

bias estimates of interitem relationships, likewise biasing reliabil-

ity estimation for a desired level of analysis. Single-level reliability

estimates therefore do not necessarily reflect true scale reliability

at any single level of analysis.

The need to account for multilevel variability has been firmly

established for hypothesis testing but has been largely ignored in

the context of estimating a scale’s reliability. It is commonly seen

that researchers who appropriately use multilevel analysis to test

primary hypotheses nevertheless report Cronbach’s � as evidence
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for acceptable levels of scale reliability, even though doing so

implicitly assumes a single-level factor structure. This unfortunate

status quo is not the fault of researchers, however, as extant

methods for estimating reliability focus on a scale’s total variabil-

ity rather than the reliability of a scale at multiple levels of analysis

(e.g., Cronbach, 1951; McDonald, 1999).

To give researchers a conceptual and operational foundation for

understanding reliability at multiple levels of analysis, in the

present article we describe how multilevel confirmatory factor

analysis (MCFA) can be used to separately estimate reliability

within and between clusters of a multilevel model. Whereas our

logic can apply to any number of levels, we constrain our discus-

sion to two-level models to facilitate presentation.

We first discuss common single-level reliability estimates and

describe how each can be estimated within a confirmatory factor

analysis (CFA) framework. We then address the dangers of mis-

applying popular single-level techniques to multilevel data and

introduce MCFA as the natural solution to this problem. We

explore the applicability of MCFA for multilevel reliability esti-

mation using simulated data and provide an applied example,

focusing on the implications of multilevel reliability estimation for

applied researchers. We also provide example code in an appendix

in the online supplemental materials to facilitate implementation of

the methods we describe.

Single-Level Reliability Estimation Using Structural

Equation Modeling

While CFA and structural equation modeling (SEM) estimate

construct relations without measurement error when multiple in-

dicators are used for each construct, researchers who use these

methods may still wish to estimate reliability for their scales for

multiple reasons. First, reliability estimates summarize the factor

loading matrix into a single, easily interpretable quantity (given a

known number of items) and can help future researchers choose

among scales that tap the same construct with better or worse

measurement characteristics. Such information may therefore be

especially important to provide when discussing the creation and

validation of a new scale. Second, providing reliability estimates

across many samples can help inform the generalizability of item-

level relations (from previous or future research) to their respective

latent relations. In the following sections, we begin by discussing

how researchers can estimate various reliability coefficients in the

framework of CFA and SEM. The list of reliability estimates

discussed below is by no means exhaustive, and we readily ac-

knowledge that all estimates carry multiple pros and cons. As such,

we constrain our discussion to three of the more commonly uti-

lized reliability estimates: �, �, and H.

Alpha

Traditional methods of reliability estimation rely on the general

linear model (GLM) and are easily implemented in GLM-based

frameworks such as SEM and CFA. For example, Cronbach’s

Equation 16 for computing � (Cronbach, 1951; see also Guttman,

1945; Kuder & Richardson, 1937) specifies � as a function of the

average interitem covariance within a scale (��ij), the variance of

the scale score (�X
2), and the number of items included in the

scale (n):

� �
n2

��ij

�X
2

. (1)

Alpha can be estimated with CFA-capable software by specify-

ing a fully saturated covariance structure model that has no latent

variables. The average covariance is found by summing all unique

covariances in matrix � (the symmetric matrix of indicator vari-

ances, �ii
2, and covariances, �ij) and dividing the sum by the

number of unique covariances. The variance of the scale score can

then be computed by summing all item variances and two times

each unique covariance in � (the variance of a sum is equal to the

sum of the full [i.e., square] covariance matrix of all elements):

�X
2

� 1��1. (2)

While it has long been known that � is in most cases an

inconsistent estimator of reliability (e.g., Novick & Lewis, 1967),

� is by far the most common reliability estimate used in psycho-

logical research. The ubiquity of �, as well as the relatively minor

difference between � and alternative reliability estimates in ap-

plied research (see Footnote 7 below), make alpha an important

statistic to consider when examining issues related to scale reli-

ability. We therefore retain � in the present article to make the

results of our simulation applicable to a broad audience, for whom

the rough approximation provided by � is generally sufficient.

Composite Reliability

The average interitem covariance provides a limited estimate of

a scale’s true score variance, as evidenced by the fact that � is a

consistent estimate of reliability only when all items load on a

single underlying construct and when all items represent that

construct equally well (i.e., essential tau equivalence; see Novick

& Lewis, 1967). CFA allows for heterogeneous correlations be-

tween indicators and their underlying common factor(s) (i.e., het-

erogeneous factor loadings), and composite reliability (�) as cal-

culated from factor loadings produces more precise estimates of

reliability than those provided by �.

Composite reliability has been discussed by several authors

(e.g., Bentler, 2007; McDonald, 1970, 1999; Raykov, 1997; Werts,

Linn, & Jöreskog, 1974) and is conceptually similar to � in that it

represents the ratio of a scale’s estimated true score variance

relative to its total variance. Unlike �, however, � acknowledges

the possibility of heterogeneous item-construct relations and esti-

mates true score variance as a function of item factor loadings (�i)

in matrix �. Assuming a congeneric scale with a standardized

latent construct (i.e., with variance fixed to 1), � can be estimated

as1

� �

��
i�1

k

�i�2

��
i�1

k

�i�2

� �
i�1

k

�ii

, (3)

where �i represents the factor loading of item i onto a single

common factor and �ii represents the unique variance of item i.

1 In models with correlated unique factors, the denominator may contain

the extra term 2�i�2
k �j�1

i
�ij, reflecting covariances among unique fac-

tors. For simplicity, we focus on the case with uncorrelated unique factors.
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The numerator in � is identical to 1=��=1, the sum of the full (i.e.,

square) model-implied covariance matrix of item true scores,2

whereas the denominator represents the true score variance plus all

residual variances. Under essential tau equivalence, Equations 1

and 3 become mathematically identical when the factor model

used to estimate � fits the data perfectly. That is, � may be thought

of as a special case of � under essential tau equivalence. The true

score covariance matrix contains n2 elements that all equal the

average interitem covariance, and the denominators of both equa-

tions simply represent the sum of all sources of scale score vari-

ance.

Several variations of composite reliability exist in the literature,

most of which reduce to Equation 3 for congeneric scales (e.g.,

Bentler, 2007; McDonald, 1999; Raykov & Shrout, 2002; Zinbarg

et al., 2005). We therefore limit the present discussion to conge-

neric measures for parsimony.

Maximal Reliability

Composite reliability represents the relation between a scale’s

underlying latent factor and its unit-weighted composite, but a

scale’s unit-weighted composite may not optimally reflect its

underlying latent construct. The true score variance estimated in

factor analysis allows for heterogeneous indicator weights, and it

is reasonable to allow similarly heterogeneous weights when cre-

ating a scale’s composite score. One alternative to comparing true

score variance to the variance of a unit-weighted scale is presented

as maximal reliability (H; e.g., Bentler, 2007; Conger, 1980;

Hancock & Mueller, 2001; Li, 1997; Raykov, 2004; see also

Thomson, 1940), which represents the reliability of a scale’s

optimally weighted composite:

H �

�
i�1

k �i
2

1 � �i
2

1 � �
i�1

k �i
2

1 � �i
2

, (4)

where �j
2 represents the squared standardized factor loading of

indicator i onto a single common factor, which is identical to the

reliability of indicator i (assuming a correctly specified single-

factor model). Hancock and Mueller (2001) showed that this

formula reduces to

H � � 1 �
1

�
i�1

k �i
2

1 � �i
2 �

�1

. (5)

Because H optimally weights indicators and squares individual

factor loadings, Hancock and Mueller (2001) noted that it has

several properties not shared by composite reliability. First,

whereas composite reliability is negatively influenced by negative

factor loadings (i.e., the numerator sums all factor loadings before

squaring the term), the squared loadings used in H allow nega-

tively valenced indicators to contribute meaningful variance to the

estimated true score. Second, because H optimally weights indi-

cators when computing the composite score, H will never be less

than the reliability (i.e., squared standardized loading) of the best

indicator. Similarly, the addition of weakly loading indicators can

reduce estimates of composite reliability but will not reduce H

because weak indicators will receive very low weights when

computing an optimally weighted composite. H therefore consid-

ers weak indicators at least somewhat informative, and their in-

clusion in a scale should not reduce the reliability of an optimally

weighted composite. This weighting also means, however, that H

does not estimate the same population parameter as � or �.

The coefficients �, �, and H therefore provide point estimates of

a scale’s reliability (although H represents the reliability of opti-

mally weighted composite). While point estimates are often infor-

mative, it is also important to consider their sampling distributions

as our confidence in a point estimate will vary across differing data

conditions. The delta-method standard error (i.e., the standard

deviation of a parameter estimate’s sampling distribution under the

assumption of asymptotic normality) has been shown to provide an

unbiased estimate of �’s population standard deviation (Raykov,

2002), but the distribution of � (and other reliability estimates)

likely is not symmetric (e.g., Kristner & Muller, 2004, discussed

the exact distribution of � and provided an approximation using

the F distribution). Standard errors may therefore be less informa-

tive than empirically derived confidence intervals. For instance,

empirically derived confidence intervals would allow researchers

to test whether their scale’s reliability is significantly greater than

a lower threshold such as .80. Raykov (1998) argued that confi-

dence intervals for � can be obtained through bootstrapping (e.g.,

Efron & Tibshirani, 1993), and the same logic can also be applied

to estimating confidence intervals for � and H.

