
88 IEEE TRANSACTIONS ON RELIABILITY, VOL. 46, NO. 1, 1997 MARCH

Reliability Modeling for Safety-Critical Software

Norman F. Schneidewind, Fellow IEEE
Naval Postgraduate School, Monterey

Key Words - Software reliability prediction, Safety-critical
software, Risk analysis.

Summary di Conclusions - Software reliability predictions
can increase trust in the reliability of safety critical software such
as the NASA Space Shuttle Primary Avionics Software System
(Shuttle flight software). This objective was achieved using a novel
approach to integrate software-safety criteria, risk analysis,
reliabi’lity prediction, and stopping rules for testing. This approach
applies to other safety-critical software. We cover only the safety
of the software in a safety-critical system. The hardware and
human-operator components of such systems are not explicitly
modeled nor are the hardware and operator-induced software
failures. The concern is with reducing the risk of all failures at-
tributed to software. Thus, sufefy refers to software-safety and not
to system-safety. By improving the software reliability, where the
reliability measurements & predictions are directly related to mis-
sion 8: crew safety, we contribute to system safety.

Remaining failures (RF), maximum failures, total test time
(TTT) required to attain a given fraction of RF and time to next
failure (TTNF) are shown to be useful reliability measures & predic-
tions for:

providing assurance that the software has achieved safety goals;
~ ratilonalizing how long to test a piece of software;

analyzing the risk of not achieving RF & TTNF goals. Having
predictions of the extent that the software is not fault free (RF)
and whether it is likely to survive a mission (TTNF) provide
criteria for assessing the risk of deploying the software. Further-
more, ‘fraction of RF’ can be used as both an operational-quality
goal in predicting TTT requirements and, conversely, as an in-
dicator of operational-quality as a function of TTT expended.

Software reliability models provide one of several tools that
software managers of the Shuttle flight software are using to assure
that tlhe software meets required safety goals. Other tools are in-
spections, software reviews, testing, change control boards, and
perhaps most important - experience & judgement.

1. INTRODUCTION’

Two categories of software reliability measurements
(observed failure data used for model parameter estimation) and
predictions (forecasts of future reliability using the parameteriz-
ed mlodel) are used together to assist in assuring the safety of
the software in safetycritical systems like the Shuttle flight soft-
ware. The two categories are:

-
‘Acronyms, nomenclature, and notation are given at the end of the
Introduction.

1. measurements & predictions that are associated with
residual software faults and failures;

2 . measurements & predictions that are associated with the
ability of the software to survive a mission without experienc-
ing a serious failure.

In category #I are: RF, maximum failures, fraction of RF, and
TTT required to attain a given number or fraction of RF. In
category #2 are: TTNF, and TTT required to attain a given
TTNF, In addition, the risk associated with not attaining the
required RF and TTNF is defined. A quantity from the ‘frac-
tion of RF’ (operational quality) is derived.

The benefits of predicting these quantities are that they
provide:

assurance that the software has achieved safety goals,
a means of rationalizing how long to test a piece of software

Having predictions of the extent that the software is not fault
free (RF) and its ability to survive a mission (TTNF) are mean-
ingful for assessing the risk of deploying safety-critical soft-
ware. In addition, with this type of information, a software
manager can determine whether more testing is warranted or
whether the software is sufficiently tested to allow its release
or unrestricted use. These predictions, in combination with other
methods of assurance, such as inspections, defect prevention,
project control boards, process assessment, and fault tracking,
provide a quantitative basis for achieving safety & reliability
goals [3].

Risk, in Webster’s New Universal Unabridged Dictionary,
is defined as:

(stopping rule).

“The chance of injury, damage, or loss” [19].
Some authors have extended the dictionary definition [191 to:

“Risk Exposure = [Probability of an Unsatisfactory Out-
come] x [Loss if the Outcome is Unsatisfactory]” [2].

Such a definition is frequently applied to the risks in managing
software projects such as budget & schedule slippage. In con-
trast, this paper’s application of the dictionary definition [191
pertains to the risk of executing the software of a safety-critical
system where there is the chance of -

injury (eg, astronaut injury or fatality),
damage (eg, destruction of the Shuttle), or
loss (eg, loss of the mission),

if a serious software failure occurs during a mission. Risk
criterion metrics are developed to quantify the degree of risk
associated with such an occurrence.

Lockheed-Martin, the primary contractor on the Shuttle
flight software project, is experimenting with a promising
algorithm which involves the use of SSRM to compute a
parameter: fraction of RF as a function of the archived failure
history during test & operation [lo]. The prediction

US Government work not protected by US copyright

SCHNEIDEWIND: RELIABILITY MODELING FOR SAFETY-CRITICAL SOFTWARE 89

methodology in this paper uses this parameter and other reliabili-
ty quantities to provide bounds on TTT, RF, operational quali-
ty, and TTNF, that are necessary to meet Shuttle safety re-
quirements. This paper shows that there is a pronounced asymp-
totic characteristic to the TTT and to operational quality curves
that indicate the possibility of big gains in reliability as testing
continues; eventually the gains become marginal as testing con-
tinues. This prediction methodology is feasible for the Shuttle
and other safety-critical systems.

This paper covers only the safety of the software in a safety-
critical system. The hardware & human-operator components
of such systems are not explicitly modeled nor are the hardware-
& operator-induced software failures. However, in practice,
these hardware-software interface and human operator-software
interface failures can be very difficult to identify as such; these
failures might be recorded as software failures. The concern
here is with reducing the risk of all failures attributed to soft-
ware. Thus, safety refers to software-safety and not to
system-safety .

