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Abstract 

The goal of the present study is to investigate the availability and the reliability of the system, which has two dissimilar 

units in the parallel network under copula. Other key parameters, such as mean time to failure (MTTF) and expected 

profit are also evaluated. Simultaneous malfunctioning of units, common cause failure and human fault are the causes 

of system breakdown. The present mathematical model is examined under the assumption that each failure rate is 

constant and is exponentially distributed. The system undergoes repair in the completely failed state as well as in 

degraded state. In the case of complete failure, the system is repaired by two repair facilities and that are tackled by 

utilizing Gumbel-Hougaard family copula. The present system has been studied by applying the concepts of probability 

theory, supplementary variable technique and Laplace transformation.  

 

Keywords- Reliability, Availability, MTTF, Copula. 

 

 

 

1. Introduction 
In the present scenario of the competitive world, increasing complexity in components and 

systems has made it imperative for industries to produce highly reliable, user friendly, efficient 

and cost effective systems. Reliability is the probability that a unit or a machine will perform its 

specified task adequately for an assured period of time under the given set of conditions. 

Customer satisfaction is highly governed by the reliability, availability and the performance of the 

system. Thus, reliability analysis is an important phase in the planning, designing and 

manufacturing of any system. In recent time, it has emerged as one of the most challenging and 

demanding theory. 

 

In spite of advanced automation techniques, manpower is involved in system operation and hence 

system may fail at any instant due to unexpected human activity. Lack of training, inadequate 

experience, mental stress, high noise levels, improper work layouts, inadequate tools and poorly 

written manuals are the chief causes of human error. Apart from human error, some other major 

causes of system failure are common cause failure, catastrophic failure, hardware failure, partial 

failure and unavailability of repairman. Common cause failure occurs when multiple units or 

components fail in the same manner due to a single cause. Temperature, humidity, pressure, 

equipment design deficiencies and maintenance errors are some of the reasons of common cause 

failures.  

 

https://dx.doi.org/


International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 4, No. 1, 116–130, 2019 

https://dx.doi.org/10.33889/IJMEMS.2019.4.1-011 

117 

Ram (2013) has summarized the survey of various reliability approaches that are used in the 

fields of engineering and applied sciences. Complex systems are extensively discussed by a 

number of earlier authors like Dhillon and Yang (1992, 1993), Kontoleon and Kontoleon 

(1974); Gupta and Agarwal (1984) by considering various failure and repair disciplines. 

Recently, Saxena et al. (2019) analyzed the performance of the water treatment plant by 

evaluating its various reliability measures. Zheng et al. (2018) considered component 

importance analysis of a real-time computing system with warm standby redundancy and 

common cause failures. Kumar et al. (2017) studied multistate casting system with the help of 

supplementary variable technique and Laplace transform.  

 

Parallel redundancy is an important commonly used method for enhancing system reliability. Li 

(2016) discussed the pros and cons of the active redundancy and standby redundancy. The author 

utilized Markov model technique to evaluate mean time between failures for active and standby 

redundant systems. Chung (1981) used the Laplace transform technique for analyzing a redundant 

system comprising of two dissimilar three-state active units and one standby unit. Author has 

assumed that the units of the system may go down due to two mutually exclusive failure modes or 

by common cause failure. Dhillon and Viswanath (1991) obtained  reliability, steady state 

availability, time dependent availability and MTTF for three models, where each model 

corresponds to two distinct units parallel system with common cause failure. Dhillon and Anuda 

(1993) further considered the same parallel system with gamma distributed repair time. Authors 

employed the supplementary variable technique to provide the Laplace transform solution of state 

probability equations. Sridharan and Mohanavadivu (1997) studied three Markov models each 

representing the parallel system comprising of two non-identical units with different repair rules. 

In model 1, the system undergoes repair in both the partially failed state as well as in the 

completely failed state, whereas in model 2 it undergoes repair only in the case of partial failure. 

The considered system in model 3 is not at all repairable. Researchers concluded that the 

availability, reliability and the MTTF of parallel system shrinks with the increment in common 

cause failure rate and human error rate. Chopra and Ram (2017) further evaluated the reliability 

measures of the dissimilar units parallel system by incorporating waiting time. 