Multilevel Reliability

A significant body of research has focused on reliability esti-

mation for multilevel models, but research has primarily focused

on how reliably group means of a dependent variable represent the

larger distribution of group means in a population (e.g., Rauden-

bush & Bryk, 2002; see also Raykov & Marcoulides, 2006;

Raykov & Penev, 2010). While informative for multilevel models

in general, the reliability of group means as estimates of the

distribution of group means in a population is different than

measurement reliability as we have discussed it above.

Of greater present interest is the estimation of a scale’s reliabil-

ity under two-stage random sampling (i.e., multilevel data). Ap-

proached from a multilevel perspective, two-stage sampling leads

to observed scores (yik) that contain both true score and measure-

ment error variance at both the within-cluster and between-cluster

levels (denoted by i and k subscripts, respectively). Thus, an

MCFA approach to multilevel data allows researchers not only to

model data for which a scale represents the same construct at each

level, but also to model data for which only a between-cluster

construct is meaningful (e.g., Chan, 1998; Kozlowski & Klein,

2000) or for which only within-level heterogeneity is meaningful

(e.g., Fitzmaurice, Laird, & Ware, 2011; Halaby, 2004; Woolridge,

2002). Further, MCFA allows for qualitatively different constructs

at each level such that a single scale may contain items that possess

different factor structures within versus between clusters.

Whereas the concept of separate level-specific true scores and

measurement errors at each level runs contrary to the tenets of

2 This formula is slightly different for multidimensional scales. Zinbarg,
Revelle, Yovel, and Li (2005) distinguished between composite reliability
for congeneric versus hierarchical scales, for instance.
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classical test theory (e.g., that there is only one measurement

error), we note that multilevel models represent a superordinate

class of models that include those derived from generalizability

theory (see Goldstein & McDonald, 1988, for a brief discussion).

While issues concerning reliability are more appropriately dis-

cussed in terms of classical test theory, generalizability theory

specifies that a scale’s total variance can be decomposed into

multiple orthogonal facets (e.g., Shavelson & Webb, 2004; Webb,

Rowley, & Shavelson, 1988), similar to the decomposition that

occurs under the MCFA model. A generalizability theory-derived

model may, for instance, decompose a scale’s variance into the

variance of person-specific deviations from a grand mean (i.e., a

universe score), item-specific variance, between-cluster differ-

ences, the interactions among these three sources, as well as

variance due to nonsystematic error. Here, nonsystematic variation

and variance due to the three-way interaction between persons,

items, and clusters are not distinguishable, so these effects would

be aggregated into a single residual term. Using such a decompo-

sition, researchers can calculate generalizability coefficients that

treat different combinations of these sources of variance as repre-

senting target variance versus error. Generalizability coefficients

are therefore akin to the reliability estimates discussed in classical

test theory.

The MCFA model assumes a similar kind of decomposition.

The MCFA model decomposes observed information in an item

into components related to each individual’s cluster-average true

score (Tbk), which characterizes all individuals within cluster k, as

well as each individual’s true deviation from the cluster-average

true score (Twi). Furthermore, the difference between an individ-

ual’s within-cluster deviation from the cluster average and that

individual’s Twi is a within-cluster error (Ewi � yik � y.k � Twi).

The difference between a cluster’s deviation from the grand mean

of all true scores and that cluster’s Tbk is a between-cluster error

(Ebk � y.k � Tbk). Thus, we may represent an individual’s ob-

served score as the sum of four parts:

yik � Twi � Ewi
Ç

within-cluster

� Tbk � Ebk
Ç

between-cluster

. (6)

Table 1 clarifies how each of these elements aligns with the

variance components that would exist in a parallel model derived

from generalizability theory. The assumption of distinct within-

and between-cluster true scores suggests that true score variance

can be captured to a different degree at each level, motivating the

need for separate reliability estimates at each level. Reliability at

the within level represents the ratio of the within-cluster true score

variance to total within-cluster variance (var(Twi)/var(Twi � Ewi)),

whereas reliability at the between level represents the ratio of the

between-cluster true score variance to total between-cluster vari-

ance (var(Tbk)/var(Tbk � Ebk)). Between-cluster reliability there-

fore reflects the reliability of the between-cluster information in a

scale and does not necessarily represent the reliability of group-

level composites.

Between-cluster reliability is therefore distinct from an intra-

class correlation (ICC), which represents the ratio of a scale

score’s between-cluster variance relative to its total variability

across both levels. Between-cluster reliability instead reflects the

degree to which group-level differences in a researcher’s observed

data can be generalized to represent between-group differences in

a construct of interest.

To the extent that group-level reliability estimates are applicable

across studies, estimates of between-group reliability in one study

help inform the validity of group-level inferences based on previ-

ous or future studies. It may therefore be especially important to

estimate multilevel reliability estimates when constructing new

scales to show that a new scale reliably captures true score vari-

ation at each possible level of analysis. Providing such estimates

will therefore allow researchers to make better informed choices

between measurement instruments, especially in the context of

multilevel hypotheses.

An MCFA approach to estimating level-specific reliability is

especially important to researchers dedicated, for one reason or

another, to the multilevel analysis of scale composites. For in-

stance, a multilevel SEM might not be estimable with small

unit-level sample sizes, but multilevel regression with scale scores

would be. Although not as ideal as fitting a full multilevel SEM

(MSEM) model to all scales in a battery simultaneously, separate

MCFA models for each scale in such a study could be used to

estimate multilevel reliability for each scale individually. This

MCFA approach would be greatly preferable to the currently

available options of either (a) not reporting reliability and hoping

for the best or (b) assuming a single-level design and computing a

single-level reliability estimate. Ignoring the fact that separate

reliabilities may exist at each level of analysis by computing

single-level reliability conflates within- and between-cluster reli-

ability, and it can be shown that single-level reliability is a simple

mathematical function of a scale’s ICC and its reliability at each

level of analysis (see Appendix A in the online supplemental

materials).

Raykov and du Toit (2005) provided one means for estimating

composite reliability in multilevel CFA that accounts for variabil-

ity both within and between groups, but their procedure provided

only a single estimate of reliability that does not differentiate

reliability within groups from reliability between groups. A

single estimate of composite reliability provides information about

the overall reliability of a scale but does not inform whether the

scale is sufficiently reliable for use at a specific level of analysis.

Table 1

Relations Between Generalizability Theory Facets and Parallel

Elements of the Multilevel Confirmatory Factor Analysis Model

Facet
Element of multilevel confirmatory factor

analysis model

Person Within-cluster true score
Cluster Between-cluster true score
Item No variance across observations; represented

in item intercepts
Person � Cluster Undefined under the assumption of no cross-

classification
Person � Item Within-cluster error; also includes

nonsystematic within-cluster variance
(error)

Cluster � Item Between-cluster error; also includes
nonsystematic between-cluster variance
(error)

Person � Cluster � Item Undefined under the assumption of no
cross-classification
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Cranford and colleagues (2006) also addressed the issue of mul-

tilevel reliability, suggesting a method that indeed produces sep-

arate level-specific reliability estimates. Their method conflates

within- and between-cluster error variance, however, and is not as

generalizable as a method that acknowledges separate true score

and error variances at each level.

Instead, MCFA allows separate estimation of level-specific

measurement model parameters and thus allows for level-specific

reliability estimation. The general CFA framework allows estima-

tion of �, �, and H, as well as other reliability estimates we do not

discuss. We next describe how each can be extended to a two-level

context.3

A Multilevel CFA Approach

The extension of CFA to accommodate two-level data allows

separate estimation and analysis of within- and between-cluster

covariance matrices. As discussed above, CFA is optimal for

estimating reliability in single-level data, and an MCFA extension

to reliability estimation is relatively straightforward (see also

Raykov & du Toit, 2005).4 In the remainder of this article, we

discuss the estimation of �, �, and H in an MCFA framework.

There are several approaches in the methodological literature for

conducting MCFA (e.g., Muthén, 1990, 1994). Here, we adopt a

method recently developed by Muthén and Asparouhov (2009,

2011) for conducting MSEM. MCFA is a special case of MSEM

with no structural paths linking latent variables, in much the same

way that single-level CFA is a special case of SEM.

Briefly, the MCFA model is given as a special case of Muthén

and Asparouhov’s (2009) model by a set of three equations (re-

taining their notation):

Yik � �k�ik, (7)

�ik � �k � Bk�ik � �ik, (8)

�k � � � ��ik � �k, (9)

where i and k index cases (Level 1 units) and clusters (Level 2

units), respectively. Yik is a vector of p measured variables; �k �

� � [Ip 0p�m Ip 0p�m] is a (p � (2p � 2m)) factor loading matrix

linking Yik to p latent parts at both the within- and between-cluster

levels and m common factors at both levels; �ik is a vector of

length (2p � 2m) containing p latent within-cluster parts, m

within-cluster common factors, p latent between-cluster parts, and

m between-cluster common factors5; �k is a vector of length (2p �

2m) that contains the p item intercepts and m between-cluster

common factors; Bk is a (2p � 2m) � (2p � 2m) matrix containing

within-cluster factor loadings; �k (r � 1) contains all of the

k-subscripted random coefficients from �k and Bk, including the

between-cluster common factors; � (r � 1) contains means of

those coefficients and the item intercepts (if desired); � (r � r)

contains between-cluster factor loadings; �ik contains unique fac-

tors and common factor residuals for the within-cluster model; and

�k (r � 1) contains unique factors and common factor residuals for

the between-cluster model. Finally, �ik 	 MVN(0, �W), and �k 	

MVN(0, �B). A fully specified path diagram is included in Ap-

pendix B in the online supplemental materials (for the case in

which the item intercepts 
j � 0).

