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Abstract

When assessing system reliability using system, sub-system and component level data, as-
sumptions are required about the form of the system structure in order to utilize the lower
level data. We consider model forms which allow for the assessment and modeling of pos-
sible discrepancies between reliability estimates based on different levels of data. By un-
derstanding these potential conflicts between data, we can more realistically represent the
true uncertainty of the estimates and gain understanding about inconsistencies which might
guide further improvements to the system model. The new methodology is illustrated with

several examples.
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1 Introduction

Realistic and representative reliability assessments of high consequence systems remain an
important task, especially as the complexity of the systems increases. Examples include
one-shot systems such as automotive airbags, safety systems in nuclear power plants, and
missiles, for which it is desirable that they work when called upon to perform. Data at
multiple levels may be available — few full system tests, more subsystem tests, and even more
component tests — and analysts are asked to use these with other sources of information in the
assessments. The system reliability assessment literature has mostly focused on methods for
combining such multi-level data. A key aspect of such assessments is the assumed reliability
structure of the system, e.g., as laid out by reliability block diagrams. This paper focuses on
treating the stated structure as an assumption that may or may not be exactly correct, while
using multi-level data to assess the assumption. We show how to assess system reliability

when there is inconsistency between the assumed and actual system reliability structure.

While systems may have been designed to have a series or parallel structure, in practice
there may be dependencies between components or connectivity issues that cause these
assumed relationships to no longer be correct in practice. For example, consider a population
of complex systems, such as car engines, kitchen appliances, or rockets. The engineers who
design the system intend for it to have a series structure. However, this might not be the
correct structure once the system is built and data are collected. (1) During production
connectivity issues between components might make it possible for two components to each
work separately, but not work when combined together. (2) If the performance of one
component depends on receiving the correct signal or power supply from another component,
we may observe apparent failures of some components even when that component is actually
working. (3) The component level tests may be incorrectly calibrated relative to the demands
on that component during the full system test. For example, it might be that a component,
will pass the component level test, but the system level test could fail because the component

cannot perform adequately.

Hence before we confidently use component level test data to estimate system reliability, it



would be beneficial to estimate the compatibility of the different data sources. Understanding
the reliability of a complex system is important in many applications. It allows us to predict
performance and for many systems there are substantial consequences for the system not
performing as intended. Most government and commercial applications have some type of
assessment of reliablity included. As the complexity and cost of the system increases, it may
be increasingly expensive or impractical to collect full system data as the primary means of
assessing system reliability. Hence, supplementing this data with other less direct sources

may be beneficial and cost-effective.

We begin by briefly reviewing the literature on system reliability assessment. There are
a number of papers on Bayesian statistical assessments of system reliability, based on data
from component and higher level tests, which assume series and parallel subsystems. Some
important examples are Cole (1975), Mastran (1976), Mastran and Singpurwalla (1978),
Natvig and Eide (1987), Martz, Waller and Fickas (1988), Martz and Waller (1990), John-
son, Graves, Hamada and Reese (2003) and Anderson-Cook, Graves, Hamada, Hengartner,
Johnson, Reese and Wilson (2007). Only Johnson et al. (2003) and Anderson-Cook et al.
(2007) provide a fully Bayesian solution using Markov chain Monte Carlo (MCMC). In all
these papers, it is assumed that the components fail independently and that the assumed
system structure as described by a reliability block diagram is correct. Lynn, Singpurwalla,
and Smith (1998) present several interesting and useful types of prior dependence between
the component reliabilities, including several highly reliable components, nearly identical
components, and ordered component reliabilities: these ideas can be used to complement

the ideas in our paper.

In this paper, our interest is in the case where a nominal structure of the system is
given, but where the reliability of subsystems or the full system may deviate from the exact
functional form given by the stated structure. The simplest example is a two-component
series system, where nominzﬂly the system works properly if and only if both components
work properly. Denote the indicator that the system works properly by X, (i.e., Xo =1 if

it works properly) and the corresponding indicators for the two components by X, and Xo.