 

Agnihotri and Satsangi (1996) analyzed two distinct parallel units system with priority based 

repair, inspection and post repair. Gupta et al. (1999) used regenerative point technique for 

studying the system in which the failure times of two dissimilar operating parallel units are 

correlated. Kumar et al. (2012) analyzed system having priority unit and non priority unit 

arranged in a parallel configuration. The priority unit is repairable and non priority unit is not 

repairable and is replaced after a random period of operation. Authors have supposed that the 

failure and repair times of the priority unit are correlated random variable having bivariate 

exponential distribution. Malik et al. (2010); Deswal and Malik (2015) also used regenerative 

point technique for analyzing parallel systems. EL-Sherbeny (2013) considered four types of 

failure: hardware failure, common cause failure, critical human error and non-critical human error 

to analyze the performance of two dissimilar units parallel system under preventive maintenance 

and two types of repair. They employed graphical evaluation and review technique to derive 

various reliability measures. 

 

The concept of Copula is studied by many authors including Nelsen (2006). Copulas are defined 

as multivariate distribution functions with uniform margins over the interval [0, 1]. The Gumbel-

Hougaard family copula is the bivariate distribution given by: 
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𝐶𝜃(𝑢1, 𝑢2) = 𝑒
(−((− log 𝑢1)𝜃+(− log 𝑢2)𝜃)

1
𝜃⁄

)
. 

 

 

Here, 𝜃 lies in the interval [1, ∞) and 𝜃 controls the dependency between 𝑢1and 𝑢2. Gumbel-

Hougaard copula belongs to the Archimedean family of copulas. Independence copula and 

comonotonicity copula are the special cases of Gumbel-Hougaard family copula for 𝜃 = 1 and 

𝜃 → ∞ respectively. Gumbel-Hougaard family copula is not symmetric and possesses higher 

dependence at right tails. The work presented in a series of papers of Ram and Singh (2008, 

2010), Ram et al. (2013), Singh and Gulati (2014); Ram and Goyal (2018) is based on copula 

approach. In all these papers, authors have incorporated two types of repair facilities between 

neighbouring states. The two repair facilities are modelled by using Gumbel-Hougaard family 

copula.  

 

Ram and Singh (2008) mentioned several reasons for using copula as a tool for modelling 

dependence. They applied copula to analyze the complex system which consists of two 

independent repairable subsystems namely 1-out-of-2:F and 1-out-of-n:F in series. Authors 

studied system under preemptive resume repair policy. They found significant improvement in 

the reliability of the system by incorporating copula. Ram et al. (2013) considered standby system 

where repair of main and standby unit follows general distribution, but repair in case of human 

error is handled with the aid of Gumbel-Hougaard family copula. Singh and Gulati (2014) further 

adopted copula to study a standby complex system under waiting time discipline. Authors 

modelled the need of fast repair in the case of complete failure and human error by using 

Gumbel-Hougaard family copula distribution. Ram and Goyal (2018) presented a novel concept 

for three state fault tolerant repairable system with two kinds of repair facilities. They have shown 

that the coverage factor and copula improves the performance of the system. 

 

Redundant parallel systems are unanimously used in computers, power plants, navigation 

systems, fire stations, aircraft systems, communication systems and many other critical systems. 

Therefore, this study is carried out to compute the reliability measures of two distinct units 

parallel system subjected to two kinds of failure under two repair facilities. The two different 

types of repair are modelled by using Gumbel-Hougaard family copula. Supplementary variable 

technique and Laplace transformation are used in the present study. 