Whereas the basic MCFA model can be elaborated in various

ways, we restrict our focus to factor models with no covariates,

only continuous items, and no latent regressions (apart from paths

among latent variables and their indicators that are better concep-

tualized as loadings than as regression weights). Furthermore, we

consider only the case in which item intercepts are omitted, factor

loadings do not vary randomly at the cluster level (Bk � B), and

the configural factor structure is identical across levels. These

simplifications yield constrained versions of Equations 7 and 8:

Yik � ��ik, (10)

�ik � �k � B�ik � �ik, (11)

Appendix B in the online supplemental materials presents an

example model with full expansion of all matrices.

Multilevel alpha. As discussed above, �, �, and H can be

directly estimated from CFA model parameters, suggesting a sim-

ple extension to two-level CFA. Separate within- and between-

cluster � can be obtained by specifying fully saturated indicator

covariance matrices in both levels of an MCFA and separately

applying Equation 1 to the within- and between-cluster results. The

numerator of each level-specific � is therefore the squared number

of indicators present at a given level of analysis multiplied by the

average covariance at that same level. The denominator of each

level-specific � similarly represents the sum of all elements in the

full (i.e., square) level-specific covariance matrix and can be

obtained by summing all level-specific indicator variances and two

times each unique level-specific covariance.

Multilevel composite reliability. Extending � to MCFA re-

quires specification of a unidimensional factor structure at both the

within- and between-cluster levels. Equation 3 is then applied to

the level-specific parameter estimates, making within-level � a

function of within-level factor loadings and residual variances

whereas between-cluster � is a function of the between-cluster

factor loadings and residual variances. This approach therefore

requires that residual variances be estimated at both levels instead

of fixing Level 2 residual variances to zero, as is sometimes done

(e.g., Gottfredson, Panter, Daye, Allen, & Wightman, 2009). Fix-

ing Level 2 residual variances to zero assumes perfect Level 2

reliability, rendering Level 2 reliability estimation unnecessary.

While beyond the scope of the present article, we note that

unless a researcher has strong reasons to suspect an item is per-

fectly reliable at the between level, he or she should avoid fixing

3 See also Wilhelm and Schoebi (2007), who presented a similar method
of level-specific reliability estimation in an multilevel modeling frame-
work. Our method differs from theirs in that we estimate true score and
error variances at each level using MCFA, allowing for estimates of
level-specific �, �, and H. Wilhelm and Schoebi’s approach specifies
level-specific reliability as a function of level-specific covariances and
therefore only allows for the estimation of level-specific �.

4 Our approach specifically considers cases for which a researcher
wishes to know reliability at two levels. When reliability at the between
level is not relevant to a researcher, alternative approaches such as esti-
mating reliability using group-mean-centered data may represent a simpler
alternative. We thank an anonymous reviewer for suggesting this possibil-
ity. Huang and Weng (2012) presented a similar approach to estimating
reliability in ecological momentary assessment data.

5 Initially, it may appear strange to see �ik on both sides of this equation.
This simply denotes that some elements of �ik are functions of other
elements of �ik.
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Level 2 residual variances to zero. Estimated residual variances

may be close to zero when an item’s ICC is small, but near-zero

residual variances can still represent a substantial proportion of an

indicator’s between-cluster variability (e.g., 10%) if the corre-

sponding Level 2 true score variance is also near zero. For exam-

ple, the population model discussed by Hox, van de Schoot, and

Matthijsse (2012; see also Meuleman & Billiet, 2009) specifies

between-cluster factor loadings of .265 and .280 for a between-

cluster latent construct that has been standardized to have unit

latent variance. The respective item ICCs are relatively low (i.e.,

.080) such that the residual variances of these two indicators are

close to zero (.015 and .008, respectively). Despite being very

small, these residual variances correspond to approximately 19%

and 10% of the total between-cluster item variances. In this case,

assuming perfect between-cluster item reliability (i.e., fixing re-

siduals to zero) would not be justifiable.

Multilevel maximal reliability. The same model used to es-

timate level-specific � can also be used to estimate level-specific

H. H requires estimates of each item’s reliability, as provided by

squared standardized factor loadings (represented in Equations 4

and 5 as �i
2). Standardized factor loadings are not generally pro-

vided by MCFA software, and a simple generalization allows H to

be estimated from raw-metric parameter estimates:

�i
2

1 � �i
2

�
�i

2

�i
2

� �i
2

�
�i

2

�ii

. (12)

Computation of level-specific reliability is straightforward from

an MCFA perspective, but the applicability of this method remains

untested. Next, we present a simulation that explores the use of

multilevel �, �, and H and shows how these measures capture

level-specific reliability under several conditions. We additionally

calculate single-level estimates of �, �, and H to show the poten-

tial implications of ignoring nested data structures when comput-

ing reliability.

Confidence intervals and credible intervals. Following

Raykov’s (1998) logic, we note that confidence intervals for level-

specific reliability should be obtainable via bootstrapping or sim-

ilar procedures. Direct nonparametric bootstrapping (i.e., itera-

tively resampling from an empirical data set to derive an

empirically based estimate of a parameter’s sampling distribution)

can produce biased estimates when applied to multilevel data,

however, and parametric alternatives are preferable when one is

willing to accept all model assumptions (Goldstein, 2011). We

therefore examine two approaches to estimating the sampling

distribution of our level-specific reliability estimates: Monte Carlo

confidence intervals and Bayesian credible intervals. As we ex-

plain below, Monte Carlo confidence intervals are derived by

generating random draws from a parameter vector’s hypothesized

joint distribution and computing functions of these parameters on

each draw. Bayesian credible intervals are similarly derived from

a parameter vector’s posterior distribution rather than being com-

puted directly from resampled data.

Monte Carlo confidence intervals. Monte Carlo confidence

limits are derived by relying on the sampling distribution of

parameter estimates (e.g., factor loadings and residual variances),

generating random draws for each parameter, and computing a

statistic of interest (e.g., a reliability estimate) from the generated

parameters. This is different from a parametric bootstrap approach,

where data sets are generated from a model and statistics are

computed for each data set separately. An elaboration of the

differences between Monte Carlo and parametric bootstrap meth-

ods is beyond the scope of the present article; we refer readers to

Preacher and Selig (2012) for a discussion of this topic.

We obtained Monte Carlo confidence intervals by drawing a

random sample of 10,000 parameter estimates from an estimated

sampling distribution of these estimates, where observed parame-

ter estimates were used as distribution means and the asymptotic

covariance matrix of these estimates was used to represent their

population covariance matrix. While Monte Carlo confidence in-

tervals may be accurate with substantially fewer than 10,000

random draws (e.g., MacKinnon, Lockwood, & Williams, 2004,

suggested 1,000 draws), the computational intensity of this ap-

proach is small. Because of this, we chose 10,000 draws as an

arbitrarily large number that will provide a precise estimate of our

target parameters’ expected sampling distributions while costing

little in terms of computational power and time.

Given these population parameters and a set of distributional as-

sumptions (i.e., that all parameters were multivariate normally dis-

tributed), we drew observations from the joint distribution of param-

eter estimates and computed reliability estimates using each sample of

parameter estimates. We provide R syntax for computing Monte

Carlo confidence intervals for level-specific reliability estimates,

given a set of MCFA factor loadings and residual variances and their

corresponding asymptotic covariance matrix. Our syntax can be found

in Appendix C in the online supplemental materials.

Bayesian credible intervals. Bayesian credible intervals are the

range of parameter values that best describe a set of data with a fixed

level of probability, given a set of priors. Thus a 95% credible interval

for parameter � indicates the range of values that � has a 95%

probability of falling between, given observed data and priors. While

this definition differs from the frequentist concept of a confidence

interval, credible intervals with noninformative priors approximate

asymmetric nonparametric bootstrap confidence intervals (see DiCic-

cio & Efron, 1996, p. 211). Raykov (1998, e.g.) has shown that

nonparametric bootstrapping can produce unbiased estimates of a

reliability estimate’s sampling distribution, but resampling-based con-

fidence intervals are not appropriate for multilevel data (Goldstein,

2011), and bootstrapping generally is problematic in cases involving

computational difficulties where a Bayesian approach with Markov

chain Monte Carlo can work well (Efron, 2011). Because credible

intervals are computed as a function of posterior distributions rather

than from direct resampling, we expect close agreement between

Bayesian credible intervals (calculated using the ESTIMATOR �

BAYES option in Mplus) and the corresponding quantiles of a para-

meter’s sampling distribution.

Hypotheses

Given the above discussion, we can make hypotheses regarding

the performance of single- and multilevel reliability estimates

when data adhere to a multilevel structure. First, ignoring nested

data structures will render single-level reliability estimates diffi-

cult to interpret when reliability is not identical across levels.

Single-level reliability necessarily averages across levels of mea-

surement (see also Appendix A in the online supplemental mate-

rials), so we anticipate that single-level reliability estimates will

more closely reflect within-level reliability as the proportion of the
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scale’s variance shifts toward the within level (i.e., as ICC be-

comes smaller) and will more closely reflect between-cluster reli-

ability as the proportion of the scale’s variance shifts toward the

between level (i.e., as ICC becomes larger; Hypothesis 1A). When

reliability does not differ across levels, however, single-level re-

liability should simply represent the weighted average of two

identical values. We hypothesize that when the level-specific re-

liabilities do not differ across levels, single-level reliability esti-

mates will be unbiased with respect to actual level-specific reli-

ability at either level (Hypothesis 1B).