The functional series system assumption is
Xo = X1 X2 (with probability 1). (1)

Consider a simple probability model with E(X;) = p1, E(X2) = ps, and where p; and p, are
fixed constants. A further assumption is that X; and X, are independent given p; and ps,
and if this is true along with the series system assumption, then we have p; = E(Xp) = p1po;
we call this the probabilistic series system assumption. See Anderson-Cook (2008) for a test
of this assumption. (Note that we use the reliability block diagram definition of a series
system, not the fault tree definition, which investigates failure mechanisms). We wish to
allow for the possibility that py is not exactly equal to pips. In other words, we wish to
model and understand the discrepancy between the reliabilities suggested by different data
types. A classical example is of a “missing component,” where a failure mode has not been
characterized, in which case the system reliability py is equal to pipeps, where 1 — p3 is
the probability of a failure from the unknown mode. However, if the two components are
not required to be independent, it is also possible to have py > pips as well as py < pipo:
for example, there may be an unrecognized environmental or manufacturing condition
with probability density function f, that simultaneously affects the failure probability of
both components: p; is by definition [ p;(u)fu(u)du, and py = [ pa(u)fu(u)du, and now
po = [ p1(u)pa(u) fu(u)du. We use this example to motivate defining models more generally
than the missing component model, but typically we will not explicitly write down a model

for dependence on u or try to impute it when it is unknown.

We focus on the case where simultaneous data (Graves et al., 2008) are not available, i.e.,
each observation of test data is a success or failure at exactly one component, subsystem,
or full system, and the observations are independent of each other within a particular data
type as well as across data types given the parameters. (An example of simultaneous data
is a full system test of a two component series system, where both components are observed

to work properly but where the system is also observed to fail.)

We consider modeling the discrepancy of reliability estimates based on the various types

of data and information. For the previous two component example, we can estimate sys-



tem reliability using only the system data with pg, or using the component data under the
assumption of a series system as p;py. It is possible to use this methodology to investigate

discrepancies in the data or to study the consistency of expert opinion at various levels.

1.1 Notation and definitions

In the following, we refer to an element of the system where data can be collected, such as
the system, a subsystem or a component, as a node: denote the complete set of nodes in the
system by J. The connection between nodes in the system structure are called gates, and
are typically and or or gates. For example for the simple series system described earlier, we
have 3 nodes: system, components 1 and 2 and one and gate. Denote the vector of unknown
parameters by 6; this vector describes the process by which similar systems are built and
tested, and from a Bayesian perspective we express uncertainty about the value of  using a
probability distribution 7(#). Figures 1 and 2 show a success tree representation (Stamatis,
1995) and block diagram for a two sub-system and five component system. The success tree
representation in Figure 1 will be more useful in this paper. In Figure 1, each numbered
oval represents a node, with the five nodes along the bottom representing the components.
The AND symbol under node 2 indicates that components 5, 6, and 7 combine in series to
form subsystem 2, the OR symbol under node 1 indicates that components 3 and 4 combine
in parallel to form subsystem 1, and the AND symbol under node 0 shows that subsystems

1 and 2 combine in series to form full system 0.

A single system (the ith such one) built according to this process is described by pa-
rameter vector 6, with §® ~ F(-|@). Finally, suppose that node j € J of the ith system is
tested; we then denote the indicator that the test is a success by X ; The systems have an
assumed structure ¢, which means that one subset of nodes C' C J are called components.
The set C C J satisfies two properties: first, [ P{X} = ; for all j € C|8}n(8)d6 > 0 for
each choice of {z; € {0,1} : j € C}, so that any combination of component successes and
failures is possible in principle. Second, if j & C, then if the assumed structure ¢ is correct,

then XI = ¢;(X¢), where ¢; is a deterministic function and where we use the notation



Figure 1: Success tree for system with two sub-systems and five components
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Figure 2: Simplified system reliability block diagram.



X4 = {X} : j € C}. For example, if node 0 is a series system consisting of components 1
and 2, then ¢y(z1, ) = z122. Letting pi(6") = E(X}|6%), then p;(0) = [ p(6°)dF(67|9) is
the reliability of the jth node under unknown parameter 4. If X; are tests of node j for
i =1,...,n;, then conditionally on 8, the statistic 3,7, X * has a binomial distribution with
parameters n; and p;(6). We will frequently write p;(6) simply as p;. Lynn et al. (1998)
write P; = [ p;(0)m(0)dd and refer to it as the expected reliability of node j.

