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In the area of stress-strength models, there has been a large amount of work as regards

estimation of the reliability R = Pr(X < Y). The algebraic form for R = Pr(X < Y) has

been worked out for the vast majority of the well-known distributions when X and Y

are independent random variables belonging to the same univariate family. In this paper,

forms of R are considered when (X ,Y) follow bivariate distributions with dependence

between X and Y . In particular, explicit expressions for R are derived when the joint

distribution is bivariate exponential. The calculations involve the use of special functions.

An application of the results is also provided.

Copyright © 2006 S. Nadarajah and S. Kotz. This is an open access article distributed un-

der the Creative Commons Attribution License, which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Without a doubt, exponential distributions are the most popular and the most applied

“life time” models in many areas, including life testing and telecommunications. In the

context of reliability, the stress-strength model describes the life of a component which

has a random strength Y and is subjected to random stress X . The component fails at the

instant that the stress applied to it exceeds the strength, and the component will function

satisfactorily whenever Y > X . Thus, R= Pr(X < Y) is a measure of component reliability.

It has many applications especially in engineering concepts such as structures, deteriora-

tion of rocket motors, static fatigue of ceramic components, fatigue failure of aircraft

structures, and the aging of concrete pressure vessels. Some examples are as follows:

(i) if X represents the maximum chamber pressure generated by ignition of a solid

propellant and Y represents the strength of the rocket chamber, then R is the

probability of successful firing of the engine;

(ii) if X represents the diameter of a shaft and Y represents the diameter of a bearing

that is to be mounted on the shaft, then R is the probability that the bearing fits

without interference;
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2 Reliability for some bivariate exponential distributions

(iii) let Y and X be the remission times of two chemicals when they are administered

to two kinds of mechanical systems. Inferences about R present a comparison of

the effectiveness of the two chemicals;

(iv) if X and Y are future observations on the stability of an engineering design, then

R would be predictive probability that X is less than Y . Similarly, if X and Y

represent lifetimes of two electronic devices, then R is the probability that one

fails before the other;

(v) if Y represents the distance of a pyrotechnic igniter from its adjacent pellet and X

represents its ignition distance, then R is the probability that the igniter succeeds

to bridge the gap in the pyrotechnic chain;

(vi) a certain unit—be it a receptor in a human eye, ear, or any other organ (including

sexual)—operates only if it is stimulated by source of random magnitude Y and

the stimulus exceeds a lower threshold X specific for that unit. In this case, R is

the probability that the unit functions;

(vii) in military warfare, R could be interpreted as the probability that a given round

of ammunition will penetrate its target;

(viii) in quality control, the use of process capability indices is motivated by a desire

to have an index related to the probability that an attribute (Z) of a component

(size, density, elastic strength, etc.) falls within fixed specification limits. How-

ever, in some circumstances it may be desirable to have an “index” allowing for

possibly varying limits—TL or TU , say, for lower and upper limits, respectively.

One is then interested in Pr(TL < Z < TU). If only one of the limits is finite, then

this probability reduces to calculations of R= Pr(X < Y) type.

Because of these applications, the calculation and the estimation of R= Pr(X < Y) is im-

portant for the class of bivariate exponential distributions. The calculation of R has been

extensively investigated in the literature when X and Y are independent random vari-

ables belonging to the same univariate family of distributions. The algebraic form for R

has been worked out for the majority of the well-known distributions, including nor-

mal, uniform, exponential, gamma, beta, extreme value, Weibull, Laplace, logistic, and

the Pareto distributions (Nadarajah, [12–16]; Nadarajah and Kotz [17]). In this paper,

we calculate R when X and Y are dependent random variables from six flexible families

of bivariate exponential distributions (Sections 2 to 7). We also provide an application of

the results to receiver operating characteristic curves (Section 8).

We will assume throughout this paper that (X ,Y) has a bivariate exponential distribu-

tion with joint probability density function (pdf) f and joint survivor function F̄. One

can write

R=
∫∞

0

∫∞

x
f (x, y)dydx. (1.1)

Our calculations of R make use of a number of special functions. They are the comple-

mentary incomplete gamma function defined by

Γ(a,x)=
∫∞

x
ta−1 exp(−t)dt, (1.2)
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the exponential integral function defined by

Ei(x)=−
∫∞

−x

exp(−t)
t

dt, (1.3)

and the modified Bessel function of the first kind of order zero defined by

I0(z)=
∞
∑

k=0

z2k

4k(k!)2
. (1.4)

The properties of these special functions being used can be found in Prudnikov et al.

