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Reliability Improvement of Hardware Task Graphs

via Configuration Early-fetch
Reza Ramezani, Yasser Sedaghat, and Juan Antonio Clemente

Abstract—This study presents a technique to improve the
reliability and the Mean Time to Failure (MTTF) of hardware
task graphs running on reconfigurable computers. This tech-
nique, which has been named Task Early-fetch, can be applied
to a sequence of one or several applications, represented as
task graphs. It consists in carrying out the reconfiguration of
some tasks within the execution of the previous task graph,
plus increasing the redundancy level of the early-fetched tasks.
Experimental results on actual task graphs show the positive
impacts of the proposed technique. Thus, without deteriorating
the execution time (makespan), on average, a 114% MTTF
improvement is achieved for no-fault-tolerant task graphs, and
the improvement is more significant when applying to fault-
tolerant task graphs. Finally, this paper presents a hardware
implementation of a manager that applies these techniques at
run-time and steers the execution of the running task graphs. It
demonstrates that, with 0.03% consumption of FFs and LUTs
and also 1.22% occupancy of BRAMs available on a Xilinx Virtex
UltraScale XCVU095-2FFVA2104E FPGA, the required run-time
computations can be carried out in negligible delays.

Index Terms—FPGAs, Reliability, Task Graph, Scheduling,
Early-fetch, Fault Tolerance.

I. INTRODUCTION

S
RAM-based Field Programmable Gate Arrays (FPGAs)

have recently drawn the attention of researchers and

manufacturers of complex electronic systems in fields such

as avionics and aerospace [1]. The reason is that, unlike

Application-Specific Integrated Circuits (ASICs), FPGAs can

be reconfigured multiple times during the mission and also

feature lower cost than ASICs, as well as less time to market

[2]. Partial reconfigurability makes FPGAs able to configure

only a portion of the device while the remaining resources

continue their normal operation. In order to execute multiple

functionalities in a time-multiplexed manner, a scheduler is

required to steer the execution of the hardware tasks [3].

Partially Run-time Reconfigurable (PRR) FPGAs suffer

from reconfiguration delay and also susceptibility to the conse-

quences of the Single Event Effects (SEEs) [4]. To alleviate the

susceptibility to consequences of SEE, Fault Tolerance (FT)

techniques are required to increase the reliability of a given
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design, but in most of the cases, they also come at the cost

of degrading the system’s performance. Therefore, reliability

and performance should be optimized simultaneously.

This paper aims at improving the reliability of applications,

represented as task graphs, running on FPGA-based reconfig-

urable computers, without deteriorating their execution time

–which is known as Makespan–. For this purpose, a novel

technique, named Task Early-fetch is presented. It consists in

carrying out two modifications on a pair of consecutive task-

graph schedules. On the one hand, it loads the configuration

data of some tasks of a given task graph within the execution

of the previous one. On the other hand, it increases the redun-

dancy level of the involved tasks to improve their reliability,

without deteriorating the makespan. In this work, it is assumed

a dynamic environment with one or more known task graphs

at design time, but an unknown execution order at run time.

The experiments on actual task graphs show that the

proposed technique improves the reliability and Mean Time

to Failure (MTTF) of the task graphs without deteriorating

their makespan. Additional experiments on hardware tasks in

fault-varying environments show that the proposed technique

outperforms other state-of-the-art FT techniques [5], [6]. Fi-

nally, the hardware implementation that has been presented

demonstrates that, with a very affordable hardware cost, the

run-time computation required to implement the proposed

technique is negligible.

The remainder of this paper is organized as follows. Section

II introduces some related work, and Section III shows illustra-

tive examples. Next, Section IV describes the proposed Early-

fetch technique. Experimental results are shown in Section V

and finally, the paper concludes in Section VI.

II. RELATED WORK

Many researchers have investigated the FT issues in FPGAs,

which can be categorized into three groups of mitigation

approaches, namely: design-based methods, placement- and

routing-based methods, and recovery-based ones.

Design-based methods are typically built upon redundancy,

which is a very effective approach to mitigate soft errors [7],

especially in environments with dynamic fault rates [5]. These

methods use different replications, at different granularities, to

increase the system reliability [8]. In this regard, different fine

and coarse grain redundancy-based FT techniques for space-

computing systems have been investigated in [9], [10]. As

an example of the application of FT techniques in FPGAs, a

system-level Duplication With Compare (DWC) FT technique

has been presented in [11] to improve the reliability of adaptive
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equalizers, implemented on FPGAs. In a similar approach, [12]

presents a redundant FPGA-implemented speed controller core

for high speed trains. The application of both TMR and DWC

approaches combined with a check-pointing technique to build

reliable soft processors has also been investigated in [13].

Placement- and routing-based FT techniques increase the

reliability of a design by adapting traditional place&route

techniques for FPGAs for harsh environments, at different

design phases. For example, an interesting technique has been

presented in [14] which manages the signals between functions

in such a way that multiple errors affecting two different

connections are not possible. In a similar approach, [15]

studies both fault occurrence and error propagation probabil-

ities to propose a reliability-oriented placement and routing

algorithm. Anyway, all these techniques can be applied to a

given hardware task and, as indicated by [16], they can be used

in combination with other design-based methods to increase

the reliability of the circuits.

However, the aforementioned techniques cannot prevent

fault accumulation at run-time. Recovery-based methods are

designed to resolve the fault accumulation problem [17]. Most

of these techniques are based on recovering the value of

the faulty cells [18]. For example, the studies in [19], [20]

determine different scrubbing rates for different circuits, based

on their failure rate, in such a way that the system reliability is

maximized. Some other techniques are based upon replacing

the faulty blocks with the previously generated ones, which

are functionally equivalent block instances, that do not use

the faulty resources [21], [22].

Combining design-based and recovery-based methods is

very effective for mitigating soft errors in FPGA-based sys-

tems. For example, [23] addresses the problem of tolerat-

ing N failures in nano-satellite swarm-based systems, using

spare swarms. This work presents general ideas that are not

particularly focused on a specific device, but they can be

applied to reconfigurable computers. Similarly, [24] employs

a redundancy-based approach to employ spare units in which

each task has many redundancies, so that some of them

are active and in order to reduce power consumption the

remaining are standby. The work by Yousuf [25] is another

study in this area that combines hardware and software tasks

to guarantee a given target reliability, while reducing the

energy consumption. A similar study, has been done by [26],

[27] which introduces a task partitioning scheme to tolerate

transient and permanent faults for software/hardware tasks in

heterogeneous and reconfigurable platforms.