Second, we can make specific hypotheses about the relative

performance of individual reliability estimates, including bias,

model convergence rates, and confidence interval coverage. As for

performance of the individual measures, factor analysis can fail to

reproduce an underlying factor structure when item reliabilities are

low, especially when sample size is also low (e.g., MacCallum,

Widaman, Preacher, & Hong, 2001; MacCallum, Widaman,

Zhang, & Hong, 1999). We will calculate reliability estimates

using either a saturated model (�) or by fitting the data-generating

model (� and H) and anticipate generally low levels of bias for

two-level reliability estimates. In line with previous research (e.g.,

Muthén, Kaplan, & Hollis, 1987), we consider absolute percent

bias � 10 to represent an acceptable level of bias. We do, however,

anticipate increased bias when level-specific sample size or reli-

ability is low (Hypothesis 2).

Third, � differs from � only by relaxing the assumption of essential

tau equivalence. Estimates of � and � consequently are very similar

under moderate violations of essential tau equivalence,6 and despite

the widely acknowledged limitations of � (e.g., Sijtsma, 2009), we

anticipate that the two estimates will perform similarly (Hypothesis

3A). H differs from both � and � by representing the reliability of an

optimally weighted scale score rather than the reliability of a unit-

weighted composite. We therefore anticipate that H will be influenced

by different factors than � and � (Hypothesis 3B).

Fourth, we will consider convergence rates for each model. We

estimate our level-specific �s using a fully saturated two-level model

and anticipate few if any convergence problems (Hypothesis 4A).

Unlike �, � and H are calculated by specifying a single-factor model

at both levels, and model convergence is not guaranteed. We antici-

pate that the two-level CFA models needed to estimate two-level �

and H will converge in the overwhelming majority of trials when

sample size is sufficiently large at both levels. Common rules of

thumb suggest that SEM models generally require more than 100 or

150 observations (e.g., Brown, 2006), which we apply as a suffi-

ciently large sample size at the within level. Meuleman and Billiet

(2009) suggested that 40 between-cluster observations may be suffi-

cient for simple models but that 60 or even 100 groups may be

required to achieve sufficient power to detect small interconstruct

relations at the between-cluster level. We anticipate reduced conver-

gence rates when overall sample size is small, especially when the

between-cluster sample size is small (i.e., 50) or the overall sample

size is small due to having dyadic data and few (50 or 100) between-

cluster groups (Hypothesis 4B), or when item reliabilities are low at

either level (Hypothesis 4C).

Our final hypotheses concern the Monte Carlo confidence limits

and Bayesian credible intervals discussed above. Under the as-

sumption of multivariate normality (which our simulations also

assume), we anticipate that Monte Carlo confidence limits gener-

ated by our R code (see Appendix C in the online supplemental

materials) will closely correspond to empirically derived confi-

dence limits based on the sampling distribution of level-specific

reliability estimates. In other words, we anticipate that 95% con-

fidence limits generated using our calculator should provide unbi-

ased estimates of the 2.5th and 97.5th percentiles of the reliability

estimates’ actual sampling distributions (Hypothesis 5). Further,

we also anticipate that 95% credible intervals estimated using

Bayesian analysis will similarly provide unbiased estimates of the

actual 2.5th and 97.5th percentiles of the reliability estimates’

sampling distributions (Hypothesis 6).

Simulation

Our simulation considers calculations of single-level and mul-

tilevel �, �, and H under conditions when data originate from a

known multilevel structure. We examine reliability for a conge-

neric six-item scale with conditions varying the number of Level 1

units, the number of Level 2 units, the average item ICC, and the

level(s) of analysis at which the indicators show high reliability

(henceforth, the reliability condition; see Table 2). We generated

1,000 replications for each condition and analyzed our data using

robust maximum likelihood estimation in Mplus. We chose 1,000

replications as an arbitrary balance between generating a large

enough number of replications to obtain appropriate precision of

our estimates and the time required to analyze our models. We also

chose 1,000 replications per cell because this number has been

used in previous simulation studies (e.g., Forero, Maydeu-

Olivares, & Gallardo-Pujol, 2009).

For each condition, we separately calculated the percent bias7 of

single-level �, �, and H relative to the actual level of each at the

within and between levels; percent bias for the estimates of within-

and between-cluster �, �, and H; and convergence rates for

our two-level models. We then conducted analyses of variance

(ANOVAs) to determine which conditions most strongly influenced

each estimate and convergence rate. We implemented a tear-down

approach to decide which predictors were retained in the final models,

retaining predictors and interactions only if they explained at least 5%

of the dependent variable’s variance (i.e., removing the predictor or

interaction caused a decrease in �2 greater than or equal to .05). We

chose a 5% change in �2 as an arbitrary value that balances the need

to detect small but important interactions with our desire to avoid

interpreting statistically significant interactions that would neverthe-

less have little bearing on applied applications of the above reliability

estimates. In line with previous research (e.g., Muthén et al., 1987),

we also consider absolute percent bias � 10% to represent an accept-

able level of bias.

To test our expectation that Monte Carlo confidence intervals will

closely reflect the distribution of reliability estimates across repeated

sampling, we also obtained 95% confidence limits for several condi-

tions using the R code provided in Appendix C in the online supple-

6 For example, a construct with six indicators having �1 � �2 � .80,
�3 � �4 � .60, and �5 � �6 � .40 obviously violates the assumption of
essential tau equivalence. Despite this, the difference between � and � for
this construct is trivial (� � .77, � � .78).

7 Because reliability estimates are not anticipated to be normally distrib-
uted, the median parameter estimate in each condition better represents the
statistic’s central tendency than the mean parameter estimate. Bias in each
condition was therefore computed as ([median estimate � parameter]/
parameter) � 100.
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mental materials. We then compared these limits to the empirical

distribution of reliability estimates obtained from our simulation.

These conditions involved either a low or high ICC (i.e., .05 vs. .50,

respectively), varied the total number of observations (either 200

clusters with 30 observations each or 100 clusters with two observa-

tions each), and examined conditions where reliability was high at

both levels, neither level, only within, or only between. We selected

these specific cases to present readers with a general sense of how

Monte Carlo confidence intervals behave in relatively extreme cases

(i.e., high vs. low ICCs, large vs. small samples) without providing an

unwieldy amount of information. We then test Hypothesis 6, that

Bayesian credible intervals will similarly produce unbiased estimates

of the reliability estimates’ sampling distributions, by fitting Bayesian

models in Mplus to data generated to adhere exactly to the population

parameters.

Table 2

Simulation Conditions

Observations per cluster: 2, 15, 30
Number of clusters: 50, 100, 200
Indicator intraclass correlation: .05, .25, .50, .75
Level(s) of analysis with high reliability (reliability condition):

Within only, between only, both levels, neither level
Level(s) with high reliability: �1 � �2 � .80; �3 � �4 � .70; �5 �

�6 � .60; � � .852, � � .854, H � .868
Level(s) without high reliability: All �j � .30; � � � � H � .372

Figure 1. Bias of single-level � with respect to actual reliability within

and between. ICC � intraclass correlation.

Figure 2. Bias of single-level � when the scale was not reliable at either

level. ICC � intraclass correlation.
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Results

We present results from our simulation below. All results con-

sider data only from models that converged and had acceptable fit

(i.e., root-mean-square error of approximation [RMSEA] � .08,

comparative fit index [CFI] 
 .90, and Tucker-Lewis index

[TLI] 
 .90); these results did not meaningfully differ from results

that also included models that converged but did not display

acceptable fit. As discussed below, convergence rates were gen-

erally high but suffered in conditions with very weak data (e.g.,

low reliability at the between level, small cluster sizes).

Single-Level Results

All three single-level reliability estimates were significantly

predicted by a two-way interaction between ICC and the reli-

ability condition, �: F(15, 143595) � 5.30 � 107, p � .001,

�2 � .999; �: F(15, 109649) � 1.41 � 107, p � .001, �2 �

.999; H: F(15, 109649) � 170522, p � .001, �2 � .959. Results

for all three reliability estimates supported Hypothesis 1A, with

single-level estimates generally biased as a function of ICC

when the scale was reliable at only one of the two levels. With

Figure 3. Bias of single-level H when the scale was not reliable at either level. ICC � intraclass

correlation.
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respect to actual reliability at the within level, single-level

estimates were negatively biased when the average item ICC

increased above .25 and the construct was reliable at only the

within level. When the construct was reliable at only the be-

tween level, single-level estimates were always positively bi-

ased relative to the actual within-level reliability.

We found similar, but inverse, relations when reliability

estimates were considered in respect to actual reliability at the

between level. Single-level estimates were positively biased

when the construct was reliable at only the within level and

negatively biased when the construct was reliable at only the

between level, with the bias becoming less severe as ICC

increased. Figure 1 graphically displays the results for single-

level � and is representative of the results for both � and H.

Our results also generally supported Hypothesis 1B, which

predicted that single-level reliability estimates would consistently

estimate reliability at both levels when the actual reliability at both

levels was in fact the same. Estimates of � never displayed

Figure 4. Bias of between-cluster �. ICC � intraclass correlation.

81MULTILEVEL RELIABILITY



absolute percent bias greater than 10% when the scale was equally

reliable at both levels, nor did either � or H when the scale

displayed high reliability at both levels. When reliability was low

at both levels, both � and H displayed a strong upward bias in

many instances, however. Follow-up ANOVAs found that when

the scale was not reliable at either level, the bias in � was predicted

by a three-way interaction of ICC, the number of clusters, and the

number of observations per cluster. This three-way interaction

accounted for all possible between-cell differences, and our F

statistic was undefined with an �2 of 1.00. Estimates of � dis-

played substantial positive bias only when ICC was .50 or higher

and, as Figure 2 shows, increased as ICC increased, the number of

observations per cluster increased, and the number of clusters

decreased.

