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Abstract—This paper presents a reliability modeling and analy-

sis framework for load-sharing systems with identical components 

subject to continuous degradation. It is assumed that the 

components in the system suffer from degradation through an ad-

ditive impact under increased workload caused by consecutive 

failures. A log-linear link function is used to describe the relation-

ship between the degradation rate and load stress levels. By assum-

ing that the component degradation is well modeled by a step-wise 

drifted Wiener process, we construct maximum likelihood esti-

mates (MLEs) for unknown parameters and related reliability 

characteristics by combining analytical and numerical methods. 

Approximate initial guesses are proposed to lessen the computa-

tional burden in numerical estimation. The estimated distribution 

of MLE is given in the form of multivariate normal distribution 

with the aid of Fisher information. Alternative confidence inter-

vals are provided by bootstrapping methods. A simulation study 

with various sample sizes and inspection intervals is presented to 

analyze the estimation accuracy. Finally, the proposed approach is 

illustrated by track degradation data from an application exam-

ple. 

 
Index Terms— continuous degradation, data uncertainty, load-

sharing system, maximum likelihood estimation, Wiener process. 

 

ACRONYMS 

BS Bootstrapping 

LS Large-sample approximation 

MLE Maximum likelihood estimation 

MTTF Mean time to failure 

SE Standard error 

NOTATIONS 

�(⋅)  Standard Brownian motion �   Number of components in each system �  Failure threshold   
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  ���  Number of degradation inspections for the �th failed component in the �th system �   Total number of observed systems ��  

 

Load on each surviving component after the (� − 1)th failure �(�)  Wiener degradation process ��,�  

 

Lifetime of the �th failed component in the �th system ∆�   Inspection interval �, �  

 

Observed degradation increments and fail-

ure time ℓ(
|�, �)  Log-likelihood function 	�  Drift parameter under load �� 
  Unknown parameters �  Real space for unknown parameters �  Diffusion parameter ��  Standardized stress level under workload �� 

I. INTRODUCTION 

EDUNDANCY techniques are commonly used to enhance 

the reliability of various systems.  Numerous existing mod-

els of reliability redundancy assume that the components are 

working independently [1]. The assumption of independence 

provides convenient mathematical properties and computa-

tional efficiency in reliability assessment. However, the inter-

dependence of components in redundant systems cannot be 

ignored for many practical reasons. One typical scenario is that 

many systems have load-sharing characteristics, i.e., the 

components are subject to a shared system workload. In such 

systems, component failures result in an elevated workload of 

the surviving components, which typically accelerates the 

failure of the whole system. Load-sharing systems are widely 

applied in various industries, such as power systems and gear 

systems [2], [3].  
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Load-sharing redundant systems have been intensely studied 

in the literature. Shao and Lamberson [4] presented a Markov 

model to analyze the �-out-of-� load-sharing systems. With re-

spect to such systems, numerous studies have explored the is-

sues of reliability evaluation [5]–[7], inspection scheduling [8], 

maintenance optimization and system design [9]. 

To facilitate inspection and maintenance planning, decision 

makers need to figure out the reliability characteristics of load-

sharing systems, which can be modeled by unknown parameters 

that can be estimated from test or field data. Liu [10] evaluated 

the reliability of load-sharing � -out-of-�  systems where the 

lifetime distributions of the components are different and arbi-

trary. Kim and Kvam [5] proposed a maximum likelihood esti-

mation (MLE) approach to systems with unknown load-sharing 

rules. Kvam and Peña [11] used a nonparametric method to 

make inferences of load-sharing life models. Park [12] consid-

ered a parallel load-sharing system with identical components 

and derived analytical MLEs by assuming that the underlying 

lifetime distribution of each component is exponential or 

Weibull. In a follow-up study [13], Expectation-Maximization 

(EM) algorithm was adopted to estimate the parameters for sim-

ilar systems with components of which lifetime distribution is 

lognormal or normal.  Aside from these, interval estimation for 

the reliability of �-out-of-� load-sharing systems were studied 

with exponential component lifetime [7]. Wang et al. [14] eval-

uated the reliability of load-sharing parallel systems by intro-

ducing the failure dependency and characterized the system dy-

namics with the semi-Markov process. However, most of these 

studies have focused on the lifetime modeling of load-sharing 

systems, where only shock failures were considered.  

As sensor technologies advance rapidly, the degradation of 

quality characteristics (QC) of many systems can be observed 

and measured precisely. System degradation has been proven 

to be closely associated with reliability. For systems suffering 

from corrosion, wear or cumulative usage, degradation 

measures provide reasonable predictions of system failures. For 

some other systems, the degradation can be measured by the 

performance reduction. For instance, LED lamps and LCD 

monitors are deemed to have failed when the brightness falls 

below a critical level.  Stochastic process models and general 

path models are two main types of degradation modeling ap-

proaches. The most widely used stochastic processes to model 

degradation data include Wiener process [15], [16], gamma 

process [17] and inverse Gaussian process [18]. Stochastic 

models have clear physical explanations, making it convenient 

to incorporate covariates and random effects to reflect various 

properties of degradation data. For general path models, Hong 

et al. [19] modeled the degradation of an organic coating in en-

vironments with dynamic covariates. In an extended work by 

Xu et al. [20], nonlinear general path models with time-varying 

environmental covariates were analyzed.  

Although degradation-based models are considered to be su-

perior in reliability analysis, there is hardly any literature ad-

dressing the reliability of load-sharing systems with degrading 

components. Ye et al. [21] proposed the cumulative workload 

(CWL) to degradation failure mode to model the load-sharing 

system and carried out a cost analysis. Liu et al. [22] presented 

a preventive maintenance modeling approach to load-sharing 

parallel systems with identical degrading components.  In Liu 

et al. [23], the MLE of parameters of load-sharing systems was 

discussed for Wiener processes and inverse Gaussian processes. 

Nevertheless, the assumption of different parameters for 

different workloads adopted in Liu et al. [23] and many previ-

ous works [12], [13] makes the statistical inference less effi-

cient as the number of components in the system increases. 

Moreover, to the best of our knowledge, no literature addressed 

the variability of parameter estimates for degrading load-

sharing system. This study intends to fill this gap.  

In this paper, we present systematic parameter estimation 

procedures for parallel load-sharing systems with continuously 

degrading components. First, we construct the system reliabil-

ity model and identify unknown parameters. The components 

in the system are assumed either identical or heterogeneous. 

Wiener process is used to model the degradation path of each 

component. We assume that the system load is evenly 
distributed to each working component. To reduce the number 

of unknown parameters, we take advantage of a link function 

that describes the relationship between the degradation rate and 

the workload. Afterward, the MLEs of unknown parameters are 

obtained by numerical methods. Finally, we use two methods 

to quantify the uncertainty in parameter estimates. The large-

sample approximation method gives the Fisher information and 

constructs the estimated joint distribution for parameter esti-

mates to allow interval estimation. Alternatively, bootstrapping 

approach can generate a large sample of parameter estimates to 

quantify the estimation variability nonparametrically. 

The remainder of the paper is organized as follows. Section 

II presents the reliability modeling of load-sharing systems with 

degrading components. In Section III, the likelihood function is 

formulated and the estimated distribution of unknown parame-

ters is derived. A simulated numerical example is used to illus-

trate the proposed method in Section IV. Section V presents a 

case study with data from a track degradation test. Finally, Sec-

tion VI gives concluding remarks and suggestions for future 

works.   