RF has been discussed in general as a type of software
reliability prediction [131. Various stopping rules for testing have
been proposed, based on costs of testing and releasing software
[4, 5 , 8, 171, failure intensity [12], and testability [18]. Our
approach is novel because it integrates software-safety criteria,
risk analysis, reliability prediction, and a stopping rule for
testing. For a system like the Shuttle where human lives are
at risk, economic or time-to-market criteria can not be used to
determine when to deploy the software. Although failure in-
tensity has proven useful for allocating test effort and for deter-
mining when to stop testing in commercial systems [12], this
criterion is not directly related to software safety. In a safety-
critical system, the ‘prediction of RF’ and ‘identification of the
faults which cause them’ is more relevant to ensuring safety
than the trend of failure intensity over time. The latent faults
must be found and then removed through additional testing, in-
spection, or other means, if mission safety is not to be jeopar-
dized. Furthermore, as shown, RF along with TTNF can be
used as risk criteria. It is not clear how failure intensity could
be a meaningful safety criterion.

Because testability attempts to quantify the failure prob-
ability if the code is faulty [181, this criterion has a relationship
with reliability if we know that the code is faulty. However in
the Shuttle and other safety-critical software, the purpose is to
predict whether the code is faulty. For safety-critical software,
reliability measurements & predictions must be used to assess
whether safety & mission goals are likely to be achieved.

Two criteria for software safety are defined, and then ap-
plied to risk analysis of safety-critical software, using the Shuttle
flight software as an example. Next, definitions and brief deriva-
tions are provided for a variety of prediction equations that are
used in reliability prediction and risk analysis; included is the
relationship between TTNF and ‘reduction in RF’. This is
followed by an explanation of the principal of ‘optimal selec-
tion of failure data’ that involves selecting only the most rele-
vant set of failure data for reliability prediction, with the result
of producing more accurate predictions than would be the case
if the entire set of data were used. Then it is shown how the

prediction equations can be used to integrate testing with
reliability & quality. An example shows how the risk analysis
and reliability predictions can be used to decide whether the
software is safe to deploy. Validation results are shown for a
variety of predictions.

Acronyms

01
01-x
MSE
RCM
RF
SSRM
TTNF
TTT

Shuttle operational increment
0 1 for X E [A, B, C, D]
mean square error
risk criterion metric
remaining failure(s)
Schneidewind software reliability model [l , 14, 15, 161
time to next failure
total test time.

Assumptions [I]

1. Faults that cause failures are removed.
2. As more failures occur, and as more faults are corrected,

3. For those 01 that were executed for extremely long times
RF are reduced.

(years) with no additional failure reports:

a. the RF are zero;
b. ‘maximum failures’ = ‘total observed failures’.

4. The number of failures detected in one interval is
s-independent of the failure count in another.

5. Only “new “failures are counted, ie, ‘failures that are
repeated as a consequence of not correcting a fault’ are not
counted. 4

Definitions

Failure: The inability of a system or system-component to
perform a required function within specified limits [11.
Fault: A defect in the code that can be the cause of one or
more failures [11.
Interval: An integer time unit t of constant length defined by

t-1 < t < t + l , t > 0;

failures are counted in intervals (eg, one failure occurred in in-
terval 4) [l, 71.

Number of Intervals: The number of contiguous integer time
units t of constant length represented by a positive real number
(eg, the predicted TTNF is 3.87 intervals).
01: A software system comprised of modules, and configured
from a set of builds to meet Shuttle mission functional
requirements.
Time: Continuous CPU execution time over an interval range.

4

’The singular & plural of an acronym are always spelled the same.

90 IEEE TRANSACTIONS ON RELIABILITY, VOL. 46, NO. 1, 1997 MARCH

Severity Codes

1. Severe vehicle or crew performance implications.
2. Affects ability to complete mission (not a safety issue).
3. Work-around available, minimal effect on procedures.
4. Insignificant’ (paperwork, etc).
5 . Not visible to user. 4

Nome.ncluture

Preldicted at time t: A prediction made in the interval t .
* Safety: Software safety; not system safety.

TF(Ar,t) time to next N failures that would be achieved if RF
were reduced by Ar, predicted at time t

K, j time since interval i to observe Fi,j during interval j ;
used in computing MSET

XB observed failure count in the range [I , 01
Xs,o observed failure count in the range [s, 01.

Other, standard notation is given in “Information for Readers
& Authors” at the rear of each issue.