 

 

 

2. Model Description  
The system has two dissimilar units, 1 and 2 which are arranged in a parallel network.  

Simultaneous hardware failure of distinct units, common cause failure and human fault leads to 

total system failure. Normal, degraded and complete failure are the three states of the present 

redundant system. These states and corresponding transition diagram is presented in Table 1 and 

Figure 1 respectively. There are two repair facilities namely exponential and general between the 

completely failed states (𝑆3,  𝑆4,  𝑆5) and the normal state (𝑆0). 
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Table 1. States explanation 
 

State Description 

S0 Normal state: Both dissimilar units are functioning properly 

S1 Degraded state: Unit 1 has stopped working and is under repair, Unit 2 is functioning normally 

S2 Degraded state: Unit 2 has stopped working and is under repair, Unit 1 is operational 

S3 Completely failed state: System failure because of hardware breakdown of both dissimilar units 

S4 Completely failed state: System failure due to common cause failure 

S5 Completely failed state: System failure due to human error 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. State transition diagram 
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3. Notations and Assumptions 
The notations used in this paper are as follows: 

 
t  Time scale  

s  Laplace transform variable 

Si  (i= 0, 1, 2, 3, 4, 5) Transition states  

𝜆1/𝜆2 Hardware failure rate of unit 1/unit 2 

𝜆𝑐/𝜆𝑐1/𝜆𝑐2 Common cause failure rate for state 𝑆0/𝑆1/𝑆2 

𝜆ℎ/𝜆ℎ1/𝜆ℎ2 The rate of human error for state 𝑆0/𝑆1/𝑆2 

𝜇1/𝜇2 Constant repair rate of unit 1/ unit 2 

       / / 543 xxx   Repair rate for the completely failed state 
543  //S SS  

 tPi  (i= 0, 1, 2, 3, 4, 5) Probability of system being in state iS at instant t  

 sPi (i= 0, 1, 2, 3, 4, 5) Laplace transformation of  tPi
 

      , /, / , 543 txPtxPtxP             Probability density function of the system being in completely failed state
543 // SSS  at instant t 

with elapsed repair time x 

𝐶𝜃3(𝑢(𝑥), 𝜇3(𝑥))
/𝐶𝜃4(𝑢(𝑥), 𝜇4(𝑥))
/𝐶𝜃5(𝑢(𝑥), 𝜇5(𝑥)) 

Joint probability for repair rate from failed state 
543  //S SS to normal state 𝑆0 according to 

Gumbel-Hougaard copula, where 𝑢(𝑥) = 𝑒𝑥, 

 𝐶𝜃3(𝑢(𝑥), 𝜇3(𝑥)) = 𝑒𝑥𝑝 [𝑥𝜃 + (𝑙𝑜𝑔(𝜇3(𝑥)))
𝜃

]

1
𝜃⁄

 

𝐶𝜃4(𝑢(𝑥), 𝜇4(𝑥)) = 𝑒𝑥𝑝 [𝑥𝜃 + (𝑙𝑜𝑔(𝜇4(𝑥)))
𝜃

]

1
𝜃⁄

 

𝐶𝜃5(𝑢(𝑥), 𝜇5(𝑥)) = 𝑒𝑥𝑝 [𝑥𝜃 + (𝑙𝑜𝑔(𝜇5(𝑥)))
𝜃

]

1
𝜃⁄

 

        /  / 543 sss   Laplace transformation of probability density functions of        / / 543 xxx   

 

 

In this study, the following assumptions were made: 

 The system has two distinct units which are connected in parallel network. 

 Initially, the system is in normal state as both parallel units are functional. 

 System complete failure occurs on account of common cause failure, human fault and 

hardware malfunctioning of both units.  

 All failures rates are constant. Hardware failure, common cause failure and human failure 

are statistically independent and exponentially distributed. 

 Common cause failure and human error can arise at any instant irrespective of the fact 

whether one unit is operational (
21 / SS ) or both are operational ( 0S ). 

 The system undergoes repair in the completely failed state as well as in degraded state. 

 Unit 1 and unit 2 have constant repair rates. 

 In complete failed states (𝑆3, 𝑆4, 𝑆5), the system is repaired by two repair facilities.  

 Gumbel-Hougaard family copula is used for modelling the repairs of completely failed 

states (𝑆3, 𝑆4, 𝑆5). 

