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Abstract: Minimum spanning tree is a minimum-cost spanning tree connecting the whole network, but it 

couldn't be directly obtained on uncertain graph. In this paper, we define the reliability as the existence 

probability of all minimum spanning trees and present an algorithm for evaluating reliability of the 

minimum spanning tree on uncertain graph. The time complexity of the algorithm is O(Nmn), where n, m and 

N stand for the number of vertices, edges and minimum spanning trees, respectively. Because this algorithm 

spends more time finding minimum spanning tree, we propose an improved algorithm whose time 

complexity is O(Nm). The improved algorithm uses disjoint set data structure so that the average time 

complexity on finding a new minimum spanning tree is O(m/n). The two algorithms are analyzed in detail 

and the experiment results agree with theoretical analysis. 
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1. Introduction 

IN graph theory, a spanning tree of an undirected graph is a tree that contains all the vertices. A 

minimum spanning tree (MST) of an edge-weighted graph is a spanning tree with the minimum sum of 

edge weights among all spanning trees. Many practical problem can be modeled by using MST, and it has 

been widely applied in many fields such as wireless sensor networks [1], [2], cluster analysis [3]-[5] and 

data storage [6]. 

There have been many studies of the MST problem dealing with deterministic graphs and have been 

designed some well known algorithm such as Kruskal [7] and Prim [8], in which the MST problem can be 

solved in polynomial time. In deterministic graph, all edges are assumed to be fixed, but such an 

assumption might not always be right. For example, the links in wireless sensor network (WSN) may be 

impassable caused by noise, collision and congestion, we can use uncertain graph to represent the WSN. 

Some researchers assume that each edge of an uncertain graph has an existence probability. An uncertain 

graph is also refereed to as a probabilistic graph [9]. Each possible subgraph of the uncertain graph is called 

implicated graph. Their research mainly focus on graph mining [10]-[12], graph queries [13]-[15] and basic 

graph structure [16], [17]. 

However, many studies for the MST problem assume the edge weights are uncertain, these researchers 

regard the edge weights as random variables, fuzzy variable and interval data, then present probabilistic 
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MST (PMST) problem, fuzzy MST (FMST) problem and interval data MST (IDMST) problem. Many efficient 

algorithms have also been developed by some researchers [18]-[20]. 

In multicast routing protocols, MST is one of the most effective methods to multicast the massages from a 

source node to the destinations. When a connected link goes down, the network topology need to be 

updated. So evaluating the reliability of MST is significant. In this paper, we assume that each edge of a 

uncertain graph has a existence probability and a weight. The existence probabilities might represent the 

fault possibility in links and the edge weights represent time or cost. We try to evaluate the reliability of 

MST, which is the existence probability of all MSTs. 

The number of implicated graph increases exponentially with the number of edges, it need take a lot of 

time if we enumerate each implicated graph. In this paper, we propose a fundamental algorithm, called FERM 

(Fundamental algorithm of Evaluating the Reliability of MST), and an improved algorithm (IERM) to 

evaluating the reliability of the MST. The two algorithms classify all implicated graphs by finding all MSTs. 

The improved algorithm uses disjoint structure and search algorithm to get the swap-edges of each edge, so 

that the time complexity required to find a new MST is O(m/n). Thus, the improved algorithm is more than 

n times as fast as the fundamental algorithm in theory. 

The remaining of this paper is organized as follows. Section 2 gives the problem formulation. In Section 3, 

two algorithms for reliability evaluation of MST on uncertain graph are presented. We report our experiment 

result in Section 4, and a conclusion reached in Section 5. 

2. Problem Formulation 

Definition 1 (Uncertain graph): An uncertain graph ( , , , )V E W P , is defined over a set of vertices V, 

a set of edges E, a set of edge weights { ( )| , ( ) }W w e e E w e    , and a set of probabilities 

{ ( )| , ( ) (0,1]}P p e e E p e    of edge existence. 