2. CRITERIA FOR SAFETY
Notation

CY

P
failure rate at the beginning of interval s
negative of ‘derivative of failure rate’ divided by
‘failure rate’ (relative failure rate)

F (i) predicted failure count in the range [1, i]; used in com-
puting MSE,

Fi,j observed failure count during interval j since interval
i; used in computing MSET

F (t) predicted failure count in the range [I, t]
Fr given number of failures to occur after interval t ; used

in predicting T F (t)
F (t , , t2
F (00:) predicted failure count in the range [l , 031: maximum

failures over the life of the software
i current interval
j next interval, j > i , where Fi,j > 0
J maximum j i t , where F i j > 0
MSE, MSE criterion for selecting s for failure-count

predictions
MSE, MSE criterion for selecting s for RF predictions
MSET MSE criterion for selecting s for TTNF predictions
p (t) fraction of RF predicted at time t
Q(t) operational quality predicted at time t: 1 - p (t) ;

degree to which software is free of remaining faults
(failures)

t t TTT (observed or predicted)
tm mission duration (end-time - start-time); used in com-

puting RCM TF(t f)
re critical value of RF; used in computing RCM r(t ,)
r (t) RF predicted at time t
AT(;rF,t) reduction in RF that would be achieved if the

software were executed for T,, predicted at time t
r (t t) RCM for RF at t,
TF(t r) RCM for TTNF at t,
S starting interval for using observed failure data in

parameter estimation
S* optimal s, as determined by MSE criterion
t cumulative time in the range [l, t] ; last interval of

observed failure data; current interval
T’(0) TTNF, predicted at time 0

Y Q l P

predicted failure count in the range [t l , t2]

’This word is used in its ordinary meaning, not in its statistical
meaning.

If ‘safety goal’ is defined as the reduction of failures that
would cause loss of life, loss of mission, or abort of mission,
to an acceptable level of risk [111, then for software to be ready
to deploy, after having been tested for tr, the following 2
criteria must be satisfied:

For systems that are tested & operated continuously like the
Shuttle, the t,, TF(tt) , tm are measured in execution time. As
with any methodology for assuring software safety, we cannot
guarantee safety. Rather, with these criteria, we seek to reduce
the risk of ‘deploying the software’ to an acceptable level.

2.1 RF. Criterion #1

Using assumption #1 (as for the Shuttle), criterion #1
specifies that the residual failures & faults must be reduced to
a level where the risk of operating the software is acceptable.
As a practical matter, I suggest r, = 1. That is, the goal is to
reduce the s-expected RF to less than one before deploying the
software. The reason for this choice is that one or more RF is
an unacceptable risk for safety-critical systems. This is the
threshold used by the Shuttle software managers. One way to
specify r, is by failure severity level (eg, severity level 1 for life
threatening failures). Another way, which imposes a more deman-
ding safety requirement, is to specify that r, represents all
severity levels. For example, r (t ,) < 1 would mean that r (t r)
must be less than one failure, independent of severity level.

If we predict r(t ,) 2 r,, we would continue to test for
a TTT t; > t, that is predicted to achieve r (t ;) < r,, using
assumption #2 that we will experience more failures and cor-
rect more faults so that the RF will be reduced by r(t ,) -
r (t;) . If the developer does not have the resources to satisfy
criterion #1 or is unable to satisfy criterion #I through addi-
tional testing, the risk of deploying the software prematurely
should be assessed (see section 2.2). The Dijkstra dictum states
that we can not demonstrate the absence of faults [6]; however
we can reduce the ‘risk of failures occurring’ to an acceptable
level, as represented by r,, as shown in figure 1. Case A
of figure 1 predicts r(t ,) < r, and the mission begins at tr
Case B of figure 1 predicts r(t ,) 2 r, and postpones the
mission until we test for t; and predict r (t ;) < r,.

SCHNEIDEWIND: RELIABILITY MODELING FOR SAFETY-CRITICAL SOFTWARE

~

91

Start Test End Test, Bcgin Mission End hlission 3 . RISK ASSESSMENT

End Test
Start Test Continue Test Begin Mission End Mission

Figure 1. RF (Criterion #1) Scenario

In both cases criterion #2 must also be satisfied for the mis-
sion to begin.

2.2 TTNF. Criterion #2

Criterion #2 specifies that the software must survive for
a time greater than the mission duration. If we predict TF(tt)
5 t,, then we continue to test for t;' > tt that is predicted to
achieve TF(tr) > t,, using assumption #2 that we will ex-
perience more failures and correct more faults so that the TTNF
will be increased by TF(tr) - TF(tt) . Again, if it is infeasi-
ble for the developer to satisfy criterion #2 because of lack of
resources or failure to achieve test objectives, the risk of deploy-
ing the software prematurely should be assessed (see section
3). Figure 2 shows this scenario. Case A of figure 2 predicts
T F (t f) > t , and the mission begins at tr Case B of figure 2
predicts TF(t ,) I t , and postpones the mission until we test
for t;' and predict TF(~; ') > t,. In both cases, criterion #1
must also be satisfied for the mission to begin. If neither criterion
#1 nor #2 is satisfied, test for max (t;, t r) .

Start Test End Test, Begin Mission End Mission

End Test
Start Test Continue Test Begin Mission End Mission

Figure 2. TTNF (Criterion #2) Scenario

The tt can be considered a measure of the degree to which
software reliability goals have been achieved, particularly for
systems like the Shuttle where the software is subjected to con-
tinuous & rigorous testing for several years in multiple facilities,
using a variety of operational & training scenarios (eg , by
Lockheed-Martin in Houston, by NASA in Houston for
astronaut training, and by NASA at Cape Kennedy). If tt is
viewed as an input to a risk-reduction process, and r (t t) &
TF(tt) as the outputs, then the process is shown in figure 3 ,
where r, & t , are shown as 'risk criteria levels' of safety that
control the process. While TTT is not the only consideration
in developing test strategies and while there are other impor-
tant factors (eg , consequences for reliability & cost, in selec-
ting test cases [20]), nevertheless, for the foregoing reasons,
TTT has been found to be strongly positively s-correlated with
reliability growth for the Shuttle [15].