[19–21] and Gradshteyn and Ryzhik [5].

2. Gumbel’s bivariate exponential distribution

Gumbel’s [6] bivariate exponential distribution has the joint survivor function and joint

pdf specified by

F̄(x, y)= exp
{

− (αx+βy + θαβxy)
}

,

f (x, y)=
{

(1− θ)αβ+ θα2βx+ θαβ2y + θ2α2β2xy
}

F̄(x, y),
(2.1)

respectively, for x > 0, y > 0, α≥ 0, β ≥ 0, and 0 < θ < 1. This is the earliest and the sim-

plest known bivariate exponential distribution. It has received applications in many areas,

including competing risks, extreme values, failure times, regional analyses of precipita-

tion, and reliability. The marginal distributions of X and Y are exponential with param-

eters α and β, respectively; so, in particular, E(X)= 1/α and E(Y)= 1/β. The correlation

coefficient ρ = Corr(X ,Y) is given by

ρ = 1− 1

θ
exp

(

1

θ

)

Ei

(

1

θ

)

. (2.2)

The correlation is, of course, zero when θ = 0 (the case of independence between X and

Y) and it decreases to−0.40365 as θ increases to 1. The reliability in (1.1) can be expressed

as

R=
∫∞

0

{

(1− θ)αβ+ θα2βx
}

∫∞

x
F̄(x, y)dydx

+

∫∞

0

{

θαβ2 + θ2α2β2x
}

∫∞

x
yF̄(x, y)dydx

=
∫∞

0

(1− θ)α+ θα2x

1 + θαx
F̄(x,x)dx+

∫∞

0

θα+ θ2α2x

(1 + θαx)2
F̄(x,x)dx

= αI1 + θαβI2,

(2.3)
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where

I1 =
∫∞

0
F̄(x,x)dx,

I2 =
∫∞

0
xF̄(x,x)dx.

(2.4)

Application of Lemma A.1 shows that one can reduce

I1 =
√

π

θαβ
exp

{

(α+β)2

4θαβ

}

⎡

⎣1−Φ

⎛

⎝

α+β
√

2θαβ

⎞

⎠

⎤

⎦ ,

I2 =
1

2θαβ
−
√
π(α+β)

2(θαβ)3/2
exp

{

(α+β)2

4θαβ

}

⎡

⎣1−Φ

⎛

⎝

α+β
√

2θαβ

⎞

⎠

⎤

⎦ ,

(2.5)

where Φ(·) denotes the cdf of the standard normal distribution. Thus, it follows using

(2.3) that the form of R for Gumbel’s bivariate exponential distribution is given by

R= 1

2
+

√
π(α−β)

2
√

θαβ
exp

{

(α+β)2

4θαβ

}

⎡

⎣1−Φ

⎛

⎝

α+β
√

2θαβ

⎞

⎠

⎤

⎦ . (2.6)

Note that if α < β, then R < 1/2; and if α > β, then R > 1/2. Moreover, if α = β, then R =
1/2.

3. Hougaard’s bivariate exponential distribution

Hougaard’s [7] bivariate exponential distribution has the joint survivor function and

joint pdf specified by

F̄(x, y)= exp

[

−
{(

x

θ

)r

+

(

y

φ

)r}1/r
]

,

f (x, y)= (xy)r−1

(θφ)r

{(

x

θ

)r

+

(

y

φ

)r}1/r−2
[

r− 1 +

{(

x

θ

)r

+

(

y

φ

)r}1/r
]

F̄(x, y),

(3.1)

respectively, for x > 0, y > 0, θ ≥ 0, φ ≥ 0, and r > 0. This distribution has been quite

popular as a frailty model. The marginal distributions of X and Y are exponential with

parameters 1/θ and 1/φ, respectively; so, in particular E(X)= θ and E(Y)= φ. The cor-

relation coefficient ρ= Corr(X ,Y) is given by

ρ = Γ2(1/r)

rΓ(2/r)
− 1. (3.2)

Note that if one transforms (U ,V) = (X/θ,Y/φ), then the joint survivor function and

joint pdf of (U ,V) take the simpler forms

F̄(u,v)= exp
{

−
(

ur + vr
)1/r

}

,

f (u,v)= (uv)r−1
(

ur + vr
)1/r−2

{

r− 1 +
(

ur + vr
)1/r

}

F̄(u,v).
(3.3)
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Thus, the form of R corresponding to (3.1) can be computed as