An implicated graph ( , , )G G GG V E W  of an uncertain graph  is an certain graph which is realized 

by sampling each edge in  according to the probability ( )p e . We denote the relationship between G  

and  as G . Clearly, we have GV V , GE E  and { ( )| }G GW w e e E W   . There are a total 

of 
| |2 E

 implicated graphs, because each edge provides us with a binary sampling decision. Following the 

same assumption of the existing uncertain graph models [10], [13], [21], we assume that uncertain 

variables of different edges are mutually independent. Based on this assumption, the probability of sampling 

the implicated graph G from the uncertain graph  is 

Pr( ) ( ) (1 ( )).
G Ge E e E E

G p e p e
 

     

Let ( )Imp  denotes the set of all implicated graphs of the uncertain graph . Moreover, it is easy to 

know that function Pr( )G  defines a probability distribution over ( )Imp . 

Fig. 1(a) shows an uncertain graph 
1
. The two numbers on each edge represent weight and existence 

probability, respectively. The uncertain graph 
1
 has 

52  implicated graphs because 
1
 has five edges. 

Fig. 1(b) shows an implicated graph of the uncertain graph 
1
, which shows in Fig. 1(a), and the sampling 

probability of the implicated graph is 
2 3 4 5 1( ) ( ) ( ) ( ) (1 ( ))) 0.03528p e p e p e p e p e      . 

Definition 2 (Main implicated graph): Given an uncertain graph ( , , , )V E W P , we define the 

implicated graph ˆ ( , , )G V E W  as the main implicated graph of . 
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Fig. 1(c) shows the main implicated graph of 
1
. It is clear that the main implicated graph has three MSTs  

{e1e2e3}, {e2e3e4} and {e2e4e5} and the total weight of any MST is equal to 4. 

Definition 3 (Reliable implicated graph): Given an uncertain graph ( , , , )V E W P . Let G be any 

implicated graph of , T be an MST of implicated graph G and ( )G

e T

W w e


  be the weight of the MST T. If 

ˆG GW W , then G  is a reliable implicated graph of the uncertain graph . 
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Fig. 1. Example: (a) uncertain graph ; (b) an implicated graph of 
1
; (c) Main implicated graph of 1 . 

Definition 4 (Reliability of MST): Given an uncertain graph ( , , , )V E W P . Let 

ˆ
{ | ( ) }G GR G G Imp W W     denotes the set of all reliable implicated graph of the uncertain graph . 

The reliability of MST on uncertain graph  can be defined as follows: 

Pr( ).
G R

r G


   

Table 1. Reliability Evaluation of the MST on Uncertain Graph Fig. 1(a). 
implicated graph containing MSTs probability 

{e1,e2,e3,e4,e5} {e1,e2,e4}, {e2,e3,e4}, {e2,e4,e5} 0.31752 

{e1,e2,e3,e4} {e1,e2,e4}, {e2,e3,e4} 0.13608 

{e1,e2,e4,e5} {e1,e2,e4}, {e2,e4,e5} 0.07938 

{e2,e3,e4,e5} {e2,e3,e4}, {e2,e4,e5} 0.03528 

{e1,e2,e4} {e1,e2,e4} 0.03402 

{e2,e3,e4} {e2,e3,e4} 0.01512 

{e2,e4,e5} {e2,e4,e5} 0.00882 

others none 0.37378 

 

Table 1 shows the existence probability of the implicated graph, which contains at least one MST in 

{e2e4e5}, {e1e2e4} or {e2e4e5}. There are seven implicated graphs containing MST, so the reliability of the MST 

is 0.62622. 

3. The MST Reliability Evaluation 

3.1. Fundamental Algorithm 

Theorem 1: Given an uncertain graph ( , , , )V E W P . Let n be the number of vertices of uncertain 

graph , respectively, 1 2 1{ , , , }nT e e e   be an MST of the main implicated graph Ĝ  and 

1 2{ , , , }i iA e e e , where {1, , 1}i n  . We define 

1

1

{ | ( ) }, 0,

{ | ( ) }, 0 1,

{ | ( ) }, 1,

G

i i G i G

i G

G G Imp e E i

D G G Imp A E e E i n

G G Imp A E i n
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That is, iD  represents a set of graph whose edge set contains set iA  and excludes edge 1ie  (if exists) 

and these graphs in set iD  are a subgraph of the main implicated graph Ĝ . Then, we have the following 

two results: 