II. DESCRIPTION AND MODELING OF LOAD-SHARING 

SYSTEMS WITH DEGRADING COMPONENTS 

Components in load-sharing systems generally have depend-

ent degradation paths due to the common system load imposed 

upon them. At the time when the system initiates to work, the 

components degrade slowly as the load on each component is 

low. When the degradation levels of some components in the 

system reach the critical failure threshold, these components are 

deemed to have failed. In other words, they are not able to share 

the system load afterward. In this situation, each surviving 

component in the system has to burden heavier workload and 

thereby suffer from higher degradation rates. An illustrative 

degradation path of such a system is shown in Fig. 1. One typi-

cal example of such systems comes from the railway systems. 

For particular areas of the track where vehicles frequently go 

by, when the wear of some subsections becomes severe, the 

wheels have no seamless contact on these subsections. Mean-

while, other small subsections of the track tend to suffer a 

higher rate of wear afterward. Another example that has the 

similar load-sharing mechanism is the wastewater treatment 

system. Activated sludge process (ASP) is the most commonly 

used technique to remove organic matter and nutrients (mainly 
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nitrogen and phosphorus) in the wastewater plant [24]. During 

the organic matter and nutrients degradation process, several 

aerobic biological tanks are connected to each other to ensure 

the treatment efficiency. However, once the treatment effi-

ciency of an aerobic biological system reaches the critical fail-

ure threshold, the corresponding component fails and it cannot 

share the workload afterward. This makes other aerobic tanks 

burden heavier workload and this accelerates their degradation 

processes. 

A. Assumptions and Wiener Degradation Models 

Consider �  identical systems each with �  components con-

nected in parallel. For each system, we make the following as-

sumptions that are similar with those in Park [13]:  

1. Each component is subject to continuous degradation 

that can be well modeled by a Wiener process. 

2. Each component is deemed to have failed when its deg-

radation level exceeds a predetermined threshold �. 

3. The load of the whole system is constant and is equally 

distributed to each working component.  

4. The degradation measures are taken periodically.  

5. Component failures are self-announcing, i.e., the exact 

failure time of each component can be observed.  

Remark: Assumption 5 is made based on real practices in reli-

ability tests. Component failures are commonly easier to ob-

serve than degradation levels. For example, in adhesive bond 

tests [25] the failures are immediately observed as the bonds 

break up upon failures. However, the degradation level of ad-

hesive bonds cannot be observed continuously. Engineers need 

to employ specific instruments to measure the degradation 

level. Another example is from water treatment systems con-

sisting of multiple filters. When a filter degrades to the critical 

level, it cannot yield the required volume of water, which can 

be detected immediately. In contrast, the degradation levels of 

these filters need to be revealed by inspections, which are 

usually carried out periodically. 

When all �  components in the system are working, we use a 

linear Wiener process �(�) to model the degradation process 

for each component, that is 

where 	1  is the drift parameter, �  is the diffusion parameter, 

and �(⋅) is the standard Brownian motion. For any component 

in the system, the lifetime follows an inverse Gaussian distribu-

tion with mean � 	⁄ 1  and shape �2 �2⁄ , and the distribution 

function is denoted by �ℐ�(�; � 	⁄ 1 , �2 �2⁄ ). 
B. Load-Sharing Modeling and Link Function 

Since the component failure times are s-dependent in a load-

sharing system, it is inappropriate to model the degradation pro-

cess for each component independently. Under the assumption 

that the components in the systems are of the same type and the 

workload on each component is equal, it is reasonable to imply 

that each surviving component is suffering from an equal dam-

age that leads to degradation growth at an arbitrary time.  

Let ��,�, � = 1, … , �  be the time at which the �th compo-

nent in the � th system fails, where ��,1 ≤ ⋯ ≤ ��,� , � =1, … , � . Note that components � = 1,… , �  are ordered by the 

sequence of failures. A realization of ��,�  is denoted by  �,� . 

Specifically, we assume that ��,0 ≡ 0 and  �,0 ≡ 0.  For sim-

plicity, we denote the �th component in system � by component (�, �) in the following contexts. 

For period ��,�−1 < � ≤ ��,�, the workload on each compo-

nent is denoted by ��. If the total load is normalized as 1, it is 

straightforward that �� = 1 (� − � + 1)⁄  for � = 1, … , � . In 

other words, the last failing component experiences �  different 

workloads throughout the lifespan of the system. Under ��, we 

assume that the Wiener degradation parameters for a single sur-

viving component are 	� and ��.  Some previous studies [13], 

[26] have assumed an additive parameter under each load and 

estimated the parameters. However, in many real parallel sys-

tems, the number of components may be relatively large, and 

this approach will introduce a large number of unknown param-

eters, which deteriorates the generality and efficiency of statis-

tical inferences. As stated in Kong and Ye [7], we can resort to 

establishing a link function to connect the workload and degra-

dation model parameters for degrading components in load-

sharing systems. 

As stated in the literature that discussed the relationship be-

tween the Wiener degradation model and external stresses [27], 

[28], it is reasonable to assume that the diffusion parameter � 

does not change across various workloads and environments, 

i.e., �� ≡ �. The assumption of constant diffusion parameter 

has been widely validated by many real degrading products, 

such as LED lamps [29] and carbon-film resistors [30]. A log-

linear link function for 	� is assumed as follows:  

Let � = (�1, … , �� )′ , where �� = �(��) is the standardized 

stress level under workload �� , and we have 0 = �1 < ⋯ <�� = 1. The form of �(��) varies for different types of systems 

and loads, and it is noted that there are typically no unknown 

parameters in �(��). In reliability analysis, the log-linear link 

functions are commonly used in degradation modeling and ac-

celerated tests [25], [31]. Further discussions of the log-linear 

link function and �(��) can be found in Appendix A.  

�(�) = 	1� + ��(�), (1) 

   log(	�) = �0 + �1��,   � = 1, . . , � . (2) 

Fig. 1.  An illustration of degradation levels of load-sharing systems with four 

parallel components  
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C. Reliability Function 

We use random vector �� = (��,1,… , ��,�)′  to denote the 

failure time of each component in an arbitrary system �, where ��,1 ≤ ⋯ ≤ ��,� . The distribution function for the failure time 

of the whole system is represented in a conditional manner as 

follows:  

 

= ∫ … ∫ ∫ ∫  �
0

�
�1

�
�2

�
��−1

���( � |��,1 =  1, … , ��,�−1
=  �−1) …���,2( 2|��,1=  1)���,1( 1)d 1d 2 …d � , 

 

(3) 

where ���,1(⋅) is the density function of ��,1 , and ���,�(⋅| ⋅) is 

the conditional density of ��,�  for � = 2,… , � . Specifically, 

since ��,1 is the first order statistic, the distribution function of ��,1 evaluated at ��,1 =  1 is given by the probability that the 

minimum of the first passage times (FPTs) of all �  degradation 

processes initiating at zero is smaller than  1. As the degrada-

tion processes are mutually independent between any two con-

secutive failures, we can obtain that ���,1( 1) = 1 − [1 −
�ℐ�( 1; � 	⁄ , �2 �2⁄ )]� , and the density function of ��,1 is 

 

���,1( 1) = ����,1( 1)� 1
= � [1 − (1 − �ℐ�( 1; � 	1⁄ , �2 �2⁄ ))�]

� 1= �[1 − �ℐ�( 1; � 	1⁄ , �2 �2⁄ )]�−1�ℐ�( 1; � 	1⁄ , �2 �2⁄ ) 
(4) 

 

Further, the conditional density for ��,�, � ≥ 2  is given by 

 

 

and ���(¡; ��,1 =  1, … , ��,�−1 =  �−1) can be given by 

 ���(¡; ��,1 =  1, … , ��,�−1 =  �−1) 

= ��� (¡; ∑ 	�′
�−1
�′=1

( �′ −  �′−1),  �−1�2, 0, �)            (6) 
 

and ���(¡; ¦, �2, §, ¨) is the density function of the truncated 

normal distribution with mean ¦ and variance �2 , and upper 

and lower bounds being § and ¨, respectively. Likewise, in (4), 

the conditional density ���,�( �|¡1, … , ¡�−�+1) is given by (7). 