In embedded systems in general, and in FPGAs in particular,

applications are usually represented as a Directed Acyclic

Graph (DAG) or a Task Graph (TG), whose nodes represent

computational tasks and whose edges represent dependencies

among tasks. When such task graphs run on reconfigurable

computers, they have to be scheduled in a way that both tasks

precedence constraints and the resource limitations are met.

This requires to take task scheduling and task placement into

account [28], [29]. The performance of the scheduling methods

could be improved by employing Task Prefetch [30], or Task

Reuse techniques [31]. These techniques configure a given task

TABLE I
CHARACTERISTICS OF THE TASK GRAPH DEPICTED IN FIGURE 1. THREE

FT STRATEGIES ARE APPLIED: SINGLE MODULE (NO REDUNDANCY),
DWC (DUPLICATION WITH COMPARE) AND TMR (TRIPLE MODULAR

REDUNDANCY)

Task
Computation

Time (ms)

Resources

Occupancy (%)

Configuration

Delay (ms)

FT

Strategy

τ1 140 20 80 Single

τ2 439 14 56 DWC

τ3 147 10 40 Single

τ4 596 16 64 TMR

τ5 300 14 56 DWC

in advance [32], and they can be used to improve the makespan

of task graphs [33], as well as alleviating the fragmentation

problem of FPGAs [34]. However, as it will be discussed,

these techniques have adverse effects on the task reliability.

By prefetching a task, its residency time increases on FPGA,

which as a result, increases the time that the task is exposed to

radiations. In these works, the negative effects of the prefetch

technique on the task reliability has not been evaluated nor

taken into account.

The scheduling methods can also been enhanced to take FT

requirements into account. These techniques aim at guarantee-

ing a given system performance whereas the system reliability

is increased as well. For example, a Primary/Backup scheme

is proposed in [35] in which two versions of a task run

with minimum time overlap. In [36], a real-time fault-tolerant

scheduling algorithm is proposed which, schedules hybrid

tasks able to tolerate fi faults during task execution. Our

previous study [6] showed that, by using optimization methods

and choosing, for each task, the proper FT technique from

the Pareto-set (referred to as Pareto-based FT techniques), it

is possible to increase the reliability of task graphs without

deteriorating their makespan. The application of different

FT strategies on different real-time scheduling algorithms in

reconfigurable computers have been investigated in [37]. In

order to manage these issues at run-time, some operating

systems have been introduced in [38], [39] which provide an

environment for the execution of hardware tasks by consider-

ing task communication, task placement, and especially task

fault tolerance [40].

This work presents a novel technique, named Task Early-

fetch, which aims at increasing the reliability of applications,

represented as task graphs scheduled on a FPGA-based recon-

figurable computer, without deteriorating their makespan.

III. MOTIVATIONAL EXAMPLES

In order to better clarify the proposed technique, this section

presents a couple of illustrative examples. In this work, appli-

cations are modeled as DAGs and a non-preemptible As Soon

As Possible (ASAP) scheduling strategy is used to manage

configurations and executions of tasks. It is assumed there

exists a set of one or more task graphs in the system and they

are executed serially. In this work, the concept of Stage refers

to a complete execution of a task graph.

The first example assumes the task graph with 5 tasks,

depicted in Figure 1, which is executed periodically. Its

characteristics have been detailed in Table I.
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Fig. 1. A sample task graph with 5 tasks
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Fig. 2. Example of task graph execution depicted in Figure 1

Figure 2 depicts a simple schedule of the task graph of

Figure 1. In this case, the time and area occupied in the

reconfigurable computer are presented in the horizontal and

vertical axes, respectively. In this figure, the gray-color boxes

denote the task configuration delay, whereas the dotted ones

indicate that the task has finished its configuration, but it is

waiting for its execution to start. Therefore, in this paper it is

assumed that the configuration and execution of a given task

do not overlap, and a task can start its execution only when it

is configured completely.

For the sake of simplicity, in this paper it is also assumed

that, at any point, the total area occupied in the reconfigurable

computer is simply the addition of the resource consumption of

all the tasks that are simultaneously under execution or being

reconfigured. This actually depends on many factors, such as

the partial reconfiguration model and granularity of the target

device, or whether the hardware multitasking system that runs

the tasks but implements some sort of task defragmentation. In

any case, the technique presented in this paper is orthogonal

to all these issues, and one of the many systems that have

been proposed in the literature for managing the task graph

execution in reconfigurable computers can be used to run

the tasks [29], [38], [39], in combination with the presented

approach.

As Figure 2 shows, task prefetch allows hiding the recon-

figuration delay of some tasks by overlapping them with the

execution of other tasks. In addition, an active redundancy-

based FT strategy has been applied to tasks τ2, τ4 and τ5.

In a prefetch-aware scheduling algorithm, there is a time

point in which all the tasks have been configured completely,

but the execution of the task graph is not finished yet. In

this paper, we have referred to this point as LastConfigTime

and, in the example of Figure 2, this value is 771 ms (i.e.,

the end of the reconfiguration of τ5,2). In order to define

time margins within the schedule to apply the proposed

Early-fetch technique, a Boundary value is defined so that:

LastConfigT ime ≤ Boundary < Makespan. The time

margin between boundary and makespan can be used to

configure some tasks of the next task graph. The criteria of

choosing an appropriate value for Boundary will be discussed

in the next section. Now, let the Left Side (LS) and the Right

Side (RS) of the schedule of task graph TGi be defined as

follows:

• LS (TGi) is the sequence of scheduling orders (i.e.,

starting of reconfiguration and starting of execution)

comprised between t = 0 until t = Boundary (TGi).
• RS (TGi) is the sequence of scheduling orders com-

prised between t = Boundary (TGi) and t =
Makespan (TGi).

Therefore, if there are enough available resources in the

target FPGA, the time elapsed within RS (TGi) is a good time

margin to carry out the reconfigurations of the early-fetched

tasks belonging to the task graph running immediately after

TGi, because no task of TGi is configured within this time

margin. In this example, let us assume Boundary (TGi) =
LastConfigT ime (TGi).