Risk Criteria Levels

rc t,

i 1
1 Risk

a t

Total
Test Time

Reduction

Figure 3. Risk-Reduction Process

3.1 RF. Criterion # I

- r(tS - TF(tJ
Reliability
Measures

Figure 4 plots (3) as a function of tt for rc= 1, where
RCM r (t ,) -

> 0 * r (t ,) > r, * UNSAFE (above the X-axis: r (t t) >
safe value);
= 0 r (t ,) = r, * NEUTRAL (on the X-axis: r(t ,) =

safe value);
< 0 * r (t t) < r, a SAFE (below the X-axis: r (t ,) < safe
value).

Figure 4 is for 01-D. In this example at tf = 57, the risk
transitions from the UNSAFE region to the SAFE region.

3.2 TTNF, Criterion #2

92 IEEE TRANSACTIONS ON RELIABILITY, VOL. 46, NO. 1, 1997 MARCH

Figure 5 is for 01-C. In this example at all values of t,, the
RCM is in the SAFE region.

4. APPROACH TO PREDICTION

To support the safety goal and to assess the risk of deploy-
ing the software, various reliability & quality predictions are
made. These predictions are used for tradeoff analysis between
reliability and TTT. Thus, this approach is to use a software
reliability model to predict:

maximum failures, RF, and operational quality (as defined

TTNF (beyond the last observed failure);
TTT necessary to achieve required levels of RF (fault) level,

in section 5) ;

operational quality, and TTNF;
I I I I tradeoffs between increases in levels of reliability & quality

18 33.5 49 64.5 80 with increases in testing.
Total Test Time (30 Day lnte

Figure 4. RCM for RF, OLD

Figure 5 plots (4) as a function of tf for t ,=S days (a
typical mission duration for this 01), where RCM T , (t t) -

> 0 * TF(t t) < tm * UNSAFE (above the X-axis: TF(tf)
< safe value);
= ‘0 * TF(t t) = tm * NEUTRAL (on the X-axis: TF(t t)
= safe value);

* < 0 * TF(t,) > tm * SAFE (below the X-axis: TF(tf) >
safie value).

L g iY - 5 1

t,,,=8 days

- 7 4 I I I I 1 I I

20 24 28 32 36 40 44

Total Test Time (30 Day Intervals)

Figure 5. RCM for TTNF, 01-C

5 . PREDICTION EQUATIONS

The prediction equations in this section:

are all for mean values;
are based on the SSRM, one of the 4 models recommended
in the AIAA Recommended Practice for Software Reliabili-
ty U];
use assumptions #1 - #5 in the Introduction;
are derived in section 6;
are applied to analyze the reliability of the Shuttle flight soft-
ware. +

Because the flight software is run continuously, around the
clock, in simulation, test, or flight, time refers to continuous
execution time, and TTT refers to execution time for testing.
Failure-count intervals are 30 days of continuous execution time.
This interval is long because the Shuttle software is tested for
several years; a 30-day interval length is convenient for recor-
ding failures for software that is tested this long.

Figure 6 shows these ‘failure-count interval relationships’
and t,. Failures are counted against 01. Data from four Shut-
tle 01, designated 01-A, 01-B, 01-C, 01-D, are used in this
analysis.

5.1 Cumulative Failures

Using maximum likelihood estimates for 01 & 0, with s
as the starting interval for using observed failure data,

Fs,t = -y.[l-exp(-P. (t--s+ l))] . (5)

If X s _ is added,

SCHNEIDEWIND: RELIABILITY MODELING FOR SAFETY-CRITICAL SOFTWARE 93

Time

Interval 1 s-1 s i t

Figure 6. Failure Count Interval Relationships

5.2 Failures in an Interval Range

Let t=r2; subtract X,, = Xs-l+Xs,il. Then from (6),

F(tl, t 2) = r.[1-exp(-P. (t2-s+1))1 - &,. (7)

5.3 Maximum Failures

Let t-co in (6).

F (m) = y + X s -] . (8)

5.4 RF

To obtain r (t) , subtract X, = Xs- + Xs,r from (8):

The r (t) can be expressed as a function of tr by substituting
(5) into (9), and setting t tt:

r (t ,) = y.exp[-P. (t ,-s+ l))] .

5.5 Fraction of RF

Divide (9) by (8):

5.6 Operational Quality

Operational quality of software is the degree to which soft-
ware is free of remaining faults (failures), using assumption #l.

5.7 TTT to Achieve Specified RF

TF(t) = p-'.log(y/*13) - (t - s - t l) ,

for \k13 > 0,

t = current interval.

5.9 Discussion

Consider (5) - (1 l), (14) to be predictors of reliability that
are related to safety; (13) represents the predicted TTT required
to achieve stated safety goals. If a quality requirement is stated
in terms of 'fraction of RF', the definition of Q as Operational
Quality (12), is consistent with the IEEE definition of quality:
the degree to which a system, component, or process meets
specified requirements [9]. For example, let a reliability
specification require that software is to have no more than 5 %
RF (p = 0.05, Q = 0.95) after testing for tt intervals; then
a predicted Q = 0.90 indicates the degree to which the soft-
ware meets specified requirements.