We can derive the reliability function at a given time via (3) 

by ©(�) = 1 − �(�). Numerical evaluation can be carried out 

by utilizing (3)-(7). However, the evaluation is very computa-

tionally intensive due to the multiple integrals. In Appendix B, 

we use an approximation-based simulation method to generate 

samples of the failure time, then the reliability function can be 

evaluated non-parametrically via simulated life data.  

III. DATA MODELING AND ESTIMATION OF UNKNOWN 

PARAMETERS 

A. Data Modeling and Contributions to Likelihood 

In this study, we assume that periodic inspections are carried 

out on each surviving component for system �  where � =1, … , � , and the inspection interval is fixed at ∆� . Denote the 

number of degradation inspections for component (�, �) by ���, 

then we have ��� = ⌊��,�/∆�⌋. For component (�, �), let ���¬ 

be the �th degradation measurement, where � = 1,… , ���. The 

measured degradation increments for component (�, �) are de-

noted by ∆®�� = (∆���1, … , ∆���¯��)′
, of which each 

element is given by ∆���¬ = ���¬ − ���(¬−1) . Note that we 

set ���0 ≡ 0 . Let °�� = ��� − ���∆�  be the time to failure 

since the final inspection for component (�, �). If ��� ≥ 1, for 2 ≤ �′ ≤ �, ∆���¬  follows normal distributions as shown in 

(8). Here, we note that it is likely that more than one component 

in the system fails between two particular inspection epochs. In 

this paper, we assume that ∆�  is relatively small so that the 

chance of such cases of multiple failures is low. Additionally, 

even though few such cases occurred, the normal distribution in 

(8) gives a good approximation for the degradation increments. 

If a dataset contains a considerable number of cases where sev-

eral failures occur in one inspection interval for one system, we 

can change the mean of the normal distribution in the third case 

�(�) = Pr(��,� ≤ �) 

���,�( �∣��,1 =  1, … , ��,�−1 =  �−1) 

≈ ∫ … ∫ ���(¡1; ��,1 =  1, … , ��,�−1 =  �−1)¯
0

×¯
0

 

… × ���(¡�−�+1; ��,1 =  1, … , ��,�−1 =  �−1) × × ���,�( �∣¡1, … , ¡�−�+1,  �−1)d¡1 …d¡�−�+1, (5) 

 

 

���,�( �∣¡1, … , ¡�−�+1,  �−1) = � {1 − ∏ [1 − �ℐ�( � −  �−1; (� − ¡�′) 	⁄ , (� − ¡�′)2 �2⁄ )]�−�+1�′=1 }
� � . 

 

(7) 

 

 

∆���¬~
⎩{⎨
{⎧¼(	1∆�, �2∆�), if 1 ≤ � ≤ ��1,¼(	�′∆�, �2∆�), if ��(�′−1) + 2 ≤ � ≤ ���′ ,

¼(°�(�′−1)	�′−1 + 	�′(∆� − °�(�′−1)), �2∆�), if � = ��(�′−1) + 1.  

 

       (8) 
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in (8) into a linear combination of more than two piecewise deg-

radation models with change points. The details are given in 

Appendix C. For simplicity, we employ (8) to model the incre-

ments in the following context.  

By utilizing the independence of non-overlapping increments 

of Wiener process, we can evaluate the likelihood contribution 

of ∆®�� conveniently by computing the product of likelihoods 

contributed by ∆���¬  for all �. Furthermore, the observed in-

formation provided by component (�, �) also contains ��,� . In 

other words, the FPT of the degradation process to the critical 

level �  is ��,�. Since the FPT of a Wiener process follows the 

inverse Gaussian distribution, by conditioning on observing the 

last degradation measure ���¯�� = ¡, the FPT beyond the last 

inspection °��~ℐÀ((� − ¡) 	�⁄ , (� − ¡)2/�2 ), and the den-

sity function is given by 

 

 

If component (�, �) fails before any degradation measure is 

taken, i.e., ��� = 0 , the likelihood is merely contributed by °�� = ��,�.  

In the model we have described, the unknown parameters can 

be denoted by 
 = (�0, �1, �)′. Let �, � and Á be the realiza-

tions of ∆Â = {∆®��, � = 1, … , �, � = 1, … , �} ,  ��,�  and ��� for all the components in all the systems, and Å�� is equal to 

the length of ∆��. Based on (8) and (9), we can evaluate the 

total likelihood with (10). 

To obtain the MLEs of the unknown parameters, we need to 

rewrite the likelihood function into the log-likelihood function 

as shown in (11). Since the log-likelihood function is compli-

cated and the link function is nonlinear, it is very difficult, if not 

impossible, to obtain closed-form MLEs by directly taking first 

derivatives of ℓ(
|�, Æ). Alternatively, we resort to numeri-

cal methods to maximize the log-likelihood function. Newton 

or quasi-Newton optimization methods [32] have been widely 

used to solve non-linear programming problems and they can 

be easily implemented in various software packages for numer-

ical analysis and optimization. 

B. Initial Guesses in Parameter Estimation 

The efficiency of Newton optimization method depends on 

the initial guess to a great extent. A better initial point can sig-

nificantly decrease the number of iterations till convergence, 

especially when the sample size is relatively large. Therefore, 

we propose to make an initial guess that is reasonably close to 

the MLE of 
 to facilitate the estimation procedure. Partial ob-

servations from the complete dataset are used to rapidly gener-

ate initial guesses. Specifically, we use part of the degradation 

measurements �  to obtain rough estimates of 
 . First, for 

�Ç��(È; �, ¡, 	�, �)
= [(� − ¡)2

2Ê�2È3 ]1 2⁄ exp {−(	�È − � + ¡)2
2�2È }. (9) 

 

ℒ(
|�, �) = ∏ ∏

⎩{{
{{{
{{⎨
{{{
{{{
{⎧

⎣⎢
⎡(� − ¡��Ô��)2

2Ê�2È��3 ⎦⎥
⎤1 2⁄

exp ⎩{⎨
{⎧−(	�È��  − � + ¡��Ô��)2

2�2È�� ⎭}⎬
}⎫ 

∏

⎣⎢
⎢⎢
⎢⎢
⎢⎡ [Ý (∆¡��¬ − 	1∆�√�2∆� )]1{1≤á≤â�1}

∏
⎣⎢
⎢⎢
⎡ [Ý (∆¡��¬ − 	�′ i ∆�√�2∆� )]1{â�(�′−1)+2≤á≤â��′}

[Ý (∆¡��¬ − È�(�′−1)	�′−1 − 	�′(∆� − È�(�′−1))√�2∆� )]1{á=â�(�′−1)+1} 

⎦⎥
⎥⎥
⎤
 �

�′=2
⎦⎥
⎥⎥
⎥⎥
⎥⎤Ô��

¬=1

⎭}}
}}}
}}⎬
}}}
}}}
}⎫

�
�=1

ç
�=1

. 