R= Pr(θU/φ < V)

=
∫∞

0
ur−1

∫∞

θu/φ
vr−1

(

ur + vr
)1/r−2

{

r− 1 +
(

ur + vr
)1/r

}

F̄(u,v)dvdu

=
∫∞

0
ur−1

∫∞

(θr+φr )1/ru/φ
z−r(r− 1 + z)exp(−z)dzdu

= (r− 1)I1 + I2,

(3.4)

where the transformation z = (ur + vr)1/r has been applied, and

I1 =
∫∞

0
ur−1

Γ

(

1− r,

(

θr

φr
+ 1

)1/r

u

)

du,

I2 =
∫∞

0
ur−1

Γ

(

2− r,

(

θr

φr
+ 1

)1/r

u

)

du.

(3.5)

Application of Lemma A.2 shows that one can reduce

I1 =
φr

r
(

θr +φr
) ,

I2 =
φr

r
(

θr +φr
) .

(3.6)

Thus, it follows from (3.4) that the form of (1.1) for Houggard’s bivariate exponential

distribution takes the simple form

R= φr

θr +φr
. (3.7)

Note that if θ = φ, then R= 1/2.

4. Downton’s bivariate exponential distribution

Downton’s [3] bivariate exponential distribution has the joint pdf specified by

f (x, y)= µ1µ2

1− ρ
exp

(

− µ1x+µ2y

1− ρ

)

I0

{

2
√
ρµ1µ2xy

1− ρ

}

(4.1)

for x > 0, y > 0, µ1 > 0, µ2 > 0, and 0≤ ρ < 1. This distribution arises from “shocks” caus-

ing various types of failure to components which have geometric distributions. It has

received applications in queueing systems and hydrology and has been used a model for

Wold’s Markov dependent processes, intensity and duration of rainfall, and height of wa-

ter waves. The marginal distributions of X and Y are exponential with parameters µ1

and µ2, respectively; so, in particular, E(X) = 1/µ1 and E(Y) = 1/µ2. The parameter ρ is

the correlation coefficient between X and Y with independence corresponding to ρ = 0.
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Using the definition of I0(·) given in Section 1, the corresponding form of R can be cal-

culated as

R= µ1µ2

1− ρ

∞
∑

k=0

(

ρµ1µ2

)k

(1− ρ)2k(k!)2

∫∞

0

∫∞

x
xk yk exp

(

− µ1x+µ2y

1− ρ

)

dydx

= µ1µ2

1− ρ

∞
∑

k=0

(

ρµ1µ2

)k

(1− ρ)2k(k!)2

∫∞

0
xk exp

(

− µ1x

1− ρ

)∫∞

x
yk exp

(

− µ2y

1− ρ

)

dydx

= µ1

∞
∑

k=0

(

ρµ1

)k

(1− ρ)kk!

∫∞

0
xk exp

{

−
(

µ1 +µ2

)

x

1− ρ

} k
∑

l=0

1

l!

(

µ2x

1− ρ

)l

dx

= µ1

∞
∑

k=0

(

ρµ1

)k

(1− ρ)kk!

k
∑

l=0

1

l!

(

µ2

1− ρ

)l ∫∞

0
xk+l exp

{

−
(

µ1 +µ2

)

x

1− ρ

}

dx

= µ1

∞
∑

k=0

(

ρµ1

)k

(1− ρ)kk!

k
∑

l=0

1

l!

(

µ2

1− ρ

)l( 1− ρ

µ1 +µ2

)k+l+1

(k+ l)!

= (1− ρ)
∞
∑

k=0

ρk

k!

(

µ1

µ1 +µ2

)k+1 k
∑

l=0

(k+ l)!

l!

(

µ2

µ1 +µ2

)l

.

(4.2)

In the particular case µ1 = µ2, one can show that the above reduces to R= 1/2.

5. Arnold and Strauss’ bivariate exponential distribution

Arnold and Strauss [1] bivariate exponential distribution has the joint pdf specified by

f (x, y)= K exp
{

− (ax+ by + cxy)
}

(5.1)

for x > 0, y > 0, a > 0, b > 0, and c > 0, where K denotes the normalizing constant given

by

1

K
=−1

c
exp

(

ab

c

)

Ei

(

ab

c

)

. (5.2)

Note that the marginal pdfs of X and Y are not exponential and are given by

fX(x)= exp(−ax)

b+ cx
,

fY (y)= exp(−by)

a+ cy
,

(5.3)

respectively, with the expectations

E(X)= b

c

(

K

ab
− 1

)

,

E(Y)= a

c

(

K

ab
− 1

)

.