 After repairing, the system behaves like a new one.  
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4. Analysis and Discussion 
The set of differential equations corresponding to the present model are as follows: 

 

(
𝜕

𝜕𝑡
+ 𝜆1 + 𝜆2 + 𝜆ℎ + 𝜆𝑐) 𝑃0(𝑡) + 𝜇1𝑃1(𝑡) + 𝜇2𝑃2(𝑡)

= ∫ 𝐶𝜃3(𝑢(𝑥), 𝜇3(𝑥))
∞

0

𝑃3(𝑥, 𝑡) 𝑑𝑥 + ∫ 𝐶𝜃4(𝑢(𝑥), 𝜇4(𝑥))
∞

0

𝑃4(𝑥, 𝑡) 𝑑𝑥     

+ ∫ 𝐶𝜃5(𝑢(𝑥), 𝜇5(𝑥))
∞

0

𝑃5(𝑥, 𝑡) 𝑑𝑥                                                                              (1) 

  

(
𝜕

𝜕𝑡
+ 𝜆2 + 𝜆ℎ1 + 𝜆𝑐1 + 𝜇1) 𝑃1(𝑡) = 𝜆1𝑃0(𝑡)                                                                         (2) 

 

(
𝜕

𝜕𝑡
+ 𝜆1 + 𝜆ℎ2 + 𝜆𝑐2 + 𝜇2) 𝑃2(𝑡) = 𝜆2𝑃0(𝑡)                                                                         (3) 

 

(
𝜕

𝜕𝑥
+

𝜕

𝜕𝑡
+ 𝐶𝜃3(𝑢(𝑥), 𝜇3(𝑥))) 𝑃3(𝑥, 𝑡) = 0                                                                            (4) 

 

(
𝜕

𝜕𝑥
+

𝜕

𝜕𝑡
+ 𝐶𝜃4(𝑢(𝑥), 𝜇4(𝑥))) 𝑃4(𝑥, 𝑡) = 0                                                                            (5) 

 

(
𝜕

𝜕𝑥
+

𝜕

𝜕𝑡
+ 𝐶𝜃5(𝑢(𝑥), 𝜇5(𝑥))) 𝑃5(𝑥, 𝑡) = 0                                                                            (6) 

 
At instant 𝑡 = 0, the probability of the system being in state Si (i = 0, 1, 2, 3, 4, 5) is given by 

following two equations. 

 

𝑃0(0) = 1                                                                                                                                      (7) 

 

𝑃1(0) = 𝑃2(0) = 𝑃3(0) = 𝑃4(0) = 𝑃5(0) = 0                                                                      (8) 
 

The present model is governed by following boundary conditions: 

 

𝑃3(0, 𝑡) = 𝜆2𝑃1(𝑡) +  𝜆1𝑃2(𝑡)                                                                                                   (9) 

 

𝑃4(0, 𝑡) = 𝜆𝑐𝑃0(𝑡) +  𝜆𝑐1𝑃1(𝑡) + 𝜆𝑐2𝑃2(𝑡)                                                                           (10) 

 

𝑃5(0, 𝑡) = 𝜆ℎ𝑃0(𝑡) +  𝜆ℎ1𝑃1(𝑡) + 𝜆ℎ2𝑃2(𝑡)                                                                         (11) 
 
Using Equations (7-11), we obtain Laplace transform solution of Equations (1-6) as follows: 

 

𝑃0
̅̅ ̅(𝑠) =

1

𝐺(𝑠)
                                                                                                                                (12) 

 

𝑃1̅(𝑠) =
𝜆1

(𝑠 + 𝐵1)
𝑃0
̅̅ ̅(𝑠)                                                                                                                (13) 
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𝑃2
̅̅ ̅(𝑠) =

𝜆2

(𝑠 + 𝐵2)
𝑃0
̅̅ ̅(𝑠)                                                                                                                (14) 

 

𝑃3
̅̅ ̅(𝑠) = 𝜆1 𝜆2  𝑃0

̅̅ ̅̅ (𝑠) (
1

𝑠 + 𝐵1
+

1

𝑠 + 𝐵2
) (

1−𝜒3̅̅ ̅(𝑠)

𝑠
)                                                                     (15) 