 

(10) 

 

 

ℓ(
|�, �) = ∑ ∑
⎩{⎨
{⎧log(� − ¡��Ô��) − 12 log(2Ê) − log � − 32 log È�� − (	�È�� − � + ¡��Ô��)2

2�2È��
�

�=1
ç

�=1

+ ∑
⎩{⎨
{⎧−12 log 2Ê − log � − 1{1≤¬≤Ô�1} (∆¡��¬ − 	1∆�)2

2�2∆�
Ô��

¬=1

− ∑
⎩{⎨
{⎧1{Ô�(�′−1)+2≤¬≤Ô��′}

(∆¡��¬ − 	�′∆�)2
2�2∆�

�
�′=2

+ 1{¬=Ô�(�′−1)+1} 
(∆¡��¬ − È�(�′−1)	�′−1 − 	�′(∆� − È�(�′−1)))2

2�2∆� ⎭}⎬
}⎫

⎭}⎬
}⎫

⎭}⎬
}⎫. 

(11) 
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system �, assume that component (�, 1) fails after one or more 

degradation measurements, then for 1 ≤ Å < Å�1  and compo-

nents (�, 1), … (�, �), we can obtain an approximated estimate 

of 	1 by minimizing the mean square error (MSE): 

 

 

and let the rough estimate of 	1 be 	1̃. Similarly, for any 	�, � =
2, … , �, we can obtain the estimate 	�̃ by minimizing the fol-

lowing MSE: 

 

MSE� = ∑ ∑ ∑ (∆¡��′� − 	�∆�)2Å��′

�=Å�(�′−1)+1

�

�′=�

�

�=1
.       (13) 

 

Note that the minimization of (12) and (13) can be simply 

realized by the mean increments under a particular load stress 

divided by ∆� . Thus, an estimated vector of drift parameters 

under different load stresses can be obtained and denoted by î ̃ = (	1̃, … , 	�̃)′. As with the link function defined in (2), we 

compute the initial estimates of �0 and �1 by fitting a linear re-

gression model as follows:  

 

 

where ï�  is the � -dimensional column vector with all elements 

equal to 1. From the linear regression, we can easily compute 

least square estimates of �0 and �1, denoted by �0̃ and �1̃, re-

spectively. Finally, we plug �0̃  and �1̃  into (6) and maximize 

ℓ(�|�, �, �, �0̃, �1̃) to get the initial estimate for the diffusion 

parameter, i.e., �.̃ The maximization is straightforward and nu-

merically simple as there is only one unknown variable. 

Through the above steps, the initial starting point to maximize 

(11) is determined. From the initial guess, with the aid of nu-

merical optimization packages, the MLE of 
 is computed by 

 
 ̂ = arg
 max{ℓ(
|�, Æ); 
 ∈ �}. 

 

C. Estimated Distribution of Unknown Parameters 

Rather than use point estimates to support decision making, 

engineers usually prefer interval estimates of unknown 

parameters to capture the data uncertainty, thereby better sup-

port future decisions and evaluate potential risks. Under com-

paratively large samples, a multivariate normal (MVN) distri-

bution provides a satisfactory approximation for the joint dis-

tribution of the MLEs. In a degrading load-sharing system, ow-

ing to the measurable degradation characteristics, the system 

can provide much more data in addition to failure time data. 

Thus, the observations from a limited number of systems can 

contribute to a relatively large sample size, making the MVN 

approximation reasonably accurate. Let 
 ̂be the MLE of 
, the 

distribution of 
 ̂  can be approximated by a MVN, i.e.,  
~̂ò(
, [ó(
)]−ï), where ó(
) is the Fisher information ma-

trix evaluated at 
, which can be evaluated by (15), where ô[õ] 
is the expected information provided by each single system. 

The expectation of second derivative functions of ℓ(
|�, �) 
is difficult to express in closed forms because we have � and � as two dependent sources of data. Moreover, the number of 

observations in � is random. Alternatively, by letting �ÂS  

and �S  denote the observed data from one single system, we use 

the conditional methods to compute the expectation by the fol-

lowing rule:  

 ô[õ] = ô÷S{ôúûS [õ|�S = �S]},               (16) 
 

where �S = ( 1,… ,  � )′is a realization of component failure 

times in ascending order for a single system, È� and Å� can be 

computed by �S  for � = 1,… , �. The elements in the condi-

tional expectation ôúûS [õ|�S = �S] can be derived in closed 

form. Let 

 

õ = ⎣⎢
⎡ℱ11 ℱ12 0ℱ12 ℱ22 00 0 ℱ33⎦⎥

⎤, 
 

and 

 

 

MSE1 = ∑∑ ∑(∆¡��′� − 	1∆�)2Å�1
�=1

�

�′=1

�

�=1
, (12) 

   log(î)̃ = ï��0 + ��1 + þ, (14) 

 

ó(
) =
⎣⎢
⎢⎢
⎢⎢
⎡ô [− �2ℓ(
|�, �)��02 ] ô [−�2ℓ(
|�, �)��0��1 ] 0

ô [− �2ℓ(
|�, �)��1��0 ] ô [−�2ℓ(
|�, �)��02 ] 0
0 0 ô [− �2ℓ(
|�, �)��2 ]⎦⎥

⎥⎥
⎥⎥
⎤

 

= �ô ⎩{⎨
{⎧

⎣⎢
⎡ℱ11 ℱ12 0ℱ21 ℱ11 00 0 ℱ33⎦⎥

⎤
⎭}⎬
}⎫ = �ô[õ], 

 

(15) 
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ô�ÂS[ℱ11|�S = �S]
= 1

�2 ∑⎩{⎨
{⎧	�2È� + Å�	12∆��

�=1

+ 1{�≥2} ∑⎩{⎨
{⎧max{Å�′ − Å�′−1, 0} 	�′2 ∆��

�′=2

+ [È�′−1	�′−1 + 	�′(∆� − È�′−1)]2

∆� ⎭}⎬
}⎫

⎭}⎬
}⎫

= 1
�2 ∑ ô�ÂS[ℱ�|�S = �S]

�

�=1
,        (17) 

and 

 

ô�ÂS [ℱ12|�S = �S] = 1
�2 ∑ ��ô�S[ℱ�|�S = �S],

�

�=1
       

ô�ÂS [ℱ22|�S = �S] = 1
�2 ∑ ��2ô�S[ℱ�|�S = �S]

�

�=1
,       

ô�ÂS[ℱ33|�S = �S] = 1
�2 ∑ 2(Å� + 1)�

�=1
.               (18) 

 

After obtaining the conditional expectation, the Fisher infor-

mation ó(
) can be evaluated by taking expectation with respect 

to �S. Unfortunately, it is difficult to express the distribution of 

�S  analytically, thus we employ a Monte Carlo integration 

method to compute the expectation based on the approximated 

conditional distributions. The details have been presented in 

Appendix B.  

It is noted that the true parameter 
 cannot be revealed by the 

limited data, making it impossible to obtain the true Fisher in-

formation. Under a relatively large sample size, we can use the 

observed Fisher information to estimate the approximated dis-

tribution of the MLE, i.e., ò (
, [ó(
)̂]−^). Therefore, nor-

mal confidence intervals or confidence bands can be formulated 

for unknown parameters.  

D. Confidence Interval Construction With Bootstrapping Ap-

proach 

Bootstrapping methods provide a resampling framework to 

numerically evaluate standard errors and confidence intervals, 

and it has been widely adopted in reliability analysis, especially 

when available data is limited. Bootstrapping confidence inter-

vals are based on the normal approximation as well and they 

can provide comparisons with the results from Section C. 