(5.4)
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However, the conditional distributions of Y | X = x and X | Y = y are exponential with

parameters b + cx and a+ cy, respectively. Arnold and Strauss [1] motivated the use of

(5.1) by observing that it often happens that a researcher has better insight into the forms

of conditional distributions rather than the joint distribution. The distribution has been

used to model such variables as blood counts and survival times of patients. The correla-

tion coefficient ρ = Corr(X ,Y) is given by

ρ = abc+ abK −K2

K(ab+ c−K)
. (5.5)

One can show that the correlation is always negative and is bounded from below by the

value −0.32. The form of R can be derived as

R= K

∫∞

0
exp(−ax)

∫∞

x
exp

{

− (b+ cx)y
}

dydx

= K

∫∞

0

exp
{

− (a+ b+ cx)x
}

b+ cx
dx

= K

c
exp

{

(a+ b)2

4c

}

∫∞

(a+b)/2

exp
(

− z2/c
)

z+ (b− a)/2
dz

= K

c
exp

{

(a+ b)2

4c

}

∫∞

(a+b)/2
exp

(

− z2/c
)

∞
∑

k=0

(−1)k
(

b− a

2

)k

z−(k+1)dz

= K

c
exp

{

(a+ b)2

4c

} ∞
∑

k=0

(−1)k
(

b− a

2

)k ∫∞

(a+b)/2
z−(k+1) exp

(

− z2/c
)

dz

= K

2c
exp

{

(a+ b)2

4c

} ∞
∑

k=0

(−1)k
(

b− a

2
√
c

)k ∫∞

(a+b)2/(4c)
w−(k/2+1) exp(−w)dw

= K

2c
exp

{

(a+ b)2

4c

} ∞
∑

k=0

(−1)k
(

b− a

2
√
c

)k

Γ

(

− k

2
,
(a+ b)2

4c

)

,

(5.6)

where the transformations z = cx + (a + b)/2 and w = z2/c have been applied, and the

series expansion

1

z+d
=

∞
∑

k=0

(−1)kdkz−(k+1) (5.7)

used. Thus, one has an expression for R which is an infinite sum of incomplete gamma

functions. In the particular case a= b, one can show that R= 1/2.

6. Freund’s bivariate exponential distribution

Freund’s [4] bivariate exponential distribution has the joint pdf specified by

f (x, y)=

⎧

⎨

⎩

α1β2 exp
{

−β2y−
(

α1 +α2−β2

)

x
}

, if x < y,

α2β1 exp
{

−β1x−
(

α1 +α2−β1

)

y
}

, if y < x
(6.1)
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for x > 0, y > 0, α1 > 0, α2 > 0, β1 > 0, and β2 > 0. This distribution arises in the following

setting: X and Y are the lifetimes of two components assumed to be independent expo-

nentials with parameters α1 and α2, respectively; but, a dependence between X and Y is

introduced by taking a failure of either component to change the parameter of the life

distribution of the other component; if component 1 fails, the parameter for Y changed

to β2; and if component 2 fails, the parameter for X changed to β1. As in the previous sec-

tion, the marginal pdfs of X and Y are not exponential. They take the form of exponential

mixtures given by

fX(x)= 1

α1 +α2−β1

[(

α1−β1

)(

α1 +α2

)

exp
{

−
(

α1 +α2

)

x
}

+β1α2 exp
(

−β1x
)]

,

fY (y)= 1

α1 +α2−β2

[(

α2−β2

)(

α1 +α2

)

exp
{

−
(

α1 +α2

)

y
}

+β2α1 exp
(

−β2y
)]

,
(6.2)

respectively, with the expectations

E(X)= β1 +α2

β1

(

α1 +α2

) ,

E(Y)= β2 +α1

β2

(

α1 +α2

) .

(6.3)

The correlation coefficient ρ = Corr(X ,Y) is given by

ρ= β1β2−α1α2
√

β2
1 + 2α1α2 +α2

2

√

β2
2 + 2α1α2 +α2

1

. (6.4)

One can show that −1/3 < ρ < 1. The form of R is given by

R= α1β2

∫∞

0

∫∞

x
exp

{

−β2y−
(

α1 +α2−β2

)

x
}

dydx

= α1

∫∞

0
exp

{

−
(

α1 +α2

)

x
}

dx

= α1

α1 +α2
.