1)  
1

0

( )
n

i

i

D Imp




  

2)  
i jD D  , where i j  

Proof: We prove the two parts separately: 

1)  For any implicated graph ( )iG Imp , if 
1

{ , , , }
i j j yG x x xE T e e e


  , where 

1( 1,2,..., 1)j jx x j y   , then there must exist a k meet: 

1

1

1, ,

1, 1.

j j

j j

x x j k

x x j k





  


   
 

Then, we have the following: 

0 1

1

, 1,

, 1.

i

i k

G D x

G D x

 


 
 

So we have 
1

0

( )
n

i

i

Imp D




 . According to Equation (1), we have 
1

0

( )
n

i

i

D Imp




 . 

2)  According to Equation (1), we have 
1{ | ( ) }i j j G i GD D GG Imp A E e E       . However, 

j GA E  

and 1i Ge E   can't be achieved at the same time since 
1i je A  . Thus, 

i jD D  . 

Corollary 1: Let 1 2{ , , , }kI e e e  and O E . Now assume that there exist a minimum spanning 

tree 1 2 1{ , , , }nT e e e   s.t. I T  and T O  . Let { | ( ) }G GS G G Imp I E O E       , we 

define 

{ | }i i G i GD G G S I E O E        

where 1 2{ , , , }i k k iI I e e e   , 
1{ }i iO O e   . Then, we have 

1n

i

i k

D S




 . 

According to Corollary 1, ( )Imp  can be divided recursively until each implicated graph in set S  

contains the same MST, namely, I T . It is clear that the existence probability of set S  is 

( ) (1 ( ))
 

  
e I e O

p e p e . We'll call the function GetMST to get a minimum spanning tree whose edge set 

contains set I and exclude set O, which is implemented by Kruskal' or Prim's algorithm. The fundamental 

algorithm, called FERM (Fundamental algorithm of Evaluating the Reliability of MST), is outlined as 

following: 

Example 1: Fig. 2(a) is an uncertain graph 2  and Fig. 2(b) is a minimum spanning tree of its main 

implicated graph. It is obvious that when all edge weights have different values, the MST must be unique, so 

the edge weights in Fig. 2(a) are set as 1 or 2 to better understand function call 
2( , , )RMST   . Fig. 3 

builds a multiway-tree to simulate function call 2( , , )RMST   . The nodes with bold bolder show that 

the algorithm has already found a set of reliable implicated graph. As we can see from Fig. 3, all reliable 

implicated graphs are divided into nine nodes. However, the uncertain graph 2  has 62 64  implicated 

graph. Thus, the Algorithm 1 can avoid large scale computing than enumerating all implicated graphs. 
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Algorithm 1 The FERA algorithm 

Comment Calls from ( , , )RMST    

1. Procedure ( , , )RMST I O       > ( , , , )V E W P  

2. ( , , )T GetMST I O  

3. k   the number of elements of set I 

4. 0r   

5. IF Ĝ

e T W  THEN 

6. IF T I  THEN 

7. ( ) (1 ( ))e I e Or p e p e      

8. ELSE 

9. FOR i k  TO | | 1V   DO 

10. 
1 2{ , , , }i k k iI I e e e    

11. 
1{ }i iO O e    

12. ( , , )i ir r RMST I O   

13. RETURN r 
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Fig. 2. Example: (a) uncertain graph 2 ; (b) an MST of main implicated graph of Fig. 2(a). 
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Fig. 3. The recursive procedure of the function call 
2( , , )RMST   . 

 
Theorem 2: The time complexity of the Algorithm 1 is O(Nnm), where N denotes the number of MSTs 

included in main implicated graph Ĝ , n and m denote the number of vertices and edges, respectively. 

Proof: Note that each time the function RMST  is called, it will call the function GetMST  once and 

produces at most n-1 recursive calls. So the total number of function call RMST  is at most 1Nn Nn  . 

However, it requires O(m) time to solve an MST problem. Thus, the total time complexity is O(Nnm). 