5.10 Relating Time to Next N Failures and RF Predictions

The risk analysis and prediction equations for RF & TTNF
are shown separately. It is useful to combine them in one equa-
tion so that we can predict the effect on one quantity for a given
change in the other. In particular we want to predict, at time
t , the TF(Ar,t) , that would be achieved if RF were reduced by
Ar. Use assumption #1 (N = A r) . When N = l , we have the
familiar TTNF. When N > 1, TF(Ar,t) is interpreted as
cumulative execution time for the N failures to occur. Converse-
ly, we want to predict, at time t , the Ar(TF,t) that would be
achieved if the software were executed for a time TF. This rela-
tionship is derived using (10) and setting:

Ar = r (t ,) - r (i t) ,
The r (t,) is obtained from (10) by solving for tt:

tl = ti +At ,

tt = p-'.log[y/r(r,)l + (s-1) .

5.8 TTNF

tl = t ,
(13)

and solving for At = TF(Ar , t) :
Substitute t2 = t + T F (t) in (7); set tl = t; define Fi =

F (t , t + T F) ; solve for T F (t) : T'(Ar,t) = (-I/@) *lOg(l-*IJ,

94 IEEE TRANSAnIONS ON RELIABILITY, VOL. 46, NO. 1, 1997 MARCH

for < 1, MSET =

[2 [[p-’*log(y/\kl~) - (i - s + l)] - &,j12 / (J - s) , 1
(18)

qI5 = (Ar/y) .exp(p. (t - s + 1)) .

i = s
Eq (15) is analogous to (14); Ar in (15) is analogous to F, in
(14), if assumption #1 is true. Eq (14) & (15) produce the same
result for the same parameter values. Eq (15) has simpler com-
putation because it does not require Xs,t which is used in (14).
Also, (15) is convenient to use for trading-off ‘time to next N
failures’ against ‘reduction in RF’ AND ‘effort and TTT im-

for , o,

*IX E Y - (Xs,i + Fi,j),

plicit in making the reductions’. t = the last interval of observed failure data.
Invert (15) to solve for the ‘reduction in RF’ that would

be achieved by executing the software for Tp

Ar (TF,t) = y .exp(-p (t - s + 1)) . [1 -exp(-P (TF)) I . (16)
7.

7.1 Predicting TTT & RF

RELATING TESTING TO RELIABILITY & QUALITY

6. CRITERION FOR OPTIMALLY
SELECTING FAILURE DATA

The first step in identifying s* is to estimate a & 0 for
each value of s E [1 ,t] where convergence can be obtained [1,
14, 1161. Then the MSE criterion is used to selects*, the failure
count interval that corresponds to the minimum MSE between
predicted & actual failure counts: MSEF, MSEn or MSE, -
depending on the type of prediction. The first two were reported
in [141. This paper develops MSE, which is also the criterion
for F (03) & tt because the two are functionally related to r (t) ;
see (‘3) & (13). MSE, is shown because it is used in predic-
tions that involve TTNF: TF(t) , TF(Ar,t) , Ar (TF,t) . Once CY,
p, artd s are estimated from observed counts of failures, the
foregoing predictions can be made. MSE is used to evaluate
which triple, (a, p, s) , is best in the range [l ,t] because research
shows that: because the product & process change over the life
of the software, old failure data (s= 1) are not as representative
of the current state of the product & process as the more recent
failure data (s> 1) [14]. The s* used in the risk analysis and
prediction examples are shown in tables 1-4.

SMERFS [7] is used for all predictions except tr,
TF (Ar, t) , and Ar (TF, t) , which are not implemented in
SME,RFS.

6.1 MSE Criterion for RF

Although we can never know whether additional failures
mighit occur, nevertheless we can form the difference between
two ‘equations for r (t) : (9) which is a function of ‘predicted

Use (8) to predict F (CO) = 11.76 for Shuttle 01-A. Using
given values of p and (1 l) , and setting t = t,, predict r (t ,) for
each value of p . The values of r (t ,) are the predictions of RF
after the 01 has been executed for tt. Then use the values of
r (t,) and (13) to predict corresponding values of t,. Figure 7
shows the results: r (t r) & tt are plotted against p for OZ-A. The
t, rises very rapidly at small values of p & r (t,). The maximum
value of p on the plot corresponds to tt = 18; smaller values
correspond to future values of tt (t, > 18).

Parameter Estimation Range: 1-1 8, s=9

n t i
0

a E

I E“
c

I

I

0 0.1 0.2 0.3 0.4 0.5

Fraction Remaining Failures (p)

Figure 7. ‘TTT & RF’ vs ‘Fraction RF’, 01-A

maximum failures’ and ‘observed failures’, and (10) which is
a function of TTT; then apply the MSE criterion.

(17)
7.2 Predicting Operational Quality I MSE, = [6 (F (i) - X i) / (t - s+l) .

6.2 IMSE Criterion for TTNF

From [14]:

Eq (12) is a useful measure of the operational quality of
software because it measures the degree to which faults have
been removed from the software (using assumption #1), relative

SCHNEIDEWIND: RELIABILITY MODELING FOR SAFETY-CRITICAL SOFTWARE 95

to predicted maximum failures. This is operational quality (based 5

on software execution) to distinguish it from static quality (eg,
based on software complexity).

[Jsing given values of p , and (1 1) & (12), and setting t

in (13) to compute tp Figure 8 plots the corresponding values
of Q & tz for OI-A. Observe the asymptotic nature of the
testing relationship in the great amount of testing required to

9
E
4
R
e4

t, - compute r (t ,) & Q. The values of r (t ,) are then used i:
c)

0 achieve high levels of quality.