Similar ANOVAs found that when the scale was not reliable

at either level, bias in H was predicted by a main effect of

ICC as well as a two-way interaction between the number of

clusters and the number of observations per cluster, F(11,

18075) � 63,669.70, p � .001, �2 � .975. Figure 3 shows that

H became increasingly biased as ICC increased and as both the

number of clusters and the number of observations per cluster

decreased.

Two-Level Alpha

Within-level � never displayed percent bias greater than 10%

and was considered to be acceptable in all conditions. Between-

cluster � was biased in several conditions, however (see Figure

4). Bias in between-level � was predicted by a three-way

interaction of ICC, the reliability condition, and the number of

observations per cluster, F(47, 143431) � 63,954.00, p � .001,

�2 � .954. In general, between-cluster � was negatively biased

for small clusters when ICC was low and reliability at the

within level was low. Between-cluster � was also positively

biased for small clusters when ICC was low and when reliabil-

ity at the within level only was high. Combined, these results

suggest that between-cluster � is pulled toward the within-level

reliability when the between-cluster covariance matrix is in-

formed by a limited number of observations per cluster and

there is low between-cluster variability, partially supporting our

Hypothesis 2.

Two-Level Composite Reliability

Bias in within-level � was predicted by a three-way interaction of

the reliability condition, the number of clusters, and the number of

observations per cluster, F(35, 125155) � 112,933.00, p � .001,

�2 � .969. Follow-up analyses revealed that within-level � displayed

unacceptable bias only in conditions with two observations per cluster

and low reliability at the within level. As Figure 5 shows, bias

increased under these conditions as the number of clusters decreased.

This finding again supports Hypothesis 2: Within-level � appeared to

be positively biased when overall sample size was low (indicated here

by a decreasing number of dyads) and when reliability at the within

level was also low.

Bias in between-cluster � was predicted by a three-way inter-

action of ICC, the reliability condition, and the number of obser-

vations per cluster, F(47, 125143) � 68,550.50, p � .001, �2 �

.963. As Figure 6 shows, between-cluster � was positively biased

when the between-cluster reliability and the item ICCs were both

low, especially when the number of observations per cluster was

small. As with within-level �, this finding supports our Hypothesis

2: Between-cluster � was positively biased when there were few

observations per cluster (i.e., small samples), when between-

cluster reliability was low, and when the Level 2 variances were

small (i.e., low ICCs).

Two-Level Maximal Reliability

Bias in within-level H was predicted by the three-way inter-

action of the reliability condition, the number of clusters, and

the number of observations per cluster, F(35, 125155) �

356,143, p � .001, �2 � .990. As with within-level �, results

indicated that within-level H was positively biased for dyadic

data with a low overall sample size (i.e., dyads) and when the

within-level reliability was low (see Figure 7). These results

again support our Hypothesis 2.

Bias in between-cluster H was significantly predicted by

two-way interactions between the reliability condition and both

ICC and the number of clusters, F(23, 125167) � 37,842.7, p �

.001, �2 � .874. As Figure 8 shows, between-cluster H was

extremely positively biased when the between-cluster reliability

was low, especially when item ICCs were also low and there

were few observations per cluster. This extreme positive bias

when between-cluster H is actually low in the population sug-

gests that the sample estimate of H is not a consistent estimator

of its population value.

Relative Performance

Our Hypothesis 3 predicted that � and � would perform

similarly (Hypothesis 3A) but that different factors would pre-

Figure 5. Bias of within-level �.
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dict the performance of H (Hypothesis 3B). Our results gener-

ally support Hypothesis 3A, with within-level � and � both

displaying low levels of bias. The exception was that within-

level � was biased when the data were grouped into very small

clusters (i.e., dyads). The same three-way interaction predicted

between-cluster � and �. The uniformly positive bias for

between-cluster � when ICC, cluster size, and between-cluster

reliability were small was not as immediately apparent for

between-cluster �, however. Instead, between-cluster � also

displayed a tendency to display negative bias when ICC, cluster

size, and within-level reliability all were low.

Our Hypothesis 3B, that the performance of H would be

influenced by different factors than the other two reliability

estimates considered, received less consistent support. Within-

level H appeared to be biased by the same factors as within-

level �, although between-cluster H was biased in almost every

condition for which actual reliability at the between level was

low.

Figure 6. Bias of between-cluster �. ICC � intraclass correlation.
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Convergence Rates

Models for computing single- and multilevel � did not pres-

ent convergence problems, supporting Hypothesis 4A. At least

90% of all models converged in every condition for single-level

� and for all conditions computing two-level � except when

ICC � .05, there were two observations per cluster, and the

scale had low reliability at both levels (83.4% convergence) or

was reliable at only the between level (89.2% convergence).

Our two-level CFA models displayed a wider range of conver-

gence rates, however.8

Convergence rates for the two-level CFA models were pre-

dicted by all possible two-way interactions between the reli-

ability condition, the number of clusters, and the number of

observations per cluster, F(26, 125164) � 60,560.00, p � .001,

�2 � .926. As Figure 9 shows, convergence was especially low

when there were few observations per cluster, fewer clusters,

and reliability at the within level was low. These results par-

tially support Hypotheses 4B and 4C, indicating that conver-

gence was negatively impacted by sample size at both levels

and by population reliabilities.

Monte Carlo Confidence Intervals

Monte Carlo and empirical 95% confidence intervals are pre-

sented for both � and � in Tables 3 and 4. Due to the large amount

of information presented in each table, these tables present results

for only two sample sizes that represent large and small samples,

respectively. Due to the especially poor performance of between-

cluster H and the resultant fact that we cannot endorse its use in

applied multilevel analyses, confidence intervals for H are not

provided.

Results show close concordance between the empirical and

Monte Carlo confidence limits when reliability was high. The

exception from this trend was that our calculator underestimated

the lower confidence limit and overestimated the upper confidence

limit for reliability at the between level when ICCs were low and

within-level reliability was also low. These results conditionally

support our Hypothesis 5, suggesting that confidence limits from

our Monte Carlo calculator closely matched the empirical confi-

dence limits of our level-specific reliability estimates as long as

level-specific reliability was not low.

When level-specific reliability was low, however, lower con-

fidence limits tended to be negatively biased, especially when

ICCs were low. These results therefore suggest that our calcu-

lator performs best when the lower confidence limit is reason-

ably high (e.g., greater than .50) but may underestimate lower

confidence limits when the lower bound is small, especially

when sample sizes are also small. As we discuss below, the

issue of small sample sizes may be specific to studies charac-

terized by a small number of cases (e.g., five or fewer obser-

vations) per cluster.

Credible Intervals

Tables 5 and 6 present 95% Bayesian credible intervals and

matching empirical quantiles for the same conditions described

when testing the Monte Carlo confidence limits above. As the

tables show, the 95% credible intervals were biased in many of

the same conditions as Monte Carlo confidence limits, but the

amount of bias tended to be far less severe. The upper limit of

the estimated credible interval provided an unbiased estimate of

the 97.5th quantile of the observed sampling distribution for

both � and � in all conditions, with only one exception. Lower

credible limits also tended to provide unbiased estimates of the

2.5th empirical percentiles, with all instances of bias occurring

when the empirical 2.5th percentile was low (i.e., less than .30).

Whereas the lower limits were not systematically biased in any

direction, these results nevertheless suggest difficulty estimat-

ing small lower bounds. As such, we can strongly recommend

Bayesian credible intervals with the caveat that lower limits

may be misestimated when the lower end of the actual sampling

distribution is very low (i.e., less than .30), thus supporting our

Hypothesis 6.

Applied Example

We next present an empirical example involving multilevel

reliability estimation using data from the 2007 Trends in Inter-

national Mathematics and Science Study (TIMSS; Williams et

al., 2009). Analyses included 7,475 children nested in 515

8 Convergence rates specify the number of models that both (a) con-
verged and (b) displayed minimally acceptable model fit (i.e., RMSEA �

.08, CFI 
 .90, and TLI 
 .90). Of the models that converged, less than
10% displayed poor model fit except for the single-level CFA model.
Approximately 24% of these models displayed poor fit, likely because the
data generating model and the fitted model were markedly different. We
removed cases with poor model fit under the assumption that applied users
would reject these models. As such, our discussion of bias speaks directly
to those instances where an analyst might reasonably attempt to estimate a
construct’s reliability.

Figure 7. Bias of within-level H.
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schools with complete data9 for four items representing fourth

graders’ positive attitudes toward math (TIMSS variables:

AS4MAMOR, AS4MAENJ, AS4MALIK, and AS4MABOR

[reverse-coded]). These items were selected because they show

strong interitem correlations (all rs 
 .50) and displayed suf-

ficient variability at the child and classroom levels to justify

multilevel modeling (i.e., all ICCs 
 .05). Mplus code for this

example is presented in Appendix C in the online supplemental

materials.

Single-level � was estimated by specifying a saturated single-

level covariance structure with the variance of a unit-weighted

composite and � both included as model parameters. In the Mplus

syntax, the scale score’s composite variance was specified as

9 Children with missing data on any of these four variables were omitted
from this example.

Figure 8. Bias of between-cluster H. ICC � intraclass correlation.
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COMP_V � V1 � V2 � V3 � V4 � 2�(C1 � C2 � C3 � C4

� C5 � C6),

where V1–V4 represent each indicator’s variance and C1–C6

represent the six item covariances. The item covariances and

composite score variance were then used to compute �. The Mplus

syntax for � is

ALPHA � (((C1 � C2 � C3 � C4 � C5 � C6)/6)�16)/

COMP_V,

Figure 9. Convergence rates for the two-level CFA models. A: The interaction between the number of clusters

and the reliability condition. B: The interaction between cluster size and the reliability condition. C: The

interaction between the number of clusters and cluster size. CFA � confirmatory factor analysis.
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where 16 in the numerator represents the number of items (four)
squared. The model resulted in � � .868, suggesting good overall
reliability.