The procedures for constructing the 100(1 − _)%  confi-

dence intervals with parametric bootstrapping are as follows: 

1. Obtain the MLE 
 ̂ = (�0̂, �1̂, �)̂′  from the observed 

data by the procedures described in Sections A-B. 

2. Generate a bootstrap sample `@∗ = (�∗, �∗) with 


.̂ The details of the simulation are listed in Table I. 

3. Obtain the bootstrap MLE from sample `@∗, and de-

note the estimates by 
∗̂
. 

4. Repeat Step 2 and 3 for � times.  

5. Order the � estimates of 
 for each parameter in as-

cending order.  

To deal with the bias induced by the parametric bootstrap-

ping methods, we use the bias-corrected and accelerated (BCa) 

bootstrap to construct confidence intervals for 
  [33], [34]. 

Specifically, let >� be the �th element of 
, and sort the sample 

for each parameter as (>�̂∗(1),… , >�̂∗(:))  in ascending order. 

The 100(1 − _)% confidence interval for >� is 

 

(>�̂∗:-*(�) , >�̂∗:-'(�))  for � = 1, 2 and 3, 
 

where 

 

& (̄�) = Φ {"0̂� + "0̂� + "! 2⁄1 − _�̂("0̂� + "! 2⁄ )}, 
&5(�) = Φ {"0̂� + "0̂� + "1−! 2⁄1 − _�̂("0̂� + "1−! 2⁄ )}, 

and 

 

"0̂� = Φ−1 {number of >�̂∗(9) < >�̂� } , for ¨ = 1, … , �. 
 

Further, 

 

_�̂ = ∑ (>�(⋅) − >�̂∗(9))3:9=1
6 [∑ (>�̂(⋅) − >�̂∗(9))2:9=1 ]3 2⁄ , 

 

where 

 

>�̂(⋅) = ∑ > ̂�(9) �⁄:
9=1

. 

TABLE I 

ALGORITHM TO SIMULATE DATA WITH GIVEN PARAMETERS 

Algorithm: Simulation of load-sharing data with given parameters 

1. Generate �  Wiener processes with parameters 	1 and �, starting at � = 0. Set a small C as the simulation step size of time.  

2. For � = 1,… , � , do the following:  

At each (following) time epoch �∆� , record the degradation meas-

urement for each component until the �th failure occurs in the sys-

tem at  �, which is also recorded. The degradation levels for the sur-

viving � − � components are recorded and their afterward degrada-

tion processes are simulated by Wiener processes with parameters 	�+1 and �.  

3. Collect all the data from Step 2 and a sample of �∗, �∗ can be eas-

ily obtained. 
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Reliability characteristics, such as mean time to failure 

(MTTF) and median life, are functions of 
. Based on the in-

variance property of MLEs, the MLEs of reliability character-

istics can simply be obtained through 
.̂ Thus, the same BCa 

technique can be applied to give the confidence intervals for 

maximum likelihood estimated functions of 
.̂  

E. Discussions of Other Stochastic Processes  

Throughout the paper, we have assumed that the degradation 

is modeled by a Wiener process. In fact, numerous engineering 

experiences have revealed that many types of degradations are 

non-decreasing with respect to time, which cannot be properly 

characterized by a Wiener process. Gamma processes and in-

verse Gaussian processes are widely adopted both in the litera-

ture and in the application, and they can be alternatively used to 

model the load-sharing systems described in the paper. For both 

types of processes, the parameters can be obtained by using 

MLE via constructing the log-likelihood function as in (11). For 

readers of interest, we provide a brief description of the model-

ing problems under gamma and inverse Gaussian processes in 

Appendix D.  

IV. SIMULATION STUDY 

To better illustrate the proposed parameter estimation frame-

work, we carry out a comprehensive simulation study. Monte 

Carlo simulation is employed to generate random sample data 

for the load-sharing systems. Without any loss of generality, we 

assume that � = 4. Following the example in Appendix A, the 

standardized stress is given by � = (0, 0.208, 0.5, 1)′ . By as-

suming the failure threshold to be 0.4, we use the following pa-

rameter setting to simulate the data: 
 = (�0, �1, �)′ =(0.1, 1, 0.25)′ . We explore the cases where � = 5, 10 and 20 

to investigate the influence of sample sizes on the standard er-

rors and bias. Under each sample size, we specify various in-

spection intervals: ∆� = 0.005, 0.01 and 0.05. Following the 

assumed true parameter, the MTTF and life median is 0.4247 

and 0.4210, respectively. By numerically simulating the failure 

time G , we plot the probability density and the reliability curves 

in Fig. 2. The density curve shows that the lifetime of the sim-

ulated system follows a right-skewed unimodal distribution.  

A. Estimation Bias and Standard Errors 

With 10,000 simulation replications, the mean bias and 

standard error (SE) of parameter estimates for each combina-

tion of (�, ∆�) are calculated and listed in Table II. The results 

show that, when �  increases, both the bias and standard error 

significantly reduce for all parameter estimates. By comparison, 

the influence of ∆�  on the estimates of �0  and �1  is smaller 

than on the estimate of �. We can observe that the biases and 

SEs under ∆� = 0.005 and 0.01 with a same �  are also rela-

tively close. This implies that, regarding the accuracy of the es-

timates of �0 and �2, the influence of ∆�  gets larger when ∆�  

is relatively large, whereas �  always puts a significant effect 

 
Fig. 2.  Plots of failure time density and reliability 
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TABLE II 

BIAS AND STANDARD ERROR OF PARAMETER ESTIMATES 

(�, ∆�) �0  �1  � 

bias SE  bias SE  bias SE (5, 0.005) −0.0046 0.0949  −0.0348 0.2164  −0.0012 0.0051 (5, 0.01) −0.0048 0.0936  −0.0350 0.2126  −0.0015 0.0071 (5, 0.05) −0.0055 0.1041  −0.1562 0.2574  −0.0026 0.0152 (10, 0.005) −0.0047 0.0663  −0.0359 0.1506  −0.0010 0.0036 (10, 0.01) −0.0036 0.0664  −0.0438 0.1524  −0.0012 0.0050 (10 0.05) −0.0052 0.0724  −0.1558 0.2121  −0.0015 0.0107 (20, 0.005) −0.0037 0.0472  −0.0396 0.1101  −0.0009 0.0026 (20, 0.01) −0.0038 0.0470  −0.0449 0.1125  −0.0011 0.0036 (20, 0.05) −0.0048 0.0525  −0.1525 0.1832  −0.0012 0.0077 
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on all the three estimates. The simulated example has followed 

mild and applicable assumptions on (�, ∆�). In other words, it 

is generally not very difficult to observe up to 20 test systems 

and measure the number of degradation measures for less than 

100 times. When ∆� = 0.05, each component is only inspected 

less than 10 times. Under these assumptions, the bias and SE 

are still quite small compared to the absolute value of true pa-

rameters.  