$ 2

___.~ - 1.0 -

k 0

a
a

0
c)

3

b

B
0.918-

g o
P

-f--T- 0.836- plf
1 2 3 4 5 6 7 8 9 101112131415161718192021

0 40 80 120 160

Total Test Time (30 Day Intervals)

Figure 8. Operational Quality vs TTT, OI-A

7.3 Predicting TTNF

Figure 9 shows the actual TTNF for OI-A on the solid
curve that has occurred in the execution-time range t = [1,181,
where:

1 failure occurred at t = 4, 14, 18,
2 failures occurred at t = 8, 10.

All failures were Severity Level #3. The way to read the graph
is:

Take a given failure, eg, Failure 1; it occurs at t=4.
Therefore, at t = 1 the TTNF is 3 = 4 - 1. At t = 2 the TTNF
is 2 = 4 - 2. At t=4, Failure 1 occurs, so the TTNF is 4
= 8 - 4, which now refers to ‘Failure 2’; etc.
Using (14), predict the TTNF T’(18) to be 4 (3.87 round-
ed) on the dashed curve.

Execution Time (30 Day Intervals)

Figure 9. TTNF vs ‘Execution Time’, OI-A

7.4 Predicting Tradeoffs of ‘Time to Next N Failures’ with
‘Reduced RF’

By using (15), predict TF(Ar , t) as a function of Ar.
Figure 10 shows this for OI-A, where, eg, with Ar= 1, we
predict TF(I, 18) = 3.87 (a ‘reduction in RF’ of 1 corresponds
to achieving a TTNF of 3.87 intervals from the current inter-
val 18). Conversely, by using (16), we predict Ar(T‘,t) as a
function of TP Figure 11 shows this for OI-A, where, eg, with
TF=3.87, we predict Ar(3.87,18) = 1 (executing OI-A for
a TTNF of 3.87 intervals from the current interval 18 cor-
responds to achieving a ‘reduction in RF’ of 1). Section 8
elaborates further on these graphs.

8 . MAKING SAFETY-DECISIONS

To decide about tz, apply the safety criteria and risk
assessment approach. Table 1 illustrates the process. For
t t= 18 (when the last failure occurred on OI-A), r,= 1, and
t,,, = 8 days (0.267 intervals), then we show RF, RCM for RF,
TTNF, RCM for TTNF, and operational quality. These results
indicate that safety criterion #2 is satisfied but not criterion #1
(UNSAFE with respect to RF); also operational quality is low.

Figure 10 and table 1 show that if we reduce RF r(18) by
1 from 4.76 to 3.76 (non-integer values are possible because
the predictions are mean values), the predicted TTNF that would
be achieved is TF(18) =3.87 intervals. These predictions satisfy
criterion #2:

Based on the foregoing, this prediction indicates we should
continue testing if, TF(18) = 3.87 > t , = 0.267;

TF(18) = 3.87 I tm. but not criterion #1

96 IEEE TRANSACTIONS ON RELIABILITY, VOL. 46, NO. 1, 1997 MARCH

2
0

2

Using the converse of the relationship in figure 10, provides
another perspective, as shown in figure 11, where if we con-
tinue to test for an additional TF=34 intervals, starting at in-
terval 18, the predicted ‘reduction in RF’ that would be achieved
is 4.16, or r(52) = 0.60.

”
I I I I I

0 1 2 3 4 5
Reduction in Remaining Failures

Figure 10. ‘Time to Next N Failures’ vs ‘Reduction in RF’, 01-A

Table 1. Safety Criteria Assessment, 01-A
[r , = I , t,,, = 8 days

30-day TTT & TTNF Intervals]

n
.I

5l 4

0 10 20 30 40

3

2

1

0
0 10 20 30 40

Time to Next N Failures (30 Day Intervals)

Figure 11. ‘Reduction in RF’ vs ‘Time to Next N Failures’, 01-A
t, 01 p s* r (t l) RCM s * TF(t l) RCM Q -
18 .534 .061 9 4.76 3.76 9 3.87 -13.49 .60
52 ,534 .061 9 .60 -.40 9 * .95 * L

‘Cannot predict because ‘predicted RF’ < 1
4

r(18) = 4.76 > r c = l .

Now, if testing continues for tt = 52 intervals, as shown in

is 33.94 (34 rounded) intervals. This corresponds to:

1
figure 10 and table 1, and RF reduces from 4.76 to 0.60, the
predicted ‘time to next 4.16 failures’ that would be achieved

C

tr = 18 + 34 = 52 intervals

* \
~ R e ~ a i ~ i n g F a ~ l ~ ~ e s
$=Total Test Ti e Until Launch

L

c
0 40 80 120 1 60

Total Test Time (30 Day Intervals)

That IIS, if we test for an additional 34 intervals, starting at in-
terval 18, we anticipate getting 4.16 failures. These predictions
now satisfy criterion #1 because:

r(52)i = 0.60 < rc = 1.

In figure 10 and table 1, the ‘fraction of RF’:

p = 1 - Q = 0.05 at r (5 2) = 0.60.