 

𝑃4̅(𝑠) = 𝑃0
̅̅ ̅(𝑠) (𝜆𝑐 +

𝜆1 𝜆𝑐1

𝑠 + 𝐵1
+

𝜆2 𝜆𝑐2

𝑠 + 𝐵2
) (

1−𝜒4̅̅̅̅ (𝑠)

𝑠
)                                                                      (16) 

 

𝑃5
̅̅ ̅(𝑠) = 𝑃0

̅̅ ̅(𝑠) (𝜆ℎ +
𝜆1 𝜆ℎ1

𝑠+𝐵1
+

𝜆2 𝜆ℎ2

𝑠+𝐵2
) (

1−𝜒5̅̅̅̅ (𝑠)

𝑠
)                                                                     (17) 

 
where, 

𝐺(𝑠) = 𝑠 + 𝜆𝑐 + 𝜆ℎ + 𝜆1 + 𝜆2 −
𝜆1 𝜇1

𝑠 + 𝐵1
−

𝜆2 𝜇2

𝑠 + 𝐵2
− 𝜆1 𝜆2 (

1

𝑠 + 𝐵1
+

1

𝑠 + 𝐵2
) 𝜒3

̅̅̅̅ (𝑠)

− (𝜆𝑐 +
𝜆𝑐1 𝜆1

𝑠 + 𝐵1
+

𝜆𝑐2 𝜆2

𝑠 + 𝐵2
) 𝜒4

̅̅̅̅ (𝑠)

− (𝜆ℎ +
𝜆ℎ1 𝜆1

𝑠 + 𝐵1
+

𝜆ℎ2 𝜆2

𝑠 + 𝐵2
) 𝜒5

̅̅̅̅ (𝑠)                                                                                (18) 

 

𝐵1 = 𝜆2 + 𝜆𝑐1 + 𝜆ℎ1 + 𝜇1 and 𝐵2 = 𝜆1 + 𝜆𝑐2 + 𝜆ℎ2 + 𝜇2. 

 
Equation (19) and Equation (20) give Laplace transformation of the probabilities of the system 

being in up and down state at any moment t. 

 

𝑃𝑢𝑝
̅̅ ̅̅  (𝑠) = 𝑃0

̅̅ ̅(𝑠) + 𝑃1̅(𝑠) + 𝑃2
̅̅ ̅(𝑠) =

1

𝐺(𝑠)
[1 +

𝜆1

(𝑠+𝐵1)
+

𝜆2

(𝑠+𝐵2)
]                                           (19) 

 

𝑃𝑑𝑜𝑤𝑛
̅̅ ̅̅ ̅̅ ̅̅  (𝑠) =    𝑃3

̅̅ ̅(𝑠) + 𝑃4̅(𝑠) + 𝑃5
̅̅ ̅(𝑠)                                                                                    (20) 

 

 

4.1 Availability  

4.1.1 System Availability in Comprehensive State 

System availability at any instant t is obtained by setting         𝜒3̅̅ ̅(𝑠) =
𝐶𝜃3(𝑢(𝑥),𝜇3(𝑥))

𝑠+𝐶𝜃3(𝑢(𝑥),𝜇3(𝑥))
,     

𝜒4̅̅ ̅(𝑠) =
𝐶𝜃4(𝑢(𝑥),𝜇4(𝑥))

𝑠+𝐶𝜃4(𝑢(𝑥),𝜇4(𝑥))
  and 𝜒5̅̅ ̅(𝑠) =

𝐶𝜃5(𝑢(𝑥),𝜇5(𝑥))

𝑠+𝐶𝜃5(𝑢(𝑥),𝜇5(𝑥))
 and assuming the values of parameters. In 

Equation (19), we assumed 𝜆1 = 0.50, 𝜆2 = 0.40, 𝜆ℎ = 0.30, 𝜆ℎ1 = 0.20, 𝜆ℎ2 = 0.10, 𝜆𝑐 =
0.25,  𝜆𝑐1 = 0.15, 𝜆𝑐2 = 0.10,  𝜇1 = 1, 𝜇2 = 1, 𝜇3 = 𝜇4 = 𝜇5 = 1, 𝑥 = 1 and 𝜃 = 1 and then 

applied inverse  Laplace transformation. The obtained expression is  

 