(6.5)

This expression is independent of β1 and β2 because of the context described above: since

X and Y are independent exponentials with parameters α1 and α2, one must have X < Y

with probability α1/(α1 +α2).

7. Marshall and Olkin’s bivariate exponential distribution

Marshall and Olkin’s [9, 10] bivariate exponential distribution has the joint pdf specified

by

f (x, y)=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

θ1

(

θ2 + θ3

)

exp
{

− θ1x−
(

θ2 + θ3

)

y
}

, if x < y,

θ2

(

θ1 + θ3

)

exp
{

− θ2y−
(

θ1 + θ3

)

x
}

, if y < x,

θ3 exp
{

−
(

θ1 + θ2 + θ3

)

y
}

, if x = y

(7.1)
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for x > 0, y > 0, θ1 > 0, θ2 > 0, and θ3 > 0. This distribution arises in the following context:

X and Y are the lifetimes of two components subjected to three kinds of shocks; these

shocks are assumed to be governed by independent Poisson processes with parameters θ1,

θ2, and θ3, according as the shock applies to component 1 only, component 2 only, or both

components. The distribution has received wide applicability in nuclear reactor safety,

competing risks, reliability and in quantal response contexts. The marginal pdfs of X and

Y are exponential with parameters θ1 + θ3 and θ2 + θ3, respectively; so, in particular,

E(X)= 1

θ1 + θ3
,

E(Y)= 1

θ2 + θ3
.

(7.2)

The correlation coefficient ρ = Corr(X ,Y) is given by

ρ = θ3

θ1 + θ2 + θ3
. (7.3)

Solving the three preceding equations, one can express θ1, θ2, and θ3 as

θ1 =
1

E(X)
− θ3,

θ2 =
1

E(Y)
− θ3,

θ3 =
{

E(X) +E(Y)
}

ρ

E(X)E(Y)(1 + ρ)
.

(7.4)

It is easily seen that R can be expressed as

R= θ1

(

θ2 + θ3

)

∫∞

0

∫∞

x
exp

{

− θ1x−
(

θ2 + θ3

)

y
}

dydx

= θ1

∫∞

0
exp

{

−
(

θ1 + θ2 + θ3

)

x
}

d

= θ1

θ1 + θ2 + θ3
.

(7.5)

8. Application

For a good part of the 20th century, the assumption of independent random samples

from continuous distributions dominated applications of statistical methodology. From

the middle of the eighties of the 20th century, we are beginning to observe deviations from

this setup, mainly because real-world sources of data were not conforming to the i.i.d.

continuous model. In fact, a substantial amount of categorized data plays an important

role, especially in medical-orientated applications. One of the developments of this type

is the analysis of receiver operating characteristic (ROC) curves. This topic was a real hit

in the last decade with a large number of publications appearing.
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ROC curve is a particular type of an ordinal dominance (OD) graph. Consider random

variables X and Y , and for every real number c plot a point T(c) in a Cartesian coordi-

nate system with the coordinates (Pr(X ≤ c),Pr(Y ≤ c)). The collection of the points T(c)

form a ROC graph. Note that the coordinates of T(c) lie between 0 and 1, so that the ROC

graph is always located within the unit square {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. Moreover,

by letting c =±∞, we conclude that ROC graph always starts at (0,0) and ends at (1,1).

The relation between OD graphs and R = Pr(X < Y) was originally pointed out by

Bamber [2] and brought a variety of methods developed for an inference about Pr(X < Y)

into analysis of ROC curves. Bamber [2] observed that the area above the OD graph for

continuous X and Y is equal to

A(X ,Y)=
∫ 1

0
Pr(X ≤ x)dPr(Y ≤ c)

=
∫ 1

0
Pr(X ≤ x) fY (c)dc

= Pr(X ≤ Y)

= R.

(8.1)

In view of this relation, the area A(X ,Y) can be utilized as a measure of the size difference

between two populations with A(X ,Y)= 1 if and only if the distribution of X lies entirely

below the distribution of Y . On the other hand, if X and Y are identically distributed,

A(X ,Y)= 1/2.

ROC curve analysis has been used in various fields of medical imaging, radiology, psy-

chiatry, nondestructive, and manufacturing inspection systems (see, e.g., Hsiao et al. [8],

Metz [11], Nockermann et al. [18], Reiser [22], Swets [23], and Swets and Pickett [24]).