Figure ’*. Launch Decision’ RF vs TTTi OLA

Figure 12 shows the Launch Decision, relevant to the Shut-
tle, (or, generically, the Deployment Decision), where RF are
plotted against TTT for 01-A. With these results, the software
manager can decide whether to deploy the software, depending
on factors such as predicted RF as shown in figure 12, along
with other factors such as the ’trend in reported faults over time’,
and ‘inspection results’. If testing were to continue until tt =52,

SCHNEIDEWIND: RELIABILITY MODELING FOR SAFETY-CRITICAL SOFTWARE

~

97

the predictions in figure 12 and table 1 would be obtained. These
results show that criterion #1 is now satisfied (SAFE) and
‘operational quality’ is high. Figure 12 shows that at this value
of tt, further increases in tt would not result in an important in-
crease in reliability & safety. At t,=52 it is not feasible to
predict T F (5 2) because the ‘predicted RF’ < 1.

9. SUMMARY OF PREDICTIONS
AND VALIDATION4

9.1 Predictions

Table 2 summarizes RF & maximum-failure predictions
compared with actual failure data, where available, for 01-A,
01-B, 01-C, 01-D. Because we do not know the actual RF &
maximum-failures, we use assumptions #3a & 3b.

Table 2. Predicted RF & Maximum-Failures vs Actuals
[30-day TTT Intervals]

r, s* 01 p r (t ,) Actual r F(00) Actual F

01-A 18 9 ,534 ,061 4.76 ?* 11.76 7 A
01-B 20 1 1.69 ,131 0.95 l B 12.95 13’
01-C 20 7 1.37 ,126 1.87 2‘ 12.87 13‘
01-D 18 6 ,738 ,051 7.36 4D 17.36 14D

Time of last recorded failure:

A. No additional failures reported after 17.17 intervals.
B. The last recorded failure occurred at 63.67 intervals.
C. The last recorded failure occurred at 43.80 intervals.
D. The last recorded failure occurred at 65.03 intervals.

Table 3 summarizes TTT and TTNF predictions compared
with actual ‘execution time’ data, where available, for 01-A,
01-B, 01-C, 01-D.

Table 3. Predicted TTT & TTNF vs Actuals
[30-day TTT & TTNF Intervals]

s* t c (r = l) Actual r, t s* T F (t) Actual TF

01-A 9 43.59 ? 18 9 3.9 ?
01-B 1 63.67 20 * 43.67
01-C 7 24.98 27.07 20 5 4.2 7.63
01-D 6 56.84 58.27 18 5 6.4 6.2

* *

~

*Cannot predict because ‘RF failures’ < 1.

Additional Predictions for 01-D:

[These are additional predictions of TTT for 01-D that are not
listed in table 31 t ,(r=2) = 43.35, Actual=45.17;

‘The number of significant figures is not intended to imply any ac-
curacy in the estimates, but to illustrate the arithmetic.

t t (r=3) = 35.47, Actual=23.70.

Table 4 summarizes the predictions of TTNF for a given
‘reduction in RF’ of 1 and the predictions of ‘reduction in RF’
for given TTNF compared with actual execution time and failure
data (where available), for 01-A, 01-B, 01-C, 01-D.

Table 4. Predicted Tradeoffs of TTNF with ‘Reduced RF’ vs

[30-day TTT & TTNF Intervals]
l Actuals

t s a 01 p T F (A r = l , t) Actual (TF, t) Ar(TF,f) Actual

01-A 18 9 .534 ,061 3.87 ? 3.87 1.00 ?
01-B 20 1 1.69 ,131 * 43.67 43.67 .95 1.0
O K 20 5 1.34 .096 4.16 7.63 7.63 1.58 1.0
01-D 18 5 1.61 .137 6.35 6.20 6.20 .99 1.0

*Cannot predict because ‘predicted RF’ < 1.

9.2 Validation

A total of 18 predictions were made across tables 2 - 4,
where there was an actual value to compare: 3 r (t) , 4 F (c4) ,
4 tr, 2 TF(t) , 2 TF(Ar,t) , 3 Ar (TF,c). The mean relative error,

[mean of (actual -predicted)/actual] of prediction is 22.92 % and
the standard deviation is 27.61 %. In making these predictions
we note both the sparsity of post-delivery failures and the ex-
tremely long test times for Shuttle flight software, as summariz-
ed in table 5. The appendix lists the failure data.

Despite the fact that SSRM uses optimal selection of failure
data, and thus less than the full set of data, there must be a
minimum number of failures to start the parameter estimation
process, understanding that the model will then selects*. Thus,
given the sparsity of the data, all failures in table 5 were used
in parameter estimation, regardless of their severity. Further-
more, as described earlier, a more conservative risk assessment
is produced if all categories of failures are included in the
analysis.

Table 5. Failure Distribution by Severity Code (SC)
[30-day TTT Intervals]

sc -2 sc-3 sc -4 Max Failures TTT

01-A 0 7 0 7 18
01-B 5 8 0 13 64
O K 3 6 2 13* 44
01-D 6 8 0 14 66

*Unknown Severity for two failures

There are no post-delivery SC-1 or SC-5 failures in the 01.

APPENDIX

Observed Failure Counts

[Interval i = 30-days execution time]

98 IEEE TRANSACHONS ON RELIABILITY, VOL. 46, NO. 1, 1997 MARCH

1 01-A 01-B 01-C 01-D

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0
0
0
1
0
0
0
2
0
2
0
0
0
1
0
0
0
1

1
1
1
2
1
0
0
2
1
0
2
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
2
1
3
1
0
0
0
1
1
0
0
1
0
0
1
0
0
0
0
0
0
0
1
0
0

0
0
0
0
3
1
0
1
0
1
1
0
2
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0

31-63 0
64 1

31-43
44

0
1

31-45
46

47-58
59

60-65
66

Totals: 7 13 13 14

[4] S.R. Dalal, A.A. McIntosh, “When to stop testing for large software
systems with changing code”, IEEE Truns. Software Engineering, vol
20, 1994 bpr, pp 318-323.