In order to illustrate the Early-fetch technique, Figure 3

shows two successive executions of the task graph presented in

Figure 1. In this case, the configuration of one replica of Task

τ2 (τ2,1) of Stage 2 has been early-fetched. In other words, its

reconfiguration now takes place within right side of the first

stage of the execution. In addition, the configuration delay

hidden by this early-fetch has been used to configure another

replica of Task τ2 (τ2,3) at Stage 2. Thus, this technique does

not increase the total makespan of the task graph execution in

that stage (x-axis). In addition, it does not violate the FPGA

size limitation either (y-axis). In this example, further stages

of this task graph execution are identical to the second stage

of the task graph execution in Figure 3. Finally, note that the

right side of both stages is identical, although the redundancy
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Fig. 3. A two-stage execution of the task graph of Figure 1 with early-fetch
and replication of τ2

level applied to Task τ2 is different for each stage. The reason

is that the early-fetched task (τ2) is completely executed within

LS (TGi). Let us bear in mind this fact for the next example.

Figure 4 shows another example in which Task τ5, whose

execution time falls within the right side of the schedule, is

early-fetched instead. In this case, the configuration of τ5,1 is

early-fetched within Stage 1, and a new replica of that task

(τ5,3) is configured at Stage 2. However, as this figure shows,

as a consequence of this, there do not exist sufficient resources

at the right side of Stage 2 to early-fetch Task τ5,1 from an

additional execution of the same task graph (in Stage 3, which

is not shown in the figure for simplicity). Therefore, Stage 3

cannot benefit from this technique and its execution would be

identical to that of Stage 1. In fact, the reason of this has been

the modification of the right side of the schedule at Stage 2,

due to the addition of another instance of Task τ5. In particular,

if the following condition is true:

∀τi ∈ Early Fetched Tasks (TG) ;

FinishT ime (τi) ≤ Boundary (TG) (1)

then the applicability of the Early-fetch technique in Stage i is

uniquely dependent on the task graph that runs at Stage i− 1.

However, if this does not happen, i.e.:

∃τi ∈ Early Fetched Tasks (TG) ;

FinishT ime (τi) > Boundary (TG) (2)

then the applicability of the Early-fetch technique in Stage i

is dependent to the task-graph execution sequence in Stages

[1 . . . i− 1]. The next section of the paper will explain in detail

the consequences of this important fact. It is also noteworthy to

remember that the task graphs running in different stages can

be the same, or completely different. At any rate, there exists a
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Fig. 4. A two-stage execution of the task graph of Figure 1 with early-fetch
and replication of τ5

set of task graphs that can run in the system (which is known

in advance), but their execution order is completely unknown

at run-time. This assumption is consistent with modern FPGA-

based systems, which are dynamically adaptable depending on

the run-time requirements [3].

Finally, it is very important to mention that all the modi-

fications introduced in the original schedules are carried out

at design time, and no modifications on such schedules are

carried out at run-time. As a consequence, the presented

approach always works with static schedules. The reason is

that, if dynamic schedules were used instead, the described

modifications should be computed at run-time and, as it will

be described in the following sections, they are very compu-

tationally intensive. Hence, they may incur into unaffordable

run-time delays.

IV. EARLY-FETCH AND RELIABILITY IMPROVEMENT

A. The Scoring Function

In addition to the condition defined in Eq. (1), in order to

decide if task τ is an appropriate candidate to apply the Early-

fetch technique, a scoring function has also been defined:

Scoring Function (τ) = CHIτ − CRIτ − TRIτ (3)

where:

1) CHIτ (Configuration Hidden Impact): This metric eval-

uates how much the task graph makespan is reduced if

Task τ has no configuration delay.

2) CRIτ (Configuration Residency Impact): This metric

evaluates how much the makespan increases if Task τ

is early-fetched at right side of the previous task graph,

and therefore its configuration data reside in the FPGA

until τ starts its execution.
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3) TRIτ (Task Replication Impact): This metric evaluates

how much the makespan of the task graph is increased

if the redundancy level of Task τ increases by one.

Tasks with Scoring Function (τ) ≥ 0 that also meet Eq.

(1) are considered as candidates for early-fetch. The objective

of this technique is to improve the reliability (RTG) and Mean

Time to Failure (MTTFTG) of the task graph. These metrics

will be further elaborated in the next subsection.

B. Reliability and Fault Model

In this study, the failures induced by soft errors, and in

particular, by SEUs, are the object of concern. As indicated by

[41], different altitudes above the Earth surface have different

Soft Error Rates (SERs). In this paper, the reliability model

presented in our previous work [42] has been used to estimate

the reliability of a hardware task τ (denoted as Rτ ). Rτ is

the probability that the task executes from its start time to its

finish time without any failure, with the condition that the task

had no error when starting its execution.

This model assumes that at most one SEU occurs at a time,

but one or more upsets might occur during task execution.

Soft errors follow the Poisson distribution and they can be

regarded as independent and random statistical events. Thus,

the probability of a SEU in the sensitive bits of task τ ,

occurring j times, can be obtained as:

P (Fτ,j) = e−µτ
µτ

j

j!
(4)

where

µτ = ρ× (TSτ × SBτ )× (CT τ +RT τ ) (5)

in which ρ is the SER expressed in #SEUs per bit per time

unit [41], TSτ is task size in configuration memory, SBτ

indicates the percent of sensitive bits of Task τ [43], CT τ

is task computation time, and RT τ is residency time of Task

τ , indicating the time elapsed from when it is configured

until it starts its execution. As this shows, despite the prefetch

techniques increase the system performance, they also increase

the probability of upsets in the task, which leads to the

reliability degradation. The SER can be estimated by some

modeling tools such as CREME96 [44].

Let P (Fτ ) indicate the probability of failure of task τ

given j SEUs during task execution, j ranging from 1 to ∞.