It is of interest to evaluate the required computational efforts 

to estimate the unknown parameters. For illustration, we select 

the case where (�, ∆�) = (10, 0.01). Since we have used the 

“fminunc” function in MATLAB that utilizes the Quasi-New-

ton algorithm, the performance is considerably influenced by 

the initial point. We consider three types of initial points: (1) 

the proposed initial guess described in Section III.B; (2) The 

assumed true parameters; (3) Fixed pilot parameters. It is noted 

that the true parameters are in a black-box. We just carry out 

the analysis for illustration and it is impossible to reveal true 

parameters with limited data. Specifically, we set the initial 

point as presented in Table III and give the expected iteration 

number I(�J) , standard deviation of the iteration number KL(�J) and the mean computing time I(GJ) under 1,000 sim-

ulation runs for each case. Note that we use an Intel i5 core CPU 

@ 3.3GHz. The result shows the proposed initial guesses pro-

vide better computational efficiency with a lower I(�J) , KL(�J) and I(GJ) compared to the case where initial point 

starts at the true parameters. If the initial point is fixed pilot pa-

rameters that are different from the true ones, the computational 

efficiency will be even worse. The result implies that the pro-

posed guessing method accelerates the estimation procedure via 

providing initial points close to the MLEs. 

B. Reliability Inferences 

Since reliability assessment is more intuitive and useful for 

practical purposes such as inspection and maintenance plan-

ning, we are also interested in how the uncertainty of estimated 

parameters affects the inference of system reliability. We 

choose the following three reliability related quantities to com-

pare the simulated results: mean time to failure (MTTF), me-

dian life and the 10% life percentile (G0.1). The mean biases 

and SEs are summarized in Table IV. The pointwise 95% con-

fidence intervals of reliability curves are plotted in Fig. 3. The 

results are consistent with the those in the previous section. As �  increases from 5 to 10, the pointwise confidence bands for 

the reliability curve get narrower significantly. Additionally, a 

smaller ∆�  also helps to enhance the accuracy of reliability in-

ference to a moderate extent. Specifically, under the same � , a 

small ∆�  gives confidence intervals with lower and upper 

bounds that are relatively symmetric with respect to the true 

values, while for the cases with larger ∆� , the upper bounds are 

further from the true values and the lower bounds are closer. 

This implies a larger bias in reliability inferences under param-

eter uncertainty if ∆�  is large. Thus, more test systems enhance 

the estimation accuracy by reducing the uncertainty signifi-

cantly, while smaller inspection intervals help more to reduce 

the bias of reliability inferences. It is noted that even under the 

case where ∆� = 0.05, the biases and SEs are not inflated dras-

tically. They are acceptable if the engineers try to reduce cost 

with less inspections in real tests.  

V. AN APPLICATION EXAMPLE 

A. Data Background 

The degradation of rail tracks can lead to serious safety prob-

lems in real operation [35]. Among various types of rail track 

degradation, the track geometry degradation is deemed to be 

one of the most important quality characteristics. The adjoining 

small sections are believed to share the loads from regularly op-

erating trains. From the degradation test data where three short 

adjoining testing tracks (called by “components” afterward) as 

a system were put into continuous use. Seven systems of this 

type were tested at the same time, i.e., � = 7, � = 3. The data 

is plotted in Fig. 4 and each system is arranged in separate sub-

plots. For confidentiality purposes, the data is transformed and 

truncated. By intuitively observing the degradation data, we 

TABLE III 

COMPARISON OF COMPUTATIONAL EFFORTS 

Initial point I(�J) KL(�J) I(GJ) 
Proposed guess 14.2280 3.0612 0.4353 s 

True value 14.7600 3.1193 0.4656 s 
(0) = (0, 0, 0.1)′ 29.2500 4.5801 0.6203 s 
(0) = (1, 1, 1)′ 25.9820 3.0908 0.6223 s 
 

TABLE IV 

BIAS AND STANDARD ERROR OF THREE COMMON RELIABILITY CHARACTERISTICS 

(�, ∆�) MTTF    Median life  G0.1 

bias SE  bias SE  bias SE (5, 0.005) −0.0244 0.0412  −0.0197 0.0379  0.0006 0.0233 (5, 0.01) −0.0317 0.0454  −0.0265 0.0412  −0.0040 0.0233 (5, 0.05) −0.0344 0.0474  −0.0291 0.0434  −0.0061 0.0238 (10, 0.005) −0.0257 0.0349  −0.0211 0.0313  −0.0006 0.0168 (10, 0.01) −0.0336 0.0413  −0.0283 0.0368  −0.0052 0.0182 (10 0.05) −0.0335 0.0406  −0.0282 0.0362  −0.0050 0.0173 (20, 0.005) −0.0244 0.0299  −0.0194 0.0259  0.0006 0.0126 (20, 0.01) −0.0327 0.0366  −0.0275 0.0321  −0.0044 0.0129 (20, 0.05) −0.0325 0.0362  −0.0272 0.0316  −0.0042 0.0125 
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find that the degradation rate after some component failures is 

higher than the degradation rate when the system initiates. 

Thus, we propose to fit the proposed model to the data. The 

degradation failure threshold is assumed to be 1.2 and all com-

ponents initiates at level 0.8, thus for further modeling, � =1.2 − 0.8 = 0.4. For mathematical convenience, we simply set 

 

Fig. 3.  Reliability curves under 
 and mean 
 ̂under nine simulation cases. (Pointwise 95% confidence interval for ©(�) is shaded in each subplot) 

 
Fig. 4.  Track geometry degradation testing data 
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∆� = 1. For the stress load, since the main reason of the deg-

radation is the physical pressure on the track surface, thus we 

use a power law transformation [25] similar to the example used 

in Appendix A, which yields � = (0, 0.6309, 1)′.  
B. Parameter Estimation and Estimation Uncertainty 

By maximizing the log-likelihood, we obtain the MLE of un-

known parameters as 
̂ = (�0̂, �1̂, �̂) =(−3.9024, 1.3434, 0.0657)′ , under the maximized log-likeli-

hood ℓ(
∣̂�, �) = 326.7415. Under the estimated parame-

ters, the MTTF is 17.5038. The estimated degradation drift un-

der the cases where the number of working components is 3, 2 

and 1 are 0.0202, 0.0471 and 0.0774, respectively. The estima-

tion results shed light to the fact that the change in degradation 

rate is considerable, as the degradation is several times faster 

when one or two components have failed in the system.  We 

conduct a model comparison to show the performance of the 

proposed link function. In Liu et al. [23], parameters of the deg-

radation model with different number of remaining components 

are regarded separate, and this increases the number of un-

known parameters to be estimated. Under the proposed method 

and the model without link functions, we obtain the maximized 

log-likelihood and corresponding AIC and BIC for each model, 

as shown in Table V. The proposed method gives smaller AIC 

and BIC, which implies that the link function has reasonable 

reduced the number of unknown parameters without much in-

formation loss to characterize the load-sharing degradation be-

haviors. Moreover, the estimated link function facilitates the 

extrapolated analysis if more components can be added to the 

system. To investigate the variability of parameter estimates, 

we use both the bootstrapping (BS) method and large-sample 

approximation (LS) to describe the MLEs as random variables. 

Note that we set the bootstrapping sample size � = 10,000. 

The histograms of BS samples and LS approximated normal 

distributions are plotted in Fig. 5 for the unknown parameters. 

From the figures, the BS samples are roughly in consistence 

with the LS approximated distributions. Specifically, for �0, the 

consistency is almost perfect, whereas for �1 and �, the modes 

of LS approximated distributions are slightly larger than those 

of BS samples. 

Table VI lists the standard errors and 90% confidence inter-

vals (CI) for unknown parameters under BS and LS methods. 

The variability of �1 is larger than that of �0 for the reason that 

the number of degradation measurements after the first compo-

nent failure is relatively small because the degradation rate in-

creases fast as components fail one by one; additionally, be-

cause the number of components in this system is small (� =3), thus we can have at most three stress levels to estimate �1, 

which also leads to a larger uncertainty in the inference of  �1. 