3.2. Improved Algorithm 

The fundamental algorithm should call the function GetMST  to obtain a new MST. This subsection 
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designs an improved algorithm, called IERM (Improved algorithm of Evaluating the Reliability of MST), 

to obtain a new MST by performing edge replacement operation on previous MST. Let 
1 2

eT T  denotes 

the edge replacement operation, where 2T  is the result of 1T  after the edge replacement operation, 

2 1 { } { }T T e e  , and e  is the swap-edge of e . 

Theorem 3: Assume that aT  is a spanning tree and bT  is an MST of implicated graph G. Let 

1 2{ , , , }kI e e e  denotes the set of different edges, where i ae T  and i be T . We can perform the 

edge replacement operation k times, and then obtain 

1 2

0 1 2 1( ) , , ( ),kee e

a k b kT T T T T T T    

and 

1

( ) ( ).
i ie T e T

w e w e
 

   

Proof: For 1~i k , repeat the following two steps: 

1)  Delete ie  from 1iT  , and then the tree 1iT   divided into two connected-components 1V  and 2V . 

2)  Assume that the path from vertex u to v in tree bT  is 0 1 1( ) , , , ( )x xu u u u v u  , denotes as 

u

vP . There must exist ( )i i x  such that 1iu V  and 1 2iu V  . Let 1( , )i i ie u u 
  . Because of bT  

is a MST, it is easy to know that ( ) ( )i iw e w e  , 
1

ie

i iT T  , and 

1 1

( ) ( ) ( ) ( ) ( )
i i i

i i

e T e T e T

w e w e w e w e w e
   

      . 

Thus, this theorem is proven. 

Theorem 4: Let T be an MST included in graph G. Assume that edge e T  connects two 

connected-components, called 1V  and 2V , then for any MST T   whose edge set doesn't contain edge e, 

there exists an edge ( , )e u v    such that 1u V , 2v V  and ( ) ( )w e w e  . 

Let ( , )e u v . Assume that the path 
u

vP  in tree T   is 0 1 1( ) , , , ( )x xu u u u v u  . Then, there 

must exist ( )i i x  such that 1iu V  and 1 2iu V  . Assume 1( , )i ie u u 
  , we have 

 If ( ) ( )w e w e  , let * { } { }T T e e   , then we has 
*

( ) ( )
e Te T

w e w e


  . 

 If ( ) ( )w e w e  , let * { } { }T T e e  , then we has 
*

( ) ( )
e Te T

w e w e


  . 

The above two situations obviously contradict the fact that T and T   are an MST. Therefore, we have 

( ) ( )iw e w e . 

Assume that 1 2 1 2( , , ) { | }GE V V G e E e V V    . According theorem theorem 4, if there exists e , such 

that 
1 2( , , )e E V V G  and ( ) ( )w e w e  , then we can obtain a new MST by edge replacement operation, that 

is { } { }newT T e e  . Otherwise, the graph G doesn't exist any other MST whose edge set doesn't 

contain the edge e. 

To find swap-edges of each edge in tree T, we could traverse all edges in graph G from small to large 

according to its weight. For each edge *e G , we will perform the following two steps: 

1)  Let 
* * *( , )e u v , then traverse the path 

*

*

u

v
P , it is easy to know that *e  is swap-edge of these 
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edges whose weights are equal to 
*( )w e . 

2)  Use disjoint structure to compress the path 
*

*

u

v
P . 

To find the path between two vertices of tree T, we should know the relationship (parent-child, 

brotherhood or other) of two vertices firstly. Assume that vertex 1 is root-node, the function GetChild  is 

defined as follow: 

( , ) { |  is a child-node of  in }GetChild T w vv w T  

The following algorithm numbers each subtree of the tree T: 
 

Algorithm 2 Number subtrees. 

Comment We assume that the entry function is ( ,1,1)SetNumber T  

1. Procedure ( , , )SetNumber T w num  

2. ,w wL num R num   

3. ( , )C GetChild T w  

4. FOR EACH v C  DO 

5. ( , , 1)w wR SetNumber T v R   

6. RETURN wR  

 

Definition 5 (Least common ancestor): Let T be a rooted tree. The least common ancestor between two 

vertices v and w is defined as the lowest node in T that has both v and w as descendant-nodes (where we 

allow a vertex to be a descendant-node of itself) 

Example 2: Fig. 4 shows an MST T and execution result from function call ( ,1,1)SetNumber T . 