Therefore we have:

P (Fτ ) =

∞
∑

j=1

P (Fτ,j) (6)

By having P (Fτ ), the reliability of task τ is obtained as:

Rτ = 1− P (Fτ ) (7)

In this work, it is assumed that an active redundancy-based

FT technique is used for increasing task reliability [40]. With

this technique, by replicating Task τ for r times, using the

1 − out − of − r scheme, the reliability of the fault-tolerant

task τft is given by [45]:

Rτft
=

r
∑

k=1

(

r

k

)

(Rτ )
k
(1−Rτ )

r−k
(8)

Hence the reliability of task graph TG, after applying FT

techniques, is obtained as [26]:

RTG =
∏

τft∈TG

(

Rτft

)

(9)

Finally MTTF of the task graph is calculated as inversely

proportional to the task-graph probability of failure [43]:

MTTFTG =
MSTG

P (FTG)
=

MSTG

1−RTG

(10)

Where MSTG is the makespan of TG.

This reliability model has been validated and discussed in

more detail in [42]. In spite that it assumes that only SEUs

can occur, this is a simplification that many authors make in

their assumptions [43]. However, it would be easy to extend

this model to k-bit Multiple-Cell Upsets (MCUs), since for

each multiplicity k, their value of P (Fτ,j) would be calculated

exactly as in Eq. (4), but with a different value for the SER (ρ).

It is even possible to model the occurrence of MCUs and SEUs

altogether, but the demonstration is too long to be included in

this paper. In addition, any other reliability estimation methods

(analytical, fault-injection, accelerated radiation tests...) can

be used instead [46], [47], since they would be completely

orthogonal to the methodology that this paper presents.

C. The Proposed Early-fetch Technique

The motivational examples of Section III have compared

two possible modes of application of the proposed Early-fetch

technique between the involved Stages i− 1 and i.

1) Some modifications are carried out in just

RS (TG (i− 1)) and LS (TG (i)) (Figure 3), where

TG (i) indicates the task graph executed at Stage i. As

a consequence, the early-fetch between Stages i − 1
and i does not impact the applicability of this technique

between Stages i and i+ 1.

2) Some modifications are carried out in RS (TG (i− 1)),
LS (TG (i)) and RS (TG (i)) (Figure 4). In this case,

due to the modifications introduced in RS (TG (i)), the

early-fetch between these two stages does impact the

applicability of the technique between Stages i and i+1.

In the aforementioned examples, it was assumed that the

same task graph is executed twice in the system. However, it

is clear that, if another different task graph TGj runs at Stage

2 (both in Figure 3 and Figure 4), the modifications carried

out at the schedules of both task graphs could be completely

different. Without losing generality, if n task graphs can be

executed after the task graph of Figure 1, n different pairs

of modifications can be introduced at the schedules of the

involved task graphs.

In this study, in order to apply the Early-fetch technique,

the profiling of all the n task graphs has been carried out at

design time in order to obtain the modified versions of their

schedules. At run-time, the proper version will be dynamically

selected depending on the run-time conditions. In the previous

case 1), the profiling of TG (i) involves examining all the n

task graphs that may run at Stage i − 1. However, for the

previous case 2), such profiling would involve considering
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the complete sequence of task graphs at Stages [1 . . . i − 1].
The reader will quickly understand that, given the potentially

large number of task graphs and stages that may exist in an

actual system, in the latter case, such profiling is absolutely

unfeasible since it would involve a combinatorial explosion of

combinations. Therefore, the early-fetch has been restricted to

what is depicted in Eq. (1) and Figure 3. In other words, only

tasks whose execution does not go further than Boundary can

be candidates to be early-fetched.

Thus, given a set of n task graphs (TGS) that can be

executed in the system, the methodology presented in this

paper carries out a n × n design-time profiling for each

task graph TGx ∈ TGS in order to modify the initial

schedules of all the possible pairs RS (TGx) and LS (TGy),
∀TGx, TGy ∈ TGS, by selecting the most appropriate task(s)

from TGy to be early-fetched in TGx, assuming that TGy

runs immediately after TGx.

In the examples of the previous section, the value of

boundary was set to LastConfigT ime. However, it was

also stated that this value could actually be selected such

that: LastConfigT ime ≤ Boundary < Makespan. The

question that arises is: How to select the most appropriate

value for this parameter? In the example of Figure 4, the only

two tasks that are candidates for early-fetch are τ1 and τ2,

since they are the two only ones whose execution time falls

entirely within LS (TG). However, if boundary was set to 806

ms (i.e., the end of execution of Task τ3), then τ3 would also

be eligible for early-fetch, but it has the cost of reducing the

time margin of RS (TG) from 335 ms to 300 ms to early-fetch

tasks from the next stage. In order to achieve a good trade-

off between these two metrics, in the presented approach, this

parameter has been set as follows:

Boundary (TG) = max(LastConfigT ime (TG) ,

Makespan (TG)−MaxConfigDelays) (11)

where

MaxConfigDelays = max
TGi∈TGS

ConfigDelay (TGi)

(12)

and

ConfigDelay (TGi) =
∑

τj∈TGi

ConfigDelay (τj) (13)

which ConfigDelay (τj) indicates the configuration delay of

task τj in the target device.

The complete approach is described in Algorithm 1. First of

all, in the proposed algorithm the scoring function of the tasks

of TGy is calculated in Lines 2-8. In the next lines (Lines

9-11), each candidate task to be early-fetched is examined

to obtain its MTTF difference (δMTTF ) when applying this

technique. Afterwards, tasks are sorted decreasingly by their

δMTTF (Line 12). Then, the algorithm calculates the time

elapsed between boundary and the makespan of the previous

task graph execution (TGx), which is referred to as FreeTime

(Line 13). This time will be used to know how many tasks

from the current task graph (TGy) can be early-fetched in the

previous one (TGx). The candidate tasks to be early-fetched

Algorithm 1 The Proposed Early-fetch and Reliability Im-

provement Approach

1: input TGx, TGy; // Order of execution: TGx (Stage i), TGy (Stage i+1)

2: for all tasks τi,y in TGy do
3: if (FinishTime(τi,y) ≤ Boundary(TGy)) then
4: SF τi,y= Scoring Function(τi,y)
5: else
6: SF τi,y = −1
7: end if
8: end for
9: for all tasks τi,y in TGy with SF τi,y≥ 0 do

10: δMTTF τi,y
= MTTFnewτi,y

−MTTF oldτi,y

11: end for
12: sort tasks in a decreasing order of δMTTF

13: FreeTime(TGx) = Makespan(TGx) − Boundary(TGx)
14: for all sorted tasks τi,y in TGy with SF τi,y≥ 0 do
15: if (FreeTime(TGx)≥ ConfigDelay(τi,y) and increasing the

redundancy level of τi,y does not violate the time and size
limitations) then

16: EarlyFetch τi,y in TGx and increase its redundancy level
17: RSnew (TGx) = update Schedule(TGx, Right)
18: LSnew (TGy) = update Schedule(TGy , Left)
19: FreeTime(TGx) = FreeTime(TGx)− ConfigDelay(τi,y)
20: end if
21: end for
22: return RSnew (TGx), LSnew (TGy)

are selected according to their δMTTF . At each iteration, it is

assessed if each candidate task τi can be early-fetched within

the FreeTime of the previous stage, and if its additional replica

can be added in the current one (Line 15). If this condition

is true, τi is early-fetched, then the right side of the previous

schedule, the left side of the current one and FreeTime are

updated (Lines 16-19). The algorithm returns these two new

subschedules for RS(TGx) and LS(TGy) (Line 22).