 

𝐴(𝑡) = 0.183563466447622 𝑒(−2.948513192969554 𝑡) cos(0.240846721380981 𝑡)  

                − 0.037060362890448 𝑒( −2.948513192969554 𝑡) sin( 0.240846721380981 𝑡) 

                −  0.000095958716709 𝑒(−1.721255442519939 𝑡) 

                +  0.816532492269086                                                                                                (21) 
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4.1.2 System Availability without Common Cause Failure 
We have computed system availability in this case by considering 𝜆1 = 0.50, 𝜆2 = 0.40, 𝜆ℎ =
0.30, 𝜆ℎ1 = 0.20, 𝜆ℎ2 = 0.10, 𝜆𝑐 = 0,  𝜆𝑐1 = 0, 𝜆𝑐2 = 0,  𝜇1 = 1, 𝜇2 = 1, 𝜇3 = 𝜇4 = 𝜇5 = 1, 
𝑥 = 1 and 𝜃 = 1 in Equation (19) and after that evaluating inverse Laplace transformation.  The 

obtained system availability at time t is 

 

𝐴(𝑡) = 0.130506468190394 𝑒(−2.759140914229522𝑡) cos(0.450384265458169𝑡) 

              +   0.133409935834662 𝑒( −2.759140914229522𝑡) sin( 0.450384265458169𝑡) 

              −    0.000000000000002 𝑒(−1.59999999999999 𝑡)         

              +   0.869493531809607                                                                                                (22) 

 

4.1.3 System Availability without Human Error 
In this case, system availability is obtained by substituting 𝜆1 = 0.50, 𝜆2 = 0.40, 𝜆ℎ = 0, 
𝜆ℎ1 = 0, 𝜆ℎ2 = 0, 𝜆𝑐 = 0.25,  𝜆𝑐1 = 0.15, 𝜆𝑐2 = 0.10,  𝜇1 = 1, 𝜇2 = 1, 𝜇3 = 𝜇4 = 𝜇5 = 1, 
𝑥 = 1 and 𝜃 = 1 in Equation (19) and then taking inverse Laplace transformation. We get 

availability as 

 

𝐴(𝑡) = 0.119100727810722 𝑒(−2.720712511315509𝑡) cos(0.478452459176194𝑡) 

              + 0.154424764456622 𝑒( −2.720712511315509𝑡) sin( 0.478452459176194𝑡) 

              − 0.000097619485088 𝑒(−1.576856805828027𝑡) 

              + 0.880996891674365                                                                                                  (23) 

 

Table 2 reveals that initially, there is a sharp decrease in the system availability but in long run it 

stabilizes to 0.81, 0.87 and 0.88 in the comprehensive state, and in the absence of common cause 

failure and human error respectively. Figure 2 depicts that system availability is maximum when 

it is free from human error and is minimum in the comprehensive state. It can also be seen from 

Figure 2 that system availability in the absence of common cause failure is slightly less as 

compared to its availability when there is no human error. 

 

 

 

4.2 Reliability 
System reliability is evaluated by equating each repair rate in Equation (19) to zero and then 

taking inverse Laplace transformation. We have computed system reliability in the following 

different cases: 

 

4.2.1 System Reliability in Comprehensive State 
System reliability at any time t is computed by equating each repair rate as zero and 

considering parameters 𝜆1 = 0.50, 𝜆2 = 0.40, 𝜆ℎ = 0.30, 𝜆ℎ1 = 0.20, 𝜆ℎ2 = 0.10, 𝜆𝑐 = 0.25,  
𝜆𝑐1 = 0.15 and 𝜆𝑐2 = 0.10 in Equation (19) and then employing inverse Laplace 

transformation. The attained system reliability is  

 