A similar two-level model was then fit to the same data, with

additional parameters separately estimating the variance of a unit-

weighted composite and � for both the within and between levels.

Results displayed acceptable reliability at each level and indicated

that the scale was slightly more reliable between groups (� � .974,

95% CI [.960, .984]) than within groups (� � .856, 95% CI [.848,

.863]).

We next fit a single-level unidimensional CFA, with both � and

H estimated as model parameters using model-estimated factor

loadings and residual variances (see Equations 3, 5, and 6). Mplus

syntax for both reliability estimates is

NUM � (L1 � L2 � L3 � L4)��2,

DENOM � ((L1 � L2 � L3 � L4)��2) � (R1 � R2 � R3 �

R4),

OMEGA � NUM/DENOM,

H � 1/(1 � (1/((L1��2/R1) � (L2��2/R2) � (L3��2/R3) �

(L4��2/R4)))),

Table 3

Empirical Versus Monte Carlo Confidence Intervals—200 Clusters, 30 Observations per Cluster

Estimate

High ICC Low ICC

Monte Carlo Empirical % biasa Monte Carlo Empirical % biasa

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

High reliability within only
Within

� 0.8455 0.8569 0.8451 0.8574 0.04 �0.06 0.8453 0.8573 0.8451 0.8574 0.02 �0.02
� 0.8479 0.8592 0.8474 0.8595 0.06 �0.04 0.8478 0.8595 0.8475 0.8595 0.03 �0.01

Between
� 0.2150 0.4952 0.2019 0.4979 6.47 �0.53 0.0165 0.5944 �0.1611 0.6104 	110.24 �2.63
� 0.2292 0.5045 0.2271 0.5075 0.91 �0.59 0.0740 0.6130 0.0221 0.6151 235.45 �0.34

High reliability between only
Within

� 0.3473 0.3955 0.3463 0.3971 0.26 �0.40 0.3486 0.3954 0.3463 0.3971 0.66 �0.42
� 0.3477 0.3960 0.3470 0.3974 0.20 �0.36 0.3490 0.3957 0.3470 0.3974 0.58 �0.42

Between
� 0.8131 0.8799 0.8147 0.8809 �0.20 �0.11 0.7942 0.8861 0.7957 0.8911 �0.19 �0.57
� 0.8173 0.8824 0.8183 0.8837 �0.13 �0.14 0.8020 0.8899 0.8017 0.8946 0.04 �0.53

Note. ICC � intraclass correlation.
a Percent bias greater than 10% in bold italics.

Table 4

Empirical Versus Monte Carlo Confidence Intervals—100 Clusters, Two Observations per Cluster

Estimate

High ICC Low ICC

Monte Carlo Empirical % biasa Monte Carlo Empirical % biasa

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

High reliability within only
Within

� 0.7988 0.8831 0.8076 0.8832 �1.09 �0.02 0.7964 0.8875 0.8101 0.8751 �1.69 1.41
� 0.8037 0.8869 0.8161 0.8862 �1.52 0.07 0.8023 0.8904 0.8170 0.8781 �1.80 1.40

Between
� �0.0957 0.6468 �0.4689 0.6085 	79.60 6.29 �11.151 0.9452 0.1109 0.9052 	101.52 4.43
� 0.0195 0.6777 0.0388 0.6137 	49.68 10.42 0.0205 0.9998 0.2906 0.9415 	92.96 6.20

High reliability between only
Within

� 0.1375 0.5446 0.1805 0.5070 	23.82 7.42 0.1425 0.5423 0.2357 0.5062 	39.53 7.13
� 0.1635 0.5579 0.2710 0.5201 	39.66 7.27 0.1671 0.5564 0.2972 0.5032 	43.76 10.57

Between
� 0.7805 0.8948 0.7851 0.8974 �0.58 �0.29 �1.6090 1.1091 �0.2774 0.8419 479.97 31.74
� 0.7902 0.9004 0.8028 0.8976 �1.57 0.31 0.0168 1.5200 0.4635 0.9203 	96.37 65.16

Note. ICC � intraclass correlation.
a Percent bias greater than 10% in bold italics.

87MULTILEVEL RELIABILITY



where L1–L4 represent the four unstandardized factor loadings

and R1–R4 represent the estimated residual variances. Results

roughly matched those for �, with both � and H suggesting

slightly higher reliability than � (� � .868, H � .892).

The same model was then fit as a two-level CFA with a

congeneric factor structure specified at each level. Initial estima-

tion produced a negative residual variance for item AS4MAENJ at

the between level, and all residual variances were constrained to

remain greater than zero when obtaining final two-level reliability

estimates. Results for the two-level model match those for two-

level �, with both � and H showing greater reliability between

groups (� � .977, 95% CI [.964, .987]; H � .999, 95% CI not

provided) than within groups (� � .857, 95% CI [.849, .863]; H �

.882, 95% CI not provided). These very high estimates suggest that

the indicators do not substantially differ at the between level, such

that the interitem between-cluster correlations are near unity. All

items strongly reflect the between-cluster factor, although this

result says little about the between-cluster factor’s validity. In this

instance, any single indicator modeled at the between level would

be as informative as a between-cluster latent construct. In such a

circumstance, a researcher could justifiably simplify the between-

cluster model by considering only a single indicator.

The between level estimates further highlight the importance

of the single strongest factor loading when calculating H, which

in this example had a standardized loading very close to 1.00.

In other words, this example underscores the point that esti-

Table 5

Empirical Versus Bayesian Credible Intervals—200 Clusters, 30 Observations per Cluster

Estimate

High ICC Low ICC

Credible interval Empirical % biasa Credible interval Empirical % biasa

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

High reliability within only
Within

� 0.8440 0.8570 0.8451 0.8574 �0.13 �0.05 0.8460 0.8560 0.8451 0.8574 0.11 �0.16
� 0.8480 0.8610 0.8474 0.8595 0.07 0.18 0.8480 0.8600 0.8475 0.8595 0.06 0.05

Between
� 0.2330 0.5170 0.2019 0.4979 15.38 3.84 �0.2630 0.6180 �0.1611 0.6104 63.24 1.24
� 0.1970 0.4950 0.2271 0.5075 	13.25 �2.46 0.1250 0.5550 0.0221 0.6151 466.79 �9.78

High reliability between only
Within

� 0.3360 0.3950 0.3463 0.3971 �2.99 �0.53 0.3430 0.3980 0.3463 0.3971 �0.97 0.23
� 0.3440 0.3940 0.3470 0.3974 �0.86 �0.85 0.3460 0.3970 0.3470 0.3974 �0.29 �0.10

Between
� 0.8120 0.8770 0.8147 0.8809 �0.34 �0.45 0.7750 0.8880 0.7957 0.8911 �2.60 �0.35
� 0.8150 0.8860 0.8183 0.8837 �0.41 0.26 0.7940 0.8920 0.8017 0.8946 �0.96 �0.29

Note. ICC � intraclass correlation.
a Percent bias greater than 10% in bold italics.

Table 6

Empirical Versus Bayesian Credible Intervals—100 Clusters, Two Observations per Cluster

Estimate

High ICC Low ICC

Credible interval Empirical % biasa Credible interval Empirical % biasa

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

High reliability within only
Within

� 0.7890 0.8860 0.8076 0.8832 �2.31 0.31 0.8000 0.8810 0.8101 0.8751 �1.24 0.67
� 0.8070 0.8970 0.8161 0.8862 �1.12 1.22 0.8160 0.8870 0.8170 0.8781 �0.12 1.02

Between
� �0.1240 0.6620 �0.4689 0.6085 	73.56 8.79 0.5550 0.8810 0.1109 0.9052 400.31 �2.67
� 0.0000 0.5800 0.0388 0.6137 	100.00 �5.49 0.0050 0.9050 0.2906 0.9415 	98.28 �3.87

High reliability between only
Within

� 0.1830 0.5270 0.1805 0.5070 1.38 3.95 0.2280 0.5370 0.2357 0.5062 �3.26 6.08
� 0.1490 0.5410 0.2710 0.5201 	45.03 4.02 0.2310 0.5420 0.2972 0.5032 	22.27 7.70

Between
� 0.7740 0.9090 0.7851 0.8974 �1.41 1.29 �0.4590 0.7770 �0.2774 0.8419 65.45 �7.71
� 0.7830 0.9080 0.8028 0.8976 �2.47 1.16 0.0010 0.7990 0.4635 0.9203 	99.78 	13.18

Note. ICC � intraclass correlation.
a Percent bias greater than 10% in bold italics.
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mates of H will be high as long as there is at least one strong

factor loading, regardless of whether or not H is high or low in

the population.

Discussion

The consequences of ignoring a data set’s hierarchical struc-

ture have been thoroughly explored in the hypothesis-testing

literature, but the need to account for clustering when estimat-

ing reliability has been largely ignored. In this article, we have

extended three common reliability estimates to a multilevel

framework using MCFA, advocating the estimation of level-

specific reliability when dealing with multilevel data. Our sim-

ulations show that within-level reliability estimates are gener-

ally unbiased although positive bias can arise for � when

within-level reliability is low and there are relatively few, small

clusters. Between-cluster reliability estimates were also unbi-

ased under most data conditions, but � displayed positive bias

when item ICCs were low, especially when the between-cluster

reliability was also low and when there were few observations

per cluster. Between-cluster � behaved similarly but displayed

negative bias when within-level reliability was low for dyadic

data. These results generally support our argument for comput-

ing level-specific reliability when researchers are faced with

multilevel data. We can draw two additional conclusions from

our results. First, between-cluster maximal reliability was bi-

ased in nearly every condition characterized by low reliability

at the between level. Maximal reliability is bounded by the

reliability of the strongest indicator and may be unduly biased

when even a single factor loading is overestimated. Given the

propensity for H to overestimate its population value at the

between level, we cannot recommend its use in empirical mul-

tilevel research.