D. Hardware Implementation

For each pair of task graphs TGx and TGy ∈ TGS, such

that TGy is executed immediately after TGx, the result of the

profiling described in the previous subsection is a pair schedule

versions: one for RS(TGx) and another one for LS(TGy).
Therefore with n task graphs in the system, n × n schedule

versions are generated at design time for each task graph. At

run-time, the proper ones are selected dynamically, depending

on the run-time sequence of running task graphs. This is

illustrated in Figure 5, where one can see that n+ 1 versions

of LS(TGj) and another n + 1 versions for the RS(TGj)
are possible (the n generated schedule versions plus the by-

default one). In case no information exists at run-time about

the previous or next task graphs, the selected schedule is just

the original one (this is indicated in the figure by means of

the symbol ∅). This happens, for instance, when a task graph

is executed after a system reset; or when at the time a task

graph finishes its execution, no other task graph is requested

for execution yet (and hence, the system remains idle for a

while).

In order to carry out the proper run-time selection of the

task graph schedules in a transparent and efficient manner, this

paper also presents a hardware architectural support (Figure

6) that can be implemented using some of the reconfigurable

resources of the target FPGA. In our implementation, the
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pair schedules of all the possible task graphs are stored in

a memory (see the figure). It is assumed that a schedule is

composed of a set of instructions, each of which has the

following information:

• Task ID: The ID of the task that is going to be scheduled.

The ID of a task is unique among all tasks of the task

graph.

• Reconfiguration/Exec.: Indicates if the task will be re-

configured, or executed. This field is just 1 bit (‘1’ =

reconfiguration; ‘0’ = execution).

• Starting time: The starting point of time, in terms of

clock cycles, where the instruction (reconfiguration or

execution) must take place.

• Duration: The time (in terms of the number of clock

cycles) that the instruction under execution takes to be

completed.

• Early-fetched: Indicates whether the task is early-fetched

from the next task graph (‘1’) or not (‘0’). This field is

just 1 bit.

This information corresponds to the output data port of

the Schedules’ memory, where the instructions are read (see

Figure 6).

The proposed system has been designed to work au-

tonomously since the moment when the schedule of a task

graph is requested. It features a queue of task graphs to

be executed (Task graphs’ (TG) queue), which has been

implemented using a fixed First-In-First-Out (FIFO) approach.

This architecture is assumed to communicate with an upper

layer of middleware or an operating system that dispatches

the task graphs at run-time.

When the queue is not empty, the system starts carrying

out the proper scheduling operations assigned to the first task

graph in the queue. The hardware described in Figure 6 is

steered by a Control Unit, which has been implemented as a

finite state machine. It implements the pseudo-code presented

in Algorithm 2. Thus, if the task graphs’ queue is not empty,

the first step is to read the first task graph from the queue

(Line 2). Two pieces of information are stored for a task graph:

its unique ID, and its value for Boundary. Both of them are

read from the queue and stored in separate registers in the

architecture (see Figure 6). An additional register stores the

ID of the task graph that was executed prior to the current

one (Previous TG ID register). This register is used to select

the appropriate schedule from the memory, as it was explained

above.

With this information, the schedule of the current task

graph is retrieved from the schedules’ memory, instruction

by instruction (Lines 3-7 in Algorithm 2). The address port

of this memory is connected to the following 4 pieces of

information, sorted from the Most Significant Bit (MSB) to

the Least Significant Bit (LSB):

• One bit indicating if the instruction belongs to the left

or the right side of the schedule. This is known by

comparing the Boundary value with the total number of

clock cycles that have elapsed from the starting of the

current scheduling stage (which are stored in the Total

Cycles Counter). If Total Cycles Counter < Boundary,

this bit is ‘0’; otherwise, its value is ‘1’. Hence, the

lower half of the memory stores the left sides of all the
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Algorithm 2 Implementation of the Control Unit

1: while (Task Graphs’ Queue 6= ∅) do
2: TG = Read from queue();
3: for all instructionsi in schedule (TG) do
4: instruction = Read from memory (instructionsi);
5: wait until Total Cycles Counter == Starting

time(instruction) + Duration(instruction);
6: instructions counter++;
7: end for
8: update Next Task Graphs’ Queue;
9: if (Task Graphs’ Queue 6= ∅) then

10: Previous TG ID register = Current TG ID register;
11: else
12: Previous TG ID register = ∅;
13: end if
14: reset counters;
15: update Task Graphs’ Queue;
16: end while

schedules, whereas the upper half of the memory does

likewise with the schedules’ right sides.

• The ID from the previous (or the next) task graph to be

executed. This information is retrieved from the Previous

TG ID register, and from the data output port of the

task graphs’ queue, respectively, and it is selected by the

multiplexer that can be seen in Figure 6. The selection

signal of this multiplexer is the bit described in the

previous paragraph.

• The ID of the task graph currently under execution

(Current TG ID register).

• The output of a counter that keeps track of the schedule’s

instructions that have been executed so far (Instructions

Counter).

This allows storing the information of the many possible

schedules in the memory in a modular way: the instructions of

each side (left or right) of the schedules are physically placed

in adjacent positions in the memory, since the Instructions

Counter’s output is connected to the LSBs of the memory

address port. The exact location of these instructions in the

memory is determined by the values of the IDs of the previous

and next task graphs to be executed. Thus, this hardware

support allows fetching the proper instructions in an automatic

and transparent manner, with negligible delays and with low

resources consumption. Thus, at run-time, depending if the

total cycles counter is below or above the Boundary value,

the instructions will be fetched from the lower or upper half

of the memory, respectively, in a very simple but effective

manner.