𝑅(𝑡) = −0.247619047619045e−1.45𝑡 + 0.714285714285736 e−0.75 𝑡 + 0.53𝑒−0.70𝑡                    (24) 
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4.2.2 System Reliability without Common Cause Failure 
The expression for system reliability in case of absence of common cause failure is obtained by 

considering all repairs in Equation (19) as zero and assuming parameters as 𝜆1 = 0.50,   𝜆2 =
0.40, 𝜆ℎ = 0.30, 𝜆ℎ1 = 0.20, 𝜆ℎ2 = 0.10, 𝜆𝑐 = 0,  𝜆𝑐1 = 0 and  𝜆𝑐2 = 0 and then applying 

inverse Laplace transformation. The evaluated expression is 

 
𝑅(𝑡) = −0.50𝑒−1.2𝑡 + 1.50𝑒−0.60𝑡 + 0.000000000000002𝑒−0.60𝑡                                         (25) 
 

4.2.3 System Reliability without Human Error 
Equating each repair rate in Equation (19) to zero and substituting  𝜆1 = 0.50,  𝜆2 = 0.40,  

𝜆ℎ = 0, 𝜆ℎ1 = 0, 𝜆ℎ2 = 0, 𝜆𝑐 = 0.25,  𝜆𝑐1 = 0.15 and 𝜆𝑐2 = 0.10 followed by inverse Laplace 

transformation, the attained expression of system reliability is 

 

𝑅(𝑡) = −0.560606060606044𝑒−1.15𝑡 + 0.727272727272615𝑒−0.60𝑡 + 0.83𝑒−0.55𝑡       (26) 

 

Information pertaining to the variation of system reliability over the time when each failure rate 

has some specific value is shown in Table 2. As depicted in Table 2 and Figure 3, the reliability 

of the present system shrinks with an increase in time. System reliability is maximum in 

absence of any chances of human failure. The considered system has the lowest reliability in 

the comprehensive state. Figure 3 exhibits that in the absence of common cause failure 

reliability of the assumed system is slightly less as compared to its reliability in absence of 

human error. 
 

4.3 MTTF 
MTTF is computed with the help of Laplace transform (Equation 19), by putting each repair rate 

as zero and evaluating the limit, i.e., 

 

𝑀𝑇𝑇𝐹 = lim
𝑠→0

𝑃𝑢𝑝
̅̅ ̅̅ (𝑠). 

 

MTTF of the present system is given by  

 

𝑀𝑇𝑇𝐹 =
1

(𝜆1+𝜆2+𝜆𝑐 + 𝜆ℎ)
(1 +

𝜆1

𝐵1
+

𝜆2

𝐵2
)                                                                                    (27) 

 

The present study examines the impact of each failure rate on MTTF by altering that failure rate 

as 0.1, 0.2, 0.3, 0.4,   0.5, 0.6, 0.7, 0.8 and 0.9 in Equation (27).  The constant values of failure 

rates are assumed as 𝜆1 = 0.50,  𝜆2 = 0.40, 𝜆ℎ = 0.30, 𝜆ℎ1 = 0.20, 𝜆ℎ2 = 0.10, 𝜆𝑐 = 0.25, 
𝜆𝑐1 = 0.15 and 𝜆𝑐2 = 0.10 in Equation (27). Table 3 and Figure 4 reveal that, in general, system 

MTTF decreases as the common cause failure rate, human failure rate and hardware failure rates 

of both dissimilar parallel units increases. In interval (0.1, 0.2), decrease in MTTF with respect to 

hardware failure rate of unit 1 is high as compared to its decrease with respect to common cause 

failure rate, human failure rate and hardware failure rate of unit 2. Moreover, Figure 4 exhibits 

that corresponding to the interval (0.7, 0.9), the consequence of the increase of hardware failure 

rates of unit 1 and unit 2 on system MTTF is the same. The impact of an increase in human 

failure rate and common cause failure rate on system MTTF is similar. 
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4.4 Cost Analysis 
Expected profit over the time t is evaluated with the help of the following equation 

 

𝐸𝑝(𝑡) = 𝐾1 ∫ 𝑃𝑢𝑝(𝑡) 𝑑𝑡
𝑡

0
− 𝑡 𝐾2                                                                                                   (28) 