A second theme in our results was the tendency to see bias at

the between level, as well as convergence difficulties, for

conditions with few observations per cluster, low ICCs, and low

reliability at the between level. Although this result can be

partially supported by the simple fact that there was limited

information at the between level under these conditions, it is

also possible that these results represent the larger problem of

dealing with negative ICCs in the multilevel modeling frame-

work. Multilevel models, including MCFA and MSEM, neces-

sarily constrain ICCs to positive values, as evidenced by the

fact that ICC is often taken as the proportion of between-cluster

variance in an item, relative to its total variance in a sample.

ICC can alternatively (and more accurately) be discussed as the

expected correlation between pairs of Level 1 units sampled

from a given cluster, however, making it possible to have

negative ICCs (termed negative nonindependence; Kenny,

Mannetti, Pierro, Livi, & Kashy, 2002). Random samples drawn

from populations in which the between-cluster covariance ma-

trix is nearly nonpositive definite, as would occur when few

observations per cluster represent between-cluster data with

low ICCs and low reliabilities, would be especially prone to

containing negative expected covariances between same-cluster

pairs. The result would be a negative ICC, leading to either

model misfit or nonconvergence. Further investigation is

needed, however, to confirm whether this possibility indeed

induced bias or model nonconvergence in our simulation.

Suggestions for Researchers

The above discussion indicates that level-specific reliability

estimates (i.e., � and �) are generally preferable to single-level

estimates whenever ICCs are nontrivial (i.e., 	.05). Within-

level estimates may be untrustworthy when clusters are small,

however, especially in instances of dyadic data. Under dyadic data

conditions, our results suggest that within-level � is preferable to

within-level �, despite the fact that � is an inconsistent estimator

of reliability in the population. Due to the inconsistency of �, our

results suggest that within-level � is preferred in all other data

conditions.

The issue of small clusters is especially relevant to researchers

who examine repeated-measures data using a multilevel modeling

framework and when there are very few observations per individ-

ual (i.e., few Level 1 units).10 We can anticipate from our simu-

lation that within-level reliability estimates should be relatively

unbiased under such conditions, but Level 2 reliability estimates

cannot be trusted when ICCs are low. Despite this obvious limi-

tation, we recommend a multilevel approach to estimating reliabil-

ity over alternative methods when dealing with a small number of

Level 1 units. Two common alternatives would be to either (a)

report reliability for each wave separately while ignoring the

nested structure of the data set or (b) take a fixed-effects approach

that only corrects standard errors (e.g., using the Huber-White

correction). These alternatives necessarily conflate reliability

across levels and will be biased to the extent that scale reliability

differs across levels and the item ICCs are greater than zero.

Similarly, between-cluster � is preferable to between-cluster �

under most data conditions, although we suggest between-cluster �

for data with small ICCs and smaller clusters (i.e., 15 or fewer

observations per cluster). Due to model convergence rates,

between-cluster � may also serve as a generally acceptable fall-

back for instances in which a two-level CFA fails to converge.

Last, our Monte Carlo confidence limit calculator produced

unbiased limits when reliability was high but biased limits when

reliability was low. Until more work is done to determine why our

confidence intervals tended to be biased under certain conditions,

we can recommend our calculator for computing confidence in-

tervals only when estimated reliability is greater than .60, as this

value fell roughly at (or above) the upper limit of the empirical

95% confidence intervals for conditions in which our calculator

performed poorly. Bayesian credible limits provided less-biased

estimates, however, and we can give a much stronger recommen-

dation for their use in a broad range of data conditions. As

mentioned in our results, the one caveat is that lower (but not

upper) credible interval limits can misrepresent the actual lower

quantiles of empirical sampling distributions when the empirical

lower quantiles are smaller than .30. Furthermore, we estimated

credible intervals using only noninformative priors, so our results

do not necessarily generalize to cases where informative priors

would be more appropriate.

10 But see Huang and Weng (2012) for a discussion of level-specific
reliability in the context of many repeated measures as occurs in ecological
momentary assessment data.
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Limitations and future directions. Our simulation results

provide initial guidance to researchers who wish to estimate mul-

tilevel reliability, but additional work on the topic could be useful.

We limited our discussion to single-factor MCFA models with

fixed (i.e., nonrandom) factor loadings at Level 1. We therefore do

not account for noncongeneric scales, models for which the factor

structure varies across levels, nonnormal (e.g., binary) data, the

analysis of tetrachoric or polychoric correlations, or models where

Level 1 reliability is allowed to vary across Level 2 units. A great

deal of research has extended methods for single-level reliability

estimation, and future work should similarly examine such exten-

sions to multilevel reliability estimation. Furthermore, our simu-

lation data were both generated and analyzed using a single soft-

ware package (Mplus), and it is difficult to determine the impact of

using a single program on our results. Future research should

confirm the previous results using separate software packages.

Despite these limitations, our article clearly underscores the ben-

efits of multilevel reliability estimation and highlights conditions

for which multilevel reliability estimates may be biased.

References

Bentler, P. M. (2007). Covariance structure models for maximal reliability

of unit-weighted composites. In S. Lee (Ed.), Handbook of computing

and statistics with applications: Vol. 1. Handbook of latent variable and

related models (pp. 1–19). New York, NY: Elsevier.

Brown, T. A. (2006). Confirmatory factor analysis for applied research.

New York, NY: Guilford Press.

Chan, D. (1998). Functional relations among constructs in the same content

domain at different levels: A typology of composition models. Journal

of Applied Psychology, 83, 234–246. doi:10.1037/0021-9010.83.2.234

Conger, A. J. (1980). Maximally reliable composites for unidimensional

measures. Educational and Psychological Measurement, 40, 367–375.

doi:10.1177/001316448004000213

Connor, C. M., Ponitz, C. C., Phillips, B. M., Travis, Q. M., Glasney, S.,

& Morrison, F. J. (2010). First graders’ literacy and self-regulation

gains: The effect of individualizing student instruction. Journal of

School Psychology, 48, 433–455. doi:10.1016/j.jsp.2010.06.003

Cranford, J. A., Shrout, P. E., Iida, M., Rafaeli, E., Yip, T., & Bolger, N.

(2006). A procedure for evaluating sensitivity to within-person change:

Can mood measures in diary studies detect change reliably? Personality

and Social Psychology Bulletin, 32, 917–929. doi:10.1177/

0146167206287721

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests.

Psychometrika, 16, 297–334. doi:10.1007/BF02310555

de Gruijter, D. N. M., & van der Kamp, L. J. Th. (2008). Statistical test

theory for the behavioral sciences. New York, NY: Chapman & Hall.

DiCiccio, T. J., & Efron, B. (1996). Bootstrap confidence intervals. Sta-

tistical Science, 11, 189–228. doi:10.1214/ss/1032280214

Efron, B. (2011). The bootstrap and Markov chain Monte Carlo. Journal of

Biopharmaceutical Statistics, 21, 1052–1062. doi:10.1080/10543406

.2011.607736

Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap. New

York, NY: Chapman & Hall.

Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2011). Applied longitu-

dinal analysis (2nd ed.). New York: Wiley.

Forero, C. G., Maydeu-Olivares, A., & Gallardo-Pujol, D. (2009). Factor

analysis with ordinal indicators: A Monte Carlo study comparing DWLS

and ULS estimation. Structural Equation Modeling, 16, 625–641. doi:

10.1080/10705510903203573

Goldstein, H. (2011). Bootstrapping in multilevel models. In J. J. Hox &

J. K. Robers (Eds.), Handbook of advanced multilevel analysis (pp.

163–172). New York, NY: Routledge.

Goldstein, H., & McDonald, R. P. (1988). A general model for the analysis

of multilevel data. Psychometrika, 53, 455– 467. doi:10.1007/

BF02294400

Gottfredson, N. A., Panter, A. T., Daye, C. E., Allen, W. F., & Wightman,

L. F. (2009). The effects of educational diversity on a national sample of

law students: Fitting multilevel latent variable models in data with

categorical indicators. Multivariate Behavioral Research, 44, 305–331.

doi:10.1080/00273170902949719

Guttman, L. (1945). A basis for analyzing test-retest reliability. Psy-

chometrika, 10, 255–282. doi:10.1007/BF02288892

Halaby, C. N. (2004). Panel models in sociological research: Theory intro

practice. Annual Review of Sociology, 30, 507–544. doi:10.1146/

annurev.soc.30.012703.110629

Hancock, G. R., & Mueller, R. O. (2001). Rethinking construct reliability

within latent variable systems. In R. Cudeck, S. du Toit, & D. Sörbom

(Eds.), Structural equation modeling: Present and future—A festschrift

in honor of Karl Jöreskog (pp. 195–216). Lincolnwood, IL: Scientific

Software International.

Hox, J., van de Schoot, R., & Matthijsse, S. (2012). How few countries will

do? Comparative survey analysis from a Bayesian perspective. Survey

Research Methods, 6, 87–93.

Huang, P.-H., & Weng, L.-J. (2012). Estimating the reliability of aggre-

gated and within-person centered scores in ecological momentary as-

sessment. Multivariate Behavioral Research, 47, 421–441. doi:10.1080/

00273171.2012.673924

Kenny, D. A., Mannetti, L., Pierro, A., Livi, S., & Kashy, D. A. (2002).