As an example, consider the “yes-no” signal detection experiment. In this experiment,

the observer is told to respond “yes” if he/she thinks that the signal was presented on the

trial, and to respond “no” otherwise. It is assumed that the observer performs this task as

follows. First, he/she adopts (often subjectively) an impression strength criterion, say c.

Then, on each trial if the impression strength reaches or exceeds the criterion, he/she re-

sponds “yes,” and responds “no” otherwise. Let Is and In be continuous random variables

denoting the strengths of sensory impressions aroused by signal and noise events, respec-

tively. Then, Pr(yes | signal) = Pr(Is ≥ c) and Pr(yes | noise) = Pr(In ≥ c). ROC curve is

then a collection of points (Pr(In ≥ c),Pr(Is ≥ c)) in a unit square. If numerical data on

In, Is, and yes-no responses is available, one can construct a sample ROC curve by esti-

mating probabilities Pr(In ≥ c) and Pr(Is ≥ c) under certain parametric assumptions.

Figure 8.1 illustrates the variation of A(X ,Y)= Pr(X < Y)= R with respect to ρ, E(X),

and E(Y) for the six bivariate exponential distributions discussed in the previous sec-

tions. The general pattern of variation is R > 1/2 and is an increasing function of ρ when

E(X) > E(Y); R < 1/2 and is a decreasing function of ρ when E(X) < E(Y); and R = 1/2

when E(X)= E(Y). The variations can be grouped into four classes as follows:

(1) Arnold and Strauss and Freund into the first class showing the least sensitivity

to ρ. For these two models, one can compute R without much error by assum-

ing that X and Y are independent. Of these two, Freund is the simpler since the
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Figure 8.1. Variation of R versus ρ for the six bivariate exponential distributions and for selected

values of E(X) and E(Y): Gumbel (a); Hougaard (b); Downton (c); Arnold and Strauss (d); Freund

(e); Marshall and Olkin (f); the four curves in each plot from (a) to (f) correspond to (E(X),E(Y))=
(5,1), (2,1), (1,2), and (1,5).

expressions for it are elementary and do not involve special functions. Further-

more, Freund exhibits a wider range of values for ρ (−0.32 < ρ < 0 for Arnold and

Strauss, and −1/3 < ρ < 1 for Freund) and attains larger values for R.
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(2) Gumbel and Downton into the second class showing moderate sensitivity to ρ. Of

these two, although Gumbel is the earliest and simplest known model, one might

choose Downton because it has a wider range of values for ρ (−0.40365 < ρ < 0

for Gumbel, and 0≤ ρ < 1 for Downton) and attains larger values for R. Also, the

limits of R are attained as ρ→ 1 in the case of Downton.

(3) Hougaard into the third class which shows the highest sensitivity to ρ. Hougaard

exhibits the widest range of values for ρ (−1 < ρ < 1) and attains the limits of R as

ρ→ 1.

(4) The case of Marshall and Olkin stands out from the rest because of the presence

of singularity along the axis x = y (none of the other models have this). Here,

R is a decreasing function of ρ for all values of E(X) and E(Y), so the system is

most reliable when X and Y are independent. The amount of sensitivity to ρ is

comparable to that of Hougaard.

Based on the above discussion, the best model to choose would be that due to Hougaard

since it gives the widest range of values for both ρ and R. However, if one is not interested

in the dependence, then the model due to Freund might give as good a result. When

selecting a model, one should also take into account the physical contexts described in

Sections 4, 6, and 7.

9. Conclusions

We have calculated the forms of R= Pr(X < Y) for six flexible families of bivariate expo-

nential distributions and discussed their utility to ROC curve analysis. It would be of in-

terest to emulate this work for other continuous bivariate distributions, including bivari-

ate beta distributions, bivariate gamma distributions, and bivariate Pareto distributions.

It would also be of interest to extend this work for continuous multivariate distributions.

We hope to address some of these issues in a future paper.

Appendix

Some technical lemmas required for the calculations above are noted below.

Lemma A.1 (Prudnikov et al. [19, (2.3.15.7)]). For p > 0,

∫∞

0
xn exp

{

−
(

px2 + qx
)}

dx = (−1)n
√

π

p

∂n

∂qn

{

exp

(

q2

4p

)

Φ

(

− q
√

2p

)}

, (A.1)

where Φ(·) denotes the cdf of the standard normal distribution.

Lemma A.2 (Prudnikov et al. [19, (2.10.2.1)]). For α > 0,

∫∞

0
xα−1

Γ(ν,cx)dx = Γ(α+ ν)

αcα
. (A.2)
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