Nevertheless, the 90% CI shows that �1 is significantly larger 

than 0, and actually, based on our calculation, the lower bound 

of 95% CI is still larger than 0.65. This again verifies the fact 

that the influence of component failure on the degradation rate 

is significant and positive. In other words, the trackway section 

degrades faster if the degradation levels of some subsections 

have reached the critical value.  

C. Reliability Inferences 

In Section IV.B, we computed three reliability characteristics 

for the simulated example. Likewise, we calculate the MLEs 

and 90% CIs for MTTF, median life and G0.1 under BS and LS 

methods in Table VII. Furthermore, reliability curves under the 

MLE of 
 and mean 
 ̂under BS and LS method are shown in 

TABLE V 

MODEL COMPARISON BETWEEN MODELS WITH AND WITHOUT LINK 

FUNCTIONS 

Model 
Log-likeli-

hood 
AIC BIC 

Proposed model with link func-

tion 
326.7415 −647.48 −636.57 

Separate parameters for each 

component 
327.6709 −647.34 −632.79 
 

TABLE VI 

STANDARD ERROR AND 90% CONFIDENCE INTERVALS FOR 
 UNDER BS 

AND LS METHODS 

 
MLE 

Standard error  90% Confidence interval 

 BS LS  BS LS �0 −3.902 0.207 0.214  (−4.272,−3.585) (−4.254,−3.551) �1 1.343 0.294 0.344  (0.918,1.899) (0.777, 1.901) � 0.066 0.003 0.003  (0.062, 0.071) (0.061, 0.070) 
 

 
Fig. 5.  Histograms of bootstrapping parameter samples vs. density curves of large-sample approximated normal distributions centered at MLE 
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Fig. 6. Pointwise 90% confidence bands for ©(�) and empirical 

reliability function are also plotted in the figure. For the tested 

system, the MLE of MTTF is slightly larger than median life, 

and this indicates the right skewness of the lifetime distribution. 

By comparison, the LS approximated CI is slightly wider than 

the CI calculated by BS samples. 

From Fig. 6., the reliability curve evaluated at mean 
 ̂under 

BS method is very close to the curve at the point MLE. Moreo-

ver, the 90% confidence band for the reliability curve is wider 

under the LS approximation method. It is noted that the empir-

ical reliability plot shows the sparsity of failure data because 

there are only 7 test systems. Under such cases, with only lim-

ited amount of failure data, it is challenging to use the existing 

life-based load-sharing models to obtain a reasonable interval 

inference for the parameters and reliability. By utilizing both 

the degradation measurements and soft failure time data, the 

proposed methods provide an approach to analyze load-sharing 

systems with degrading components similar to the system in the 

example. Given the estimated parameters and reliability func-

tion with the consideration of estimation uncertainty, decision 

makers can seek for more effective and robust monitoring and 

maintenance policies for such systems. 

VI. CONCLUSIONS 

The paper has proposed a reliability modeling approach to 

degradation and life data obtained from parallel load-sharing 

systems. Analogous to the step-stress degradation models, the 

degradation rates of system components are assumed to in-

crease according to a log-linear link function when components 

fail sequentially, which reduces the number of unknown param-

eters. Maximum likelihood estimation is adopted to estimate the 

parameters. Initial guesses are proposed to facilitate the estima-

tion procedure. Regarding the estimation uncertainty, we use 

both bootstrapping and large-sample approximation methods to 

evaluate the variability of parameter estimates. Simulation 

methods are adopted to efficiently evaluate the reliability of the 

load-sharing systems. The simulation study shows an accepta-

ble bias and standard error under a moderate assumption of 

sample sizes and inspection intervals. The whole framework is 

illustrated by an application example where track geometry 

degradation data are modeled and the reliability is assessed. The 

proposed systematic parameter estimation and reliability as-

sessment methods can reasonably characterize load-sharing 

systems with degrading components and yield parameter and 

reliability estimates with the consideration of uncertainty, thus 

effectively support the decision making on system health man-

agement and maintenance.  

Several related topics worth further investigation. First, the 

proposed methods can be extended to other types of load-shar-

ing systems, such as �-out-of-� systems and systems with non-

identical components. Another research direction is to general-

ize the load-sharing model. Random and cumulative loads as 

well as various load-sharing rules are of interest to study. The 

data modeling framework can be extended to deal with test data 

involving censoring. Additionally, as mentioned before, vari-

ous management problems related to system reliability can be 

formulated for such systems, and to solve the optimization 

problem robustly by considering parameter uncertainty should 

be very useful for decision makers in various industries. 

APPENDIX 

A. Discussions on the Link Function and �(��) 
First, we discuss the standardization of stress levels under 

various workloads based on the log-linear link function. Sup-

pose that we know the relationship between the stress level K� 
and respective workload ��, i.e., K(��), then we can standard-

ize the stress levels as follows for several common relations in 

accelerated degradation models:  

 

TABLE VII 

STANDARD ERROR AND 90% CONFIDENCE INTERVALS FOR THREE 

COMMON RELIABILITY CHARACTERISTICS UNDER BS AND LS METHODS 

 
MLE 

90% Confidence interval 

 BS LS 

MTTF 17.504 (13.432, 20.392) (14.094, 22.524) 
Median life 16.493 (12.124, 18.689) (13.341, 20.910) G0.1 10.800 (8.802, 12.102) (8.791, 13.212) 

 

 

Fig. 6.  Reliability curves under the MLE of 
 and mean 
 ̂under BS and LS 

method. (90% pointwise confidence intervals for 
 ̂are shaded) 
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�� = ln K� − ln K0ln KR − ln K0
        for the power law relation

= 1 K0⁄ − 1 K�⁄
1 K0⁄ − 1 KR⁄        for the Arrhenius relation

= K� − K0KR − K0
              for the exponential relation 

 

For the load-sharing system we have assumed, it is also 

essential to identify K(��), with which we can easily obtain �(��) by standardization. K(��) varies under different the fail-

ure mechanisms and accelerating factors. We use the voltage 

stress as an example. Suppose the system has 4 load-sharing 

components that evenly withstand a total 3 kV of voltage. By a 

power law relation, we can compute the original and standard-

ized stress levels on each component under the conditions 

where there are 4, 3, 2 and 1 surviving components as in Table 

A.I. We can see a difference between the workload and stand-

ardized stress, although they are both in 0~1 scale.  Thus, we 

cannot simply use the workload as the explanatory variable of 

the log-linear link function as it could lead to an unreasonable 

modeling of a known failure acceleration mechanism. 

B. Algorithm to Sample From �V  

First, let �sim be the sample size of the simulation. We give 

the algorithm to generate one sample from ��, denoted by �� =
( �,1, … ,  �,�)′

. To obtain a random sample of  �,1 is equiva-

lent to draw a random sample from �1, of which the distribution 

can be described by 

 

Pr(��,1 >  ) = Pr(G�,1(1) >  , G�,2(1) >  , … , G�,�(1) >  ). 
 

where G�,1(1), … , G�,�(1)
 follow independent and identical IG distri-

butions denoted by ℐÀ(� 	1⁄ , �2 �2⁄ ). Thus,  

 

Pr(��,1 >  ) = Pr(G�,1(1) >  ) … Pr(G�,�(1) >  )
= ∏(1 − �ℐÀ( ; � 	1⁄ , �2 �2⁄ ))�

�=1
. 

 

It is straightforward to draw one sample of ��,1 by using the 

inverse transform sampling method. After obtaining  �,1, we an-

alyze the possible conditions of the remaining � − 1 compo-

nents. Let ®(1) = (�1(1), … , ��−1(1) )′
 be the vector of degrada-

tion levels of the remaining � − 1 components for system �. 