 

where 1K  and 2K refer to revenue cost and system service cost per unit time, respectively. In a 

comprehensive state, by using Equation (21) in Equation (28), we obtained the following 

expression for the system expected profit  

 

𝐸𝑝(𝑡) = 𝐾1(−0.060823745500503 𝑒−2.948513192969554𝑡 cos 0.240846721380981𝑡

+  0.17537504224045𝑒−2.948513192969554𝑡 sin 0.240846721380981𝑡
+  0.060823745500503 𝑒−2.948513192969554 𝑡  
+  0.000055749259720𝑒−1.721255442519939𝑡 + 0.816532492269086 𝑡
− 0.000055749259720) − 𝑡𝐾2                                                                                (29) 

 
We evaluated the expected profit by assuming revenue cost as 1 and changing service cost as 

0.10, 0.30, 0.40 and 0.70 in Equation (29). Figure 5 indicates that the increasing service cost 

decreases the expected profit of the present redundant system. 

 

 

 

 

 
Table 2. Availability and Reliability of system in Comprehensive State 

 

Time Availability in Comprehensive State Reliability in Comprehensive State 

0 1 1 

1 0.825396197 0.544166105 

2 0.816929218 0.277272269 

3 0.816548245 0.137399283 

4 0.816532955 0.067244545 

5 0.816532487 0.032727808 

6 0.816532489 0.015891389 

7 0.816532492 0.007710062 

8 0.816532492 0.003740462 

9 0.816532492 0.001815173 

10 0.816532492 0.000881272 

11 0.816532492 0.000428092 

12 0.816532492 0.000208072 

13 0.816532492 0.000101193 

14 0.816532492 0.000049243 

15 0.816532492 0.000023977 
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Table 3. MTTF as function of failure rates in the Comprehensive State 
 

𝝀𝟏 𝝀𝟐 𝝀𝒉 𝝀𝒄 𝝀𝒉𝟏 𝝀𝒉𝟐 𝝀𝒄𝟏 𝝀𝒄𝟐 

2.35 1.96 1.79 1.72 1.61 1.54 1.58 1.54 

1.97 1.76 1.66 1.60 1.54 1.49 1.51 1.49 

1.76 1.63 1.54 1.49 1.49 1.46 1.47 1.46 

1.63 1.54 1.44 1.40 1.45 1.43 1.43 1.43 

1.54 1.49 1.36 1.32 1.41 1.40 1.40 1.40 

1.48 1.44 1.28 1.24 1.38 1.38 1.37 1.38 

1.44 1.41 1.21 1.18 1.36 1.36 1.35 1.36 

1.41 1.39 1.15 1.12 1.34 1.35 1.33 1.35 

1.39 1.37 1.091 1.07 1.32 1.33 1.31 1.33 

 

 

 

 

 

 

 
 

Figure 2. Time vs Availability 
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Figure 3. Time vs Reliability 

 

 
 

 

 
 

Figure 4. MTTF as function of failure rates in the Comprehensive State 
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Figure 5. Expected profit as a function of time in Comprehensive State 

 

 

 

5. Conclusion 
The proposed model has incorporated copula to analyze the performance of two dissimilar units 

parallel system by considering common cause failure, human fault and hardware failure of units. 

The use of non-identical units in the parallel network decreases system cost and hence considered 

the system is more economical as compared to systems having identical units. Such dissimilar 

units parallel systems are widely found in power generating stations, aircrafts, medical 

equipments and industrial setups. The present model is significant because it has two repair 

facilities in completely failed states. The present system has maximum availability and reliability 

when there is no human error. Moreover, results reveal that the system has minimum availability 

and reliability in the comprehensive state. This study shows that at any moment, system 

availability is more than its reliability. Graph of system MTTF in comprehensive state illustrates 

that with an increase in values of each failure rate MTTF decreases. Through cost analysis, it is 

found that the rising service cost decreases the expected profit. So, the present system can be 

made more reliable by preventing the occurrence of the human error and common cause failure.  
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