According the Algorithm 2, we know that iL  is generated by pre-order traversal and 

max{ |i jR L vertex j  is descendant-node of vertex }i . 

L1: 1

L2: 2

L3: 5

L4: 3

L5: 4

L6: 6

L7: 7

R1: 7

R2: 4

R3: 7

R4: 3

R5: 4

R6: 6

R7: 7

1

2 3

4 5 6 7

43

2 4 5 8

 

Fig. 4. An MST T & Number ranges of each subtree. 

 

Example 2 shows that if [ , ]j i iL L R , then vertex j is descendant-node of vertex i. Assume that 

1 2,u u T , we take the following steps to find the path between vertex 1u  and 2u : 

1)  Traverse these vertices from 1u  to 1  until we find a vertex v such that 
2

[ , ]u v vL L R . 

2)  Traverse these vertices from vertex 2u  to v . 

Therefore, 1

2

u

uP  can be represented as 1 2u v u    . It's clear that vertex v is  the least 

common ancestor(LCA) between two vertices 1u  and 2u . 

Next, we use disjoint structure to compress the path 1

2

u

uP . Let iRT  be current LCA of vertex i, then for 

any vertex w in the path 1

2

u

uP , we have wRT v . Assume that the function ( , )GetFather T x  returns the 
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father-node of vertex x in tree T. Thus, the algorithm of finding swap-edges shows as Algorithm 3. 
 

Algorithm 3 Find swap-edges of each edge in tree T. 

Module 1: Disjoint structure 

Initialization ( 1,2, , )iRT i i n   

1. Procedure ( )GetRoot u  

2. IF uu RT  THEN RETURN u  

3. ELSE RETURN ( ( ))u uRT GetRoot RT  

Module 2: Find swap edges 

1. Procedure ( , )FindSwapEdge G T  

2. S   

3. FOR EACH ( , ) Ge u v E   DO 

4. ( )lca ru GetRoot u   

5. ( )rv GetRoot v  

6. WHILE [ , ]lca lcarv L R  DO 

7. ( , )f GetFather T lca  

8. ( )lca GetRoot f  

9. Let 
ru

rvP  be ru lca rv     

10. FOR EACH edge e  in path 
ru

rvP  DO 

11. IF ( ) ( )w e w e   THEN 

12. {( , )}S S e e   

13. FOR EACH vertex w  in path 
ru

rvP  DO 

14. wRT lca  

15. RETURN S  

 

Example 3: Assume that 
1 2 3 4 3 4(2,5), (3,6), (4,5), (5,6), ( ) 4, ( ) 5e e e e w e w e       and 3 4,e e G , as 

shown in Fig. 5. We first find the path between vertex 4 and 5 because of 
3 4( ) ( )w e w e , it's clear that the 

edge 3e  is a swap-edge of edge 1e  as 1 3( ) ( )w e w e , then we replace the two vertices 4 and 5 with their 

LCA, that is 
4 2RT   and 

5 2RT  . Next, we deal with the edge 4e , we can assume that 
4 (5,6) (2,6)e    

because of 
5 2RT  . So it is easy to know that 

1 3 2 4{( , ), ( , )}S e e e e . 

1

2 3

4 5 6 7

43

2 4

5 8

1

2

3

6 7

4

3

5 8

1

7

8

4

5

 

Fig. 5. The path-compressed procedure. 

 
From what mentioned above, the improved algorithm is outlined as Algorithm 4. 

Theorem 5: The time complexity of the improved algorithm is O(Nm). 

Proof: Note that SetNumber  can be done in O(n), FindSwapEdge  traverses all edges of a graph in 

O(m), each edge in tree T is visited just once because of path-compressed, thus, FindSwapEdge  can be 

done in O(m) (assume that m > n). Then, the average time complexity required to find a new minimum 

Journal of Computers

52 Volume 10, Number 1, January 2015



  

spanning tree is O(m/n), so the time complexity of the improved algorithm is O(Nn*(m/n)=O(Nm). 