Approximately, �1(1), … , ��−1(1)
 are i.i.d. random variables that 

follow truncated normal distributions with mean 	1 1, variance 

 1�2, and upper bound �. The truncated distribution is denoted 

by X¼(	1 1,  1�2, −∞, �) . Afterward, we draw a sample 

from ®(1) based on the truncated distribution and have Z(1) =(¡1(1), … , ¡�−1(1) )′
. Note that from time  �,1, we can assume that 

the Wiener degradation processes initials at Z(1) for the remain-

ing components. Thus, the distribution of ��,2 can be evaluated 

as: 

 

Pr(��,2 >  ) = Pr(G�,1(2) >  , G�,2(2) >  , … , G�,�−1(2) >  )
= Pr(G�,1(2) >  ) … Pr(G�,�−1(2) >  ) ,  
≥  �,1, 

 

where G�,�(2)~ℐÀ ((� − ¡�(1)) 	2⁄ , (� − ¡�(1))2 �2⁄ ) . It is 

also easy to draw a sample  �,2 from ��,2. Similarly, for the re-

maining sampling for  �, do the following step:  

1. Draw � − � + 1 samples from the following truncated 

distribution: 

 

X¼ (∑ 	�′∆ �′
�−1
�′=1

,  �−1�2, −∞, �), 
 

where ∆ �′ =  �′ −  �′−1 . Let Z(�−1)  be the drawn 

samples. 

2. Use the inverse sampling method to draw a  � by 

Pr(��,� >  ) = Pr(G�,1(�) >  , … , G�,�−�+1(�) >  )
= Pr(G�,1(�)
>  ) … Pr(G�,�−�+1(�) >  ), 

 

where 

 

G�,�′(�) ~ℐÀ ((� − ¡�′
(�−1)) 	�⁄ , (� − ¡�′

(�−1))2 �2⁄ ). 
 

For �′ = 1 … , � − � + 1. 

3. End until � = � . 

By replicating the above procedures, we can draw �sim sam-

ples from �� . To be more accurate, one can resort to straightfor-

ward Monte Carlo simulation by generating Wiener processes. 

However, this could be much more computationally intense. 

TABLE A.I 

AN EXAMPLE OF VOLTAGE LOAD-SHARING SYSTEM 

Surviving 

components 

 Load Original 

stress  

Standardized 

stress  

4  1/4 0.75 kV 0 

3  1/3 1 kV 0.208 

2  1/2 1.5 kV 0.5 

1  1 3 kV 1 
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The generated samples are then used to compute the expectation 

with respect to �� , which is equivalent to �S  in (16). Monte 

Carlo integration can be used to compute the numerical results 

and obtain the Fisher information.  

C. Cases of Multiple Failures Occur in an Inspection Interval 

We discuss how to evaluate the likelihood contributions of 

the observations between two consecutive inspections if more 

than one failure occurs in the interval.  

Upon the (� − 1)th inspection, we assume that �′ − 2 com-

ponents have failed, where �′ ≥ 2.  Moreover, � ≥ 2 failures 

occur between the � − 1 and �th inspection. In other words, ��(�′+Å−2) = � − 1 for Å = 1, … , � . For the surviving compo-

nents upon �th inspection, i.e., � = �′ + � − 1, … , � , the deg-

radation increments follow the following normal distribution:  

 

∆���¬~¼ (°�(�′−1)	�′−1 + ∑ (°�Ô − °�(Ô−1))	Ô
�′+j−2

Ô=�′

+ 	�′+j−1(∆� − °�(�′+j−2)), �2∆�). 
 

Note that if there is no surviving component upon the �th in-

spection, the degradation increments are unobservable thus can-

not contribute to the likelihood function. Further, to model the 

random variables °�(�′−1), … , °�(�′+�−2) by given realizations 

of the degradation levels from the last inspection ��(�′−1)(�−1) = ¡�′−1, … , ��(�′+�−2)(�−1) = ¡�′+�−2 , we can 

construct the likelihood contributions by °�(�′−1), … , °�(�′+�−2), denoted by ℒ′ and shown as follows:  

 ℒ′ = �°�(�′−1),…,°�(�′+�−2)(È�′−1, … , È�′+�−2)
= �°�(�′−1)(È�′−1) × �°��′ |°�(�′−1)(È�′ ∣È�′−1) × …
× �°�(�′+�−2)|°�(�′−1),..,°�(�′+�−3)(È�′+�−2∣È�′−1, … , È�′+�−3), 
 

where following [36]: 

 

°�(�′−1)~ℐÀ (� − ¡�′−1	�′−1
, (� − ¡�′−1)2

�2  ), 
°��′ |(°�(�′−1)

= È�′−1)~ℐÀ
⎝⎜
⎜⎜⎜⎜
⎜⎛ � − ¡�′ − (	�′−1 − 	�′)È�′−1

	�′
,

[� − ¡�′ − (	�′−1 − 	�′)È�′−1]2

�2  ⎠⎟
⎟⎟⎟⎟
⎟⎞, 

⋮ °�(�′+j−2)|(°�(�′−1) = È�′−1, … , °�(�′+j−3)= È�′+j−3)~ℐÀ(�, �), 
 

where 

 

� = � − ¡�′+j−2 + È�(�′+j−3)	�′+j−2	�′+j−2
− ∑ (È�Ô − È�(Ô−1))	Ô�′+j−3Ô=�′−1 	�′+j−2 , 
� = �2

�2 ,  
� = � − ¡�′+j−2 + È�(�′+j−3)	�′+j−2

− ∑ (È�Ô − È�(Ô−1))	Ô
�′+j−3
Ô=�′−1

, 
 

and È�(�′−2) ≡ 0. In this manner, the likelihood contributions 

from observations in an inspection interval in which multiple 

failures occur can be evaluated.  

D. Discussions for Gamma Process and IG Process 

Gamma process and inverse Gaussian (IG) process are com-

monly used to model monotone degradation path. Although 

they are inappropriate to model the data from the example in 

Section V as the degradation is non-monotone, they have been 

successful to model degradation data in many applications. 

First, we discuss the gamma process with shape and scale pa-

rameter given by _� and �, respectively.  Similar to (2), the log-

linear link function can be defined as 

 log(_�) = �0 + �1��,   � = 1, . . , �. 
 

In other words, the scale parameter is assumed to be constant. 

Because gamma process is a pure jump process, the following 

reliability analysis is different from the Wiener process because 

of “overshoot behavior” [37]. To evaluate the time between two 

given degradation levels of gamma process, approximated 

methods are often resorted to.  

For the IG process, Ye et al. [38, Sec. II. B] presented two 

possible schemes to connect the parameters of the IG process 

and the load stresses. First, we can assume the mean parameter log(¦�) = �0 + �1�� and keep the shape parameter � constant, 

and this makes both the degradation rate and volatility inflated 

with higher stress. Another scheme is to assume log(��) =
�0 + �1�� and keep ¦ constant, therefore the stress does not in-

fluence the degradation rate, but increases the volatility of deg-

radation paths. For the load-sharing systems discussed in the 

paper, it is more reasonable to adopt the earlier scheme. The 

following parameter estimation and reliability assessment can 

be carried based on the ideas in the paper as the pdf and cdf of 

the first-passage time of the IG process have been given in an-

alytical forms in related studies [18]. Note that to derive the es-

timated distribution for unknown parameters may be tedious 

and trivial for the gamma and IG processes.  
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