When an instruction is fetched from the memory (Line 4

in Algorithm 2), the signals Current Task ID, Reconfigura-

tion/Exec. and the output of the multiplexer that is connected

to the Early-fetched bit are transmitted simultaneously both

to the hardware multi-tasking system that runs the tasks; and

to the reconfiguration circuitry (depicted in the Figure 6). The

latter multiplexer is used to select the ID of the task graph that

the current task belongs to. Thus, if Early-fetched = 0, then

the task belongs to the task graph indicated in the Current

TG ID register. Otherwise, it belongs to the next task graph,

which is indicated by the Next TG ID signal (in other words,

it has been early-fetched).

Describing the reconfiguration circuitry and the HW multi-

tasking system is out of the scope of this paper, since there are

many implementation options for both of them available in the

literature [28], [29], [39]. All of them assume that the available

resources are divided into a number of partially reconfigurable

regions that host the execution of the hardware tasks. That

system is also assumed to manage the communications among

tasks, as well as the correct execution of the tasks taking into

account their FT technique [38]. In addition, it is assumed

that the physical placement of the tasks has been decided

elsewhere: the hardware depicted in this section only triggers

the reconfiguration/execution of the tasks in the reconfigurable

hardware, exactly on the location specified in the programming

file of the task. This location has been decided at design time

by the placer in another step of the flow.

The value of the Total Cycles Counter is used to compare if

the current schedule’s instruction has finished or not (activation

of the signal Instruction Complete in Figure 6). Thus, in case

Reconfiguration/Exec. = ‘0’ (task execution), the following

condition is checked:

Total Cycles Counter == Starting time+Duration

(14)

If this condition is true, the Instruction Complete line is

activated, by selecting the result of the comparison with the

multiplexer. In case Reconfiguration/Exec. = ‘1’, an additional

condition is checked: if the reconfiguration circuitry has fin-

ished carrying out the reconfiguration of the current task (by

selecting the other input line of the multiplexer and the AND

gate). In either of these two cases, while this condition is

not true, the Control Unit increases the Total Cycles Counter

by one and the same comparison is made again and again,

cycle after cycle (Line 6 in the algorithm). When this condition

finally becomes true, the Control Unit triggers the execution of

the next schedule’s instruction by increasing the Instructions

Counter by one, then by reading the next instruction from

the memory, and by repeating again the process. All this is

equivalent to the iterations of the FOR loop in Algorithm 2.

It is important to highlight that the control word

“111. . . . . . 111” is used to identify the end of the schedule of

the Current TG. Thus, when the End Schedule line in Figure 6

is activated, the schedule finishes, the queue of task graphs and

the Previous TG ID register are updated, and the two counters

are reset (Lines 9-14). Note that the Previous TG ID register

is updated to the value of Current TG ID only when, at that

time, there is another task graph in the queue. Otherwise, it is

updated to a null value. This is done in order to ensure that,

if the Current TG was executed assuming that the following

one is null, then the following one is also executed assuming

that the previous one is also null; and vice-versa. Finally, the

task graphs’ queue is updated only after the execution of each

task graph (hence, if there is a task graph whose execution

is requested while another one is running, the queue will be

updated only at the time instant marked by Boundary). Finally,

when a task graph finishes its execution and the Task Graphs’

Queue is not empty, the algorithm will run again, otherwise it

waits until the next request of a task graph execution.
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TABLE II
ESTIMATED SERS FOR DIFFERENT ORBITS AND SOLAR CONDITIONS

SEUs/bit/Day for different solar conditions
(Xilinx Virtex-5 XUPV5LX110T FPGA)

Orbit Solar Max Worst Week Worst Day Peak 5-Min

GEO 6.09×10
−8

6.47×10
−5

3.35×10
−4

1.29×10
−3

GPS 6.09×10
−8

5.71×10
−5

2.89×10
−4

1.10×10
−3

MOL 3.01×10
−7

6.09×10
−5

3.12×10
−4

1.18×10
−3

POL 2.25×10
−7

1.33×10
−5

7.99×10
−5

2.97×10
−4

LEO 9.51×10
−8

5.71×10
−9

4.19×10
−9

1.52×10
−8

V. EXPERIMENTAL RESULTS

A. Experimental Setup

In order to evaluate the proposed technique, several exper-

iments have been done on actual task graphs obtained from

multi-media applications. These task graphs are categorized in

two groups:

• Image Applications: Two versions of the JPEG decoder

(Serial and Parallel), an MPEG-1 encoder, and a pattern

recognition application (HOUGH) [3].

• Video Applications: A 3D rendering application based

on the open-source Pocket-GL library (Pocket GL (1)–

Pocket GL (9)). This application contains 9 different task

graphs with 2, 4, 5, and 6 consecutive tasks [3].

The model presented in Subsection IV-B has been employed

to estimate the reliability of the tasks. For this purpose,

different values for the SER have been used. As indicated

by [48], different altitudes above the Earth have different

SERs, which can be measured as #SEUs per bit per time

unit. In order to have realistic estimations, we have used the

SERs of the following four “harsh” orbits: Geosynchronous

(GEO), Global Positioning System (GPS), Molniya (MOL),

and Polar (POL). In addition a Low Earth Orbit (LEO) has

been used as a point of reference as it features the lowest

SER (see Table II). For each orbit, the SER is estimated

for different solar conditions as: Worst Week, Worst Day,

Peak Five Minutes, and Solar Max conditions of a Solar

Energetic Particle (SEP) event [42], [47] for the Xilinx Virtex-

5 XUPV5LX110T FPGA [49], using the CREME96 tools

[44]. We believe that the estimations are reliable because the

selected FPGA’s technology has been largely studied in the

literature against different sources of radiation [50], [51]. By

using the documentation provided by the manufacturer and by

carrying out experimental measurements, it was possible to

calculate the reconfiguration overhead of tasks in this device.