 

Algorithm 4 The IERM algorithm 

Comment Calls from ( , , , )IMST T   

1. Procedure ( , , , )IMST I O T     > ( , , , )V E W P  

2. 0r   

3. IF Ĝ

e T W   THEN 

4. IF T I  THEN 

5. ( ) (1 ( ))e I e Or p e p e      

6. ELSE 

7. FOR i k  TO | | 1V   DO 

8. 1 2{ , , , }i k k iI I e e e    

9. 1{ }i iO O e    

10. ( , , )G V E O W  

11. ( ,1,1)SetNumber T  

12. ( , )S FindSwapEdge G T  

13. IF 1(( , ) )ie e e S
    THEN 

14. 1{ } { }iT T e e 
    

15. ( , , , )i ir r IMST I O T    

16. RETURN r  

4. Experiment Results 

For the experiments, we utilize the block-random graph mode [22], which can generate both the 

Erdos-Renyi random graph and Scale-free random graph. The existence probabilities of each edge are 

uniformly generated between 0 and 1. These algorithms were implemented in C++, all experiments were 

performed on an HASEE K470P-i5 notebook with 2.4GHz CPU and 4GB RAM, running Windows 7. 

Experiment 1: We consider that the main implicated graph is a complete graph with edge weights fixed 

at the same value. In this case, all the spanning trees are MSTs, and the total number of spanning tree is 
2nn   according to theorem by Cayley [23]. 

Table 2 shows the results of two algorithms, N denotes the number of MSTs in the main implicated graph, 

nK  denotes that the main implicated graph is a complete graph with n vertices; the values Ratios denote 

the ratio of FERM to IERM. According to the theoretical analysis, the time complexity of algorithm FERM 

should be n times faster than algorithm IERM, but the code implementation to algorithm IERM is more 

complex, so the actual ratios Ratios are lower than the expected ratios. 
 

Table 2. The Performance Evaluation in the Same Weight for nK  

  Time(s)   

G N FERM IERM Ratios Reliability 

K5 125 0.00100 0.00100 1.0 0.729287 

K6 1296 0.00500 0.00500 1.0 0.949277 

K7 16807 0.08100 0.07000 1.1 0.812293 

K8 262144 1.35800 1.06700 1.2 0.981199 

K9 4782969 29.2060 22.1580 1.3 0.990147 

K10 100000000 671.767 521.091 1.3 0.990147 

 

Experiment 2: We set the edge weight to a integer number between 1 and 100 since the costs or 

Journal of Computers

53 Volume 10, Number 1, January 2015



  

distances are not all the same in the real world. In order to analyze the effect of the number of vertices and 

edges on the run-time, the experiment changes the number of vertices and edges, respectively. Fig. 6 shows 

run-time comparison chart for algorithms FERM and IERM. In the four subgraphs, the number of vertices is 

set to 100, 200, 300 and 400, respectively. 

As the figure shows, the time cost of algorithm IERM is unrelated to the number of vertices, the run-time 

ratios of FERM to IERM increases with the number of vertices and edges. In Fig. 6(a), when the number of 

edges is equal to 3000, the value N*m of the algorithm IERM is approximately equal to 2.1 million and the 

run-time is approximately equal to 28 seconds. Due to the complexity of the code, the run-time of the 

algorithm IERM agree with the experiment data. when the number of vertices is 400 and the number of 

edges is 3000, algorithm IERM is 14 times faster than algorithm FERM.  

 

(a) n = 100 (b) n = 200

(c) n = 300 (d) n = 400
 

Fig. 6. The performance evaluation with different number of vertices. 

5. Conclusions 

This paper investigates the problem of evaluating reliability of the minimum spanning tree on uncertain 

graph for the first time and designs two algorithms to solve this problem base on classifying implicated 

graphs. The improved algorithm IERM proposes a novel approach to obtain a new MST, which time 

complexity is O(m/n). The experiment results verify the efficiency of this algorithm and accuracy of 

theoretical analysis. 
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