The statistical analysis of data from small groups. Journal of Personality

and Social Psychology, 83, 126–137.

Kistner, E. O., & Muller, K. E. (2004). Exact distributions of intraclass

correlation and Cronbach’s alpha with Gaussian data and general cova-

riance. Psychometrika, 69, 459–474. doi:10.1007/BF02295646

Kozlowski, S. W. J., & Klein, K. J. (2000). A multilevel approach to theory

and research in organizations: Contextual, temporal, and emergent pro-

cesses. In K. J. Klein & S. W. J. Kozlowski (Eds.), Multilevel theory,

research, and methods in organizations (pp. 3–90). San Francisco, CA:

Jossey-Bass.

Kuder, G. F., & Richardson, M. W. (1937). The theory of estimation of test

reliability. Psychometrika, 2, 151–160. doi:10.1007/BF02288391

Li, H. (1997). A unifying expression for the maximal reliability of a linear

composite. Psychometrika, 62, 245–249. doi:10.1007/BF02295278

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test

scores. Reading, MA: Addison-Wesley.

MacCallum, R. C., Widaman, K. F., Preacher, K., & Hong, S. (2001). Sample

size in factor analysis: The role of model error. Multivariate Behavioral

Research, 36, 611–637. doi:10.1207/S15327906MBR3604_06

MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample

size in factor analysis. Psychological Methods, 4, 84–99. doi:10.1037/

1082-989X.4.1.84

MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence

limits for the indirect effect: Distribution of the product and resampling

methods. Multivariate Behavioral Research, 39, 99–128. doi:10.1207/

s15327906mbr3901_4

McDonald, R. P. (1970). The theoretical foundations of principal factor

analysis, canonical factor analysis and alpha factor analysis. British

Journal of Mathematical and Statistical Psychology, 23, 1–21. doi:

10.1111/j.2044-8317.1970.tb00432.x

McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ:

Erlbaum.

Meuleman, B., & Billiet, J. (2009). A Monte Carlo sample size study: How

many countries are needed for accurate multilevel SEM? Survey Re-

search Methods, 3, 45–58.

Muth́en, B. O. (1990). Mean and covariance structure analysis of hierar-

chical data (UCLA Statistics Series No. 62). Retrieved from http://gseis

.ucla.edu/faculty/muthen/articles/Article_032.pdf

90 GELDHOF, PREACHER, AND ZYPHUR

http://dx.doi.org/10.1037/0021-9010.83.2.234
http://dx.doi.org/10.1177/001316448004000213
http://dx.doi.org/10.1016/j.jsp.2010.06.003
http://dx.doi.org/10.1177/0146167206287721
http://dx.doi.org/10.1177/0146167206287721
http://dx.doi.org/10.1007/BF02310555
http://dx.doi.org/10.1214/ss/1032280214
http://dx.doi.org/10.1080/10543406.2011.607736
http://dx.doi.org/10.1080/10543406.2011.607736
http://dx.doi.org/10.1080/10705510903203573
http://dx.doi.org/10.1080/10705510903203573
http://dx.doi.org/10.1007/BF02294400
http://dx.doi.org/10.1007/BF02294400
http://dx.doi.org/10.1080/00273170902949719
http://dx.doi.org/10.1007/BF02288892
http://dx.doi.org/10.1146/annurev.soc.30.012703.110629
http://dx.doi.org/10.1146/annurev.soc.30.012703.110629
http://dx.doi.org/10.1080/00273171.2012.673924
http://dx.doi.org/10.1080/00273171.2012.673924
http://dx.doi.org/10.1007/BF02295646
http://dx.doi.org/10.1007/BF02288391
http://dx.doi.org/10.1007/BF02295278
http://dx.doi.org/10.1207/S15327906MBR3604_06
http://dx.doi.org/10.1037/1082-989X.4.1.84
http://dx.doi.org/10.1037/1082-989X.4.1.84
http://dx.doi.org/10.1207/s15327906mbr3901_4
http://dx.doi.org/10.1207/s15327906mbr3901_4
http://dx.doi.org/10.1111/j.2044-8317.1970.tb00432.x
http://dx.doi.org/10.1111/j.2044-8317.1970.tb00432.x
http://gseis.ucla.edu/faculty/muthen/articles/Article_032.pdf
http://gseis.ucla.edu/faculty/muthen/articles/Article_032.pdf


Muthén, B. O. (1994). Multilevel covariance structure analysis. Socio-

logical Methods & Research, 22, 376 –398. doi:10.1177/

0049124194022003006

Muthén, B. O., & Asparouhov, T. (2009). Growth mixture modeling:

Analysis with non-Gaussian random effects. In G. Fitzmaurice, M.

Davidian, G. Verbeke, & G. Molenberghs (Eds.), Longitudinal data

analysis (pp. 143–165). Boca Raton, FL: Chapman & Hall/CRC Press.

Muthén, B. O., & Asparouhov, T. (2011). Beyond multilevel regression

modeling: Multilevel analysis in a general latent variable framework. In

J. Hox & J. K. Roberts (Eds.), Handbook of advanced multilevel analysis

(pp. 15–40). New York, NY: Taylor & Francis.

Muthén, B. O., Kaplan, D., & Hollis, M. (1987). On structural equation

modeling with data that are not missing completely at random. Psy-

chometrika, 52, 431–462. doi:10.1007/BF02294365

Novick, M. R., & Lewis, C. (1967). Coefficient alpha and the reliability of

composite measurements. Psychometrika, 32, 1–13. doi:10.1007/

BF02289400

Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confi-

dence intervals for indirect effects. Communication Methods and Mea-

sures, 6, 77–98. doi:10.1080/19312458.2012.679848

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models:

Applications and data analysis methods (2nd ed.). Thousand Oaks, CA:

Sage.

Raykov, T. (1997). Estimation of composite reliability for congeneric

measures. Applied Psychological Measurement, 21, 173–184. doi:

10.1177/01466216970212006

Raykov, T. (1998). A method for obtaining standard errors and confidence

intervals of composite reliability for congeneric items. Applied Psycho-

logical Measurement, 22, 369–374. doi:10.1177/014662169802200406

Raykov, T. (2002). Analytic estimation of standard error and confidence

interval for scale reliability. Multivariate Behavioral Research, 37, 89–

103. doi:10.1207/S15327906MBR3701_04

Raykov, T. (2004). Estimation of maximal reliability: A note on a cova-

riance structure modeling approach. British Journal of Mathematical

and Statistical Psychology, 57, 21–27. doi:10.1348/000711004849295

Raykov, T., & du Toit, S. H. C. (2005). Estimation of reliability for

multiple-component measuring instruments in hierarchical designs.

Structural Equation Modeling, 12, 536 –550. doi:10.1207/

s15328007sem1204_2

Raykov, T., & Marcoulides, G. A. (2006). On multilevel model reliability

estimation from the perspective of structural equation modeling. Struc-

tural Equation Modeling, 13, 130 –141. doi:10.1207/

s15328007sem1301_7

Raykov, T., & Marcoulides, G. A. (2011). Introduction to psychometric

theory. New York, NY: Taylor & Francis.

Raykov, T., & Penev, S. (2010). Evaluation of reliability coefficients for

two-level models via latent variable analysis. Structural Equation Mod-

eling, 17, 629–641. doi:10.1080/10705511.2010.510052

Raykov, T., & Shrout, P. E. (2002). Reliability of scales with general

structure: Point and interval estimation using a structural equation mod-

eling approach. Structural Equation Modeling, 9, 195–212. doi:10.1207/

S15328007SEM0902_3

Shavelson, R. J., & Webb, N. M. (2004). Generalizability theory. In K.

Kemp-Leonard (Ed.), Encyclopedia of social measurement (pp. 99–

105). Oxford, England: Elsevier.

Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness

of Cronbach’s alpha. Psychometrika, 74, 107–120. doi:10.1007/s11336-

008-9101-0

Snijders, T., & Bosker, R. (1999). Multilevel analysis. Thousand Oaks,

CA: Sage.

Thomson, G. H. (1940). Weighting for battery reliability and prediction.

British Journal of Psychology, 30, 357–366.

Webb, N. M., Rowley, G. L., & Shavelson, R. J. (1988). Using general-

izability theory in counseling and development. Measurement and Eval-

uation in Counseling and Development, 21, 81–90.

Werts, C. E., Linn, R. L., & Jöreskog, K. G. (1974). Intraclass reliability

estimates: Testing structural assumptions. Educational and Psychologi-

cal Measurement, 34, 25–33. doi:10.1177/001316447403400104

Wilhelm, P., & Schoebi, D. (2007). Assessing mood in daily life: Structural

validity, sensitivity to change, and reliability of a short-scale to measure

three basic dimensions of mood. European Journal of Psychological

Assessment, 23, 258–267. doi:10.1027/1015-5759.23.4.258

Williams, T., Ferraro, D., Roey, S., Brenwald, S., Kastberg, D., Jocelyn, L.,

. . . Stearns, P. (2009). TIMSS 2007 U.S. Technical report and user guide

(NCES 2009-012). Washington, DC: U.S. Department of Education,

Institute of Education Sciences, National Center for Education Statistics.

Woolridge, J. (2002). Econometric analysis of cross section and panel

data. Cambridge, MA: MIT Press.

Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach’s �,

Revelle’s �, and McDonald’s �H: Their relations with each other and

two alternative conceptualizations of reliability. Psychometrika, 70,

123–133. doi:10.1007/s11336-003-0974-7

Received April 6, 2012

Revision received December 18, 2012

Accepted February 6, 2013 �
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