[5] S.R. Dalal, A.A. McIntosh, “Some graphical aids for deciding when
to stop testing”, IEEEJ. Selected Areas in Communications, vol 8 , 1990
Feb, pp 169-175.

[6] E.W. Dijkstra, “Structured programming”, Software Engineering Techni-
ques (J.N. Buxton, B. Randell, Eds), 1970 Apr, pp 84-88; NATO Scien-
tific Affairs Division.
W.H. Farr, O.D. Smith, Statistical Modeling and Estimation of Reliability
Functions for Software (SMERFS) Users Guide, NAVSWC TR-84-373,
rev 3, 1993 Sep; Naval Surface Weapons Center.

[8] W. Ehrlich et al, “Determining the cost of a stop-test decision”, IEEE
Software, 1993 Mar, pp 33-42.

[9] IEEE Standard Glossary of Software Engineering Terminology, IEEE
Std 610.12.1990, 1990; IEEE.

[lo] T. Keller, N.F. Schneidewind, P.A. Thomton, “Predictions for increasing
confidence in the reliability of the space shuttle flight software”, Proc.
AIM Computing in Aerospace 10, 1995 Mar 28, pp 1-8; San Antonio.

[l l] N.G. Leveson, “Software safety: What, why, and how”, ACM Com-
puting Surveys, vol 18, 1986 Jun, pp 125.163.

[I21 J.D. Musa, A.F. Ackerman, “Quantifying software validation: When
to stop testing?”, IEEE Software, vol 6 , 1989 May, pp 19-27.

[13] J.D. Musa et al, Sofrware Reliability: Measurement, Prediction, Applica-
tion, 1987; McGraw-Hill.

[14] N.F. Schneidewind, “Software reliability model with optimal selection
of failure data”, IEEE Trans. Sofhvare Engineering, vol 19, 1993 Nov,

N.F. Schneidewind, T.W. Keller, “Application of reliability models to
the space shuttle”, IEEE Software, vol 9 , 1992 Jul, pp 28-33.
N.F. Schneidewind, “Analysis of error processes in computer software”,
Proc. Int’l Con$ Reliable Sofnyare, 1975 Apr 21-23, pp 337-346; IEEE
Computer Society.
N.D. Singpurwalla, “Determining an optimal time interval for testing
and debugging software”, IEEE Trans. Sofware Engineering, vol 17,
1991 Apr, pp 313-319.

[18] J.M. Voas, K.W. Miller, “Software testability: The new verification”,
IEEE Software, vol 12, 1995 May, pp 17-28.

[I91 Websrer’s New Universal Unabridged Dictionary (2nd ed), 1979; Simon
& Shuster.

[20] E.J. Weyuker, “Using the consequences of failures for testing and
reliability assessment”, Proc. Third ACM SIGSOFT Symp. Foundations
of Sofhyare Engineering, 1995 Oct 10-13, pp 81-91; Washington DC.

[7]

pp 1095-1 104.
[I51

[I61

[I71

AUTHOR

ACKNOWLEDGMENT

I am pleased to acknowledge the support provided for this
project by Dr. William Farr, Naval Surface Warfare Center;
Ms. Alice Lee of NASA; US Marine Corps Tactical Systems
Support Activity: and Mr. Ted Keller and Ms. Patti Thornton
of Lockheed-Martin. I thank the referees and Associate Editor
for their helpful comments.

REFERENCES

Recommended Practice for Sofrware Reliability, R-013-1992, 1993;
ANSIIAIAA.
B.W. Boehm, “Software risk management: Principles and practices”,
IEEE Software, vol 8 , 1991 Jan, pp 32-41.
C. Billings et al, “Journey to a mature software process”, ZBMSystems
J , vol 33, num 1, 1994, pp 46-61.

Dr. Norman F. Schneidewind; Code SMISs; Naval Postgraduate School;
Monterey, California 93043 USA.
Internet (e-mail): schneidewind@nps.navy .mil

Norman F. Schneidewind is Professor of Information Sciences and Direc-
tor of the Software Metrics Research Center at the Naval Postgraduate School.
He is the developer of the Schneidewind software reliability model which is
used by NASA to assist in predicting software reliability of the Space Shuttle.
This model is one of the models recommended by ANSI & AIAA, Recommended
Practicefor Software Reliability. Dr. Schneidewind is a Fellow of the IEEE,
elected for “contributions to software measurement models in reliability and
metrics, and for leadership in advancing the field of software maintenance”.
He was awarded a certificate for outstanding research achievements in 1992
by the Naval Postgraduate School. He was Chair’n of the Working Group that
produced the IEEE Standard for a Software Quality Metrics Methodology,
published in 1993 Mar. In 1993 he was given the IEEE Computer Society
Outstanding Contribution Award for “work leading to the establishment of IEEE
Standard 1061-1992, Standard for a Software Quality Metrics Methodology”.

Manuscript TR95-179 received 1995 December 5; revised 1996 September 15

Responsible editor: M.A. Vouk

Publisher Item Identifier S 0018-9529(97)03035-2 (TRW