In addition, the HW manager that was described in Subsec-

tion IV-D has been implemented on an FPGA. In this case, the

Xilinx Virtex UltraScale XCVU095-2FFVA2104E FPGA has

been used. We have selected that device for implementation

because it is included in the UltraScale VCU108 evaluation

kit, which is a prototyping board that includes the necessary

elements to easily implement any hardware design, at a

reasonable cost, on a state-of-the-art FPGA [52].

B. Performance Evaluation for Static Soft Error Rates

In the first experiment, task graphs are executed assuming

that the SER does not change over the time. This experiment

examines two cases: executing task graphs individually, and

executing multiple task graphs altogether. The SER that is used

in this experiment is the average value of the lowest (LEO –

Worst Day) and the highest SERs (GEO – Peak 5-Min) that

have been tabulated in Table II.

The results for individual task graphs have been presented

in Table III. Task graphs’ characteristics including task count,

makespan, boundary value, and MTTF obtained by ASAP

scheduling strategy have been depicted in the table. Then,

the MTTF and the MTTF improvement of the task graphs,

achieved by applying the proposed Early-fetch technique, have

been shown. Finally, the last column shows the number of

early-fetched tasks.

This experiment shows the positive impacts of applying

the proposed technique to actual task graphs, so that without

deteriorating their makespan, the MTTF has been improved

by 114% on average. It is noteworthy to state that using

other SERs yields very similar results in terms of MTTF

improvement.

The proposed technique has also been applied to sequences

of multiple task graphs. The obtained results have been pre-

sented in Table IV. This experiment examines three different

groups of task graphs: Image Applications, Video Appli-

cations, and a combination of all the task graphs. In this

experiment, for each set of task graphs, two different cases

have been examined:

1) Early-fetch: The performance of the proposed technique.

Let us remember that only the tasks that finish com-

pletely before the boundary are eligible to be early-

fetched. Otherwise, as discussed above, the n × n

task-graph profiling is unfeasible.

2) Ideal Early-fetch: An ideal scenario, where the run-time

task-graph execution order is known in advance. In this

case, a customized task-graph profiling has been made

to obtain the modified schedules. In this case, all the

tasks (even those finishing after boundary) were eligible

to be early-fetched. For this experiment, a sequence of

100 random stages has been generated.

As the obtained results show, in this case the proposed

Early-fetch technique has very positive impacts on the MTTF.

In addition, these results show that the ideal case yields a

MTTF improvement three or four times greater than the Early-

fetch technique. The reason is that the MTTF improvement

grows exponentially when the reliability of the task graphs

approaches 1 (see Eq. (10)). In other words, the number

of early-fetched tasks has an exponential impact on the

MTTF improvement. Thus, for instance, when one task is

early-fetched the MTTF improvement is, on average, +25%.

When two tasks are early-fetched, this improvement becomes

+110%; but when three tasks are early-fetched, +415% MTTF

improvement is achieved.
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TABLE III
REAL-WORLD TASK GRAPHS USED IN THE DEVELOPED EXPERIMENTS

Task Graph
Task

Count

Makespan

(ms)

Boundary

(ms)

MTTF Basic

(ms)

Improved

MTTF (ms)

MTTF

Improvement (%)

Number of

Early-fetched Tasks

JPEG (Serial) 4 80 73 5.1× 10
5

1.4× 10
6 165.25% 3

JPEG (Parallel) 8 55 40 3.2× 10
5

1.7× 10
6 426.54% 7

MPEG1 5 39 32 6.3× 10
5

1.5× 10
6 141.04% 3

Hough 6 96 88 5.1× 10
5

8.1× 10
5 58.21% 3

Pocket GL (1) 2 7 4 2.1× 10
6

3.2× 10
6 50.00% 1

Pocket GL (2) 4 11 6 1.2× 10
6

1.6× 10
6 40.00% 2

Pocket GL (3) 4 35 29 7.4× 10
5

1.5× 10
6 101.13% 3

Pocket GL (4) 5 54 46 5.0× 10
5

1.1× 10
6 126.84% 3

Pocket GL (5) 5 11 7 1.1× 10
6

1.4× 10
6 28.57% 2

Pocket GL (6) 5 18 11 7.2× 10
5

9.2× 10
5 27.78% 2

Pocket GL (7) 5 33 26 5.9× 10
5

6.9× 10
5 17.14% 2

Pocket GL (8) 6 27 18 6.2× 10
5

1.1× 10
6 76.92% 3

Pocket GL (9) 6 72 63 4.5× 10
5

1.5× 10
6 220.29% 4

TABLE IV
EXPERIMENTS ON MULTIPLE TASK GRAPHS

Task Graphs Characteristics Early-fetch Ideal Early-fetch

Task Graphs
Task Graph

Count

Basic MTTF

(ms)

Improved

MTTF (ms)

MTTF

Improvement (%)

Improved

MTTF (ms)

MTTF

Improvement (%)

Image Apps 4 4.9× 10
5

1.0× 10
6 104.48% 2.61× 10

6 431%

Video Apps 9 9.0× 10
5

1.3× 10
6 47.55% 3.88× 10

6 329%

All Task Graphs 13 7.7× 10
5

1.2× 10
6 54.77% 3.72× 10

6 388%

C. Performance Evaluation for Dynamic Soft Error Rates

In the second experiment, the proposed technique has been

evaluated under a dynamic SER environment. In this case,

the aforementioned task graphs have been hardened with

two state-of-the-art FT techniques, and then the Early-fetch

technique has been applied to them. These two techniques

are:

• Adaptive Technique: It is an adaptive FT technique, also

known as “Three-mode adaptive strategy”, which has

been presented in [5]. It employs different FT techniques

for different ranges of SERs, but in each SER, a specific

FT technique is used for all the tasks. Thus, no redun-

dancy is applied when the SER is lower than 10% of

the expected range of SERs, Triple Modular Redundancy

(TMR) is applied when the SER is above 50% of the

expected range of SERs, and Duplication With Compare

(DWC) is used otherwise.

• Pareto-based Technique: In a previous work [6], the

authors have addressed the problem of applying optimal

FT techniques to task graphs, w.r.t. a given schedule,

using multi-objective optimization methods. The study

has shown that it is possible to increase the MTTF

of a task graph without deteriorating its makespan, by

using some solutions of the Pareto-set obtained from the

optimization method.

The obtained results have been illustrated in Figure 7.

The experiments have been performed on SERs presented

in Table II. The SERs have been categorized based on the

Adaptive technique, but for the sake of clarity, for each SER

category, a uniformly distributed subset of three of them has

been evaluated. The obtained results show that the Early-

fetch technique outperforms both the Adaptive and the Pareto-

based techniques. In addition, the results demonstrate that the

improvements achieved are much more significant over the

Pareto-based FT technique in environments with lower SERs.

Similarly as in the results shown in Table IV, the reason is

that the MTTF increase is much faster when reliability closes

to 1, and it reaches to infinite when reliability = 1 (Eq. (10)).

D. Hardware Implementation

Finally, the amount of hardware resources used for imple-

mentation of the proposed hardware architectural support is

shown in Table V. This table shows the number of Look-Up

Tables (LUTs) and Flip-Flops (FFs) used, and breaks it down

into the different existing modules: The Next Task Graphs’

Queue, the Schedules’ Memory and the Control Unit. It can

be observed that the amount of consumed resources is very

affordable: no more than 0.03% of the total FFs and LUTs,

whereas it instantiates 1.22% of the available BRAMs. The

latter value is reasonable, taking into account that the system

needs to allow for space to store all the schedule versions for

all the task graphs, in all the possible scenarios that can exist

at run-time.

These values refer to a Xilinx Virtex UltraScale XCVU095-

2FFVA2104E FPGA [52]. These data correspond to a system

with a maximum of 16 task graphs (hence, the number of bits

to represent task graph ID, nTGID
= 4), at most 16 tasks

in each task graph (ntaskID
= 4), schedules with up to 32
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Fig. 7. MTTF improvement of the proposed Early-fetch technique over the
FT approaches presented in [5] and in [6] (logarithmic scale)

TABLE V
RESOURCE CONSUMPTION OF THE HW ARCHITECTURAL SUPPORT

Module
CLB

LUTs

CLB

FFs
CARRY8

Block

RAMs

Task Graphs’
Queue

31
(<0.01%)

25
(<0.01%)

1
(<0.01%)

1
(0.03%)

Memory
43

(<0.01%)
1

(<0.01%)
0

(0%)
20

(1.16%)

Control Unit
98

(0.02%)
56

(<0.01%)
12

(0.02%)
0

(0%)

TOTAL
172

(0.03%)
82

(<0.01%)
13

(0.02%)
21

(1.22%)

different schedule instructions per side (ninstr = 5), a task

graphs’ queue with 256 positions and counters with a width

of ncycles = 20 bits. The latter parameter can be used to

measure times for task reconfigurations and executions, for

instance, ranging from 1 us to 1048.6 ms if the tasks’ running

clock frequency is 100 MHz. Thus, for the sake of simplicity,

in this case, the width of the fields Starting Time, Duration

(from memory data output), as well as those of the Boundary

register and the Total Cycles Counter were set to the same

value ncycles.

This system scales well for different values of the pa-

rameters described above, but it must be taken into account

that, every time the width of the memory’s address port

(2×nTGID
+ncycles+1) increases by 1, the amount of BRAMs

that are needed doubles. Figure 8 and Figure 9 show the

resources consumption for different values of this summation.

As it can be seen, the FFs and LUTs consumption keeps under

0.12% in all the cases, but when 2×nTGID
+ninstr+1 > 17,

the %BRAMs consumption reaches double digits. However,

this is still an affordable cost for a system that supports a

reasonably high number of different task graphs. Additionally,
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if the length of the memory’s output data port (see Figure

6 again); i.e., 2 × ncycles + ntaskID
+ 2, becomes greater

than 64, then the total number of BRAMs doubles as well.

Nevertheless, this does not happen unless task graphs with

thousands of different tasks are used.

Focusing on the width of the output data port of the task

graphs’ queue; i.e., ncycles + nTGID
, if this value becomes

greater than 32, then the system will need 1 additional BRAM.

Something similar happens when its depth is greater than 1024

positions. In these two cases, the increase of FF and LUTs

consumption is negligible.

As discussed above, in this implementation, the bottleneck

is clearly the embedded BRAMs consumption. Thus, if for

instance, a small FPGA is used, a good solution would be to

store the schedules in an off-chip memory (such as a FLASH,

or a DDR2, commonly available in commercial FPGA-based

prototyping boards), or a memory hierarchy composed of an

on-chip cache plus an off-chip memory, which is very common

in computer architecture. Of course, in this case, a cost in

terms of performance loss has to be paid. However, even if
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the performance of the proposed implementation decreased

drastically, this would not involve significant run-time delays,

since this system needs no more than 100 additional clock

cycles to carry out the run-time computations. In addition,

both this hardware and the multitasking system that steers

the execution of the hardware tasks can work at different

frequencies.

VI. CONCLUSIONS

This paper has presented a technique, named Task Early-

fetch, to improve the MTTF of hardware applications repre-

sented as task graphs running on FPGA-based reconfigurable

computers under harsh environments, without deteriorating

their makespan. This technique receives as input a set of task

graphs that can potentially run in the target system and, at

design time, it applies two modifications to their schedules:

On the one hand, it pre-fetches some tasks from a given task

graph within the execution of the previous one. On the other

hand, it increases the redundancy level of the selected tasks.

Since the actual sequence of task graphs that will run in the

system is not known at design time, this technique performs a

n×n profiling, n being the number of task graphs. This paper

has also presented a hardware architecture that carries out the

proper run-time management of the modified schedules in an

efficient and transparent manner, and with negligible run-time

overheads.

The impacts of the proposed technique have been examined

using a set of actual task graphs extracted from multimedia

applications. Experimental results have demonstrated the pos-

itive effects of the proposed technique to improve the MTTF of

hardware task graphs running on FPGA-based reconfigurable

computers, in environments with static and dynamic SERs.

Finally the low cost and the high performance of the presented

prototype has been demonstrated.
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Université Grenoble-Alpes, Grenoble, France.

His research interests are: dynamically reconfig-
urable hardware, FPGA design and task scheduling.
Also, his research is focused on the study of Single
Event Effects (SEE) tolerance of digital circuits

implemented on FPGAs and he is being conducting experiments evaluating
the robustness of memories face to neutrons and heavy ions with TIMA Labs
and the Laboratoire de Physique Subatomique et de Cosmologie (LPSC), at
CNRS-IN2P3 research center.