In the situations considered here, we do not separately model different instances of the
system by explicitly calling out §* or p; In principle, one could measure covariates relevant
to the ith system that would make it beneficial to have explicit models for these quantities,
but we assume that such covariates are unavailable. (In Section 5, however, we consider the
case where we collect data on covariates that predict component reliability, even while other
unobserved covariates generate further relationships between component reliabilities.) We
also restrict attention to the case where all observations are independent with X ; for a single
J (i-e., not simultaneous data). In this case only the p;’s can be estimated from the data: we
cannot in general estimate the full joint distribution of {X ; : 7 € J}. Hence in this paper we
discuss prior distributions on the p; that attempt to quantify the notion that the assumed
structure is approximately correct. If we had simultaneous observations (see Graves et al.,
2008) of {X; :j € Ji}, for J; C J, we would require more elaborate models with a Bayesian

network flavor; see Wilson and Huzurbazar (2007).

In this formulation, we see that there are several possible forms of structural assumptions
and approximate generalizations. Let j & C; writing pc = {p; : 7 € C} and similarly for

Pp, three possible assumptions are:

(1) Functional assumption:  P{X} = ¢;(X})|0} = 1 for n-almost all 6;
(2) Probabilistic assumption: p;(0) = ¢;(pc(6)) for m-almost all §;
(3) Classical assumption: P; = ¢;(Peo).

(A statement is true for m-almost all 8 if it is true for all 6 in a set A such that 7(4) = 1.) In

the case where node 0 is a series system of the two components 1 and 2, these assumptions



(1) P{X}=XiX}0} =1 for m-almost all 0;

(2) po(0) = p1(@)p2(8) for m-almost all 9;

(3) Ph=hPh.
In this paper, we will consider approximations of Assumption (2). One way that it can be
satisfied is if the jth structure function is correct and the pji for j € C are independent
conditionally on 8, assuming standard structure functions that are multilinear in the p¢’s
(Barlow and Proschan, 1965). Hence, the probabilistic assumption can be approximately
correct due to mild correlation between the p;'., or due to potential violations of the func-
tional assumption. Our models will handle both sources of divergence from the assumption,
without trying to distinguish between them since our data are not adequate for that task.
The randomness in pj and potential correlation between different j can be due to manufac-
turing variability and/or variability in test conditions, in which case we assume that our test
data are representative of the population of interest. Lynn et al. (1998) present prior dis-
tributions 7 for 0 that lead to correlations between the random variables p;(0) when 6 ~ 7.
In contrast, we consider that individual systems have randomly different component relia-
bilities, and the component reliabilities for a given system may be correlated, leading (for
example) the average reliability of all systems to be different from what would be predicted
from the average reliability of all components and exact truth of the probabilistic structure

assumption.

Assumption (1) is also of interest: approximations would include the possibility that a
nominal series system could work properly even if one of its components is observed to fail,
or system failure when all components in the system description worked. However, with
data on X ; for only one j for each ¢, we cannot appropriately examine it. Assumption (3) is
rarely of interest: it may be true a priori for priors m under which the component reliabilities
are independent, but even then it will generally be false a posteriori. For example, failed
tests of a two-component series system will generate negative posterior correlations in the

reliabilities of its components. Note that none of these three assumptions implies another.



2 Example models

In this section we introduce a number of potential models. We focus at first on the two-
component series system, where the component reliabilities are p; and po, the system relia-
bility is po, and the approximate probabilistic system structure assumption is that py =~ p;ps.
‘Each of our models features a parameter A governing the typical discrepancy between py and
p1p2. The parameter A can be fixed by the analyst if its value is assumed known, or given
a prior distribution. If A is random, we do not expect to be able to estimate it reliably
based on data from one two-level system, but the posterior distributions for the component
and system reliabilities will reflect uncertainty in the accuracy of the probabilistic structure

assumption.

Different structure functions or systems with more components are mostly immediate
generalizations. Models for systems with more than two levels (e.g., systems, subsystems

and components) can be built up from the component level by applying these ideas.

2.1 Logit process

One natural model assumes that, given the component reliabilities p; and p, and the scale

parameter A, the system reliability satisfies

logit(po) ~ N (logit(p1ps), A%). (2)
In this case we have
7 (po| A) = 1 ex (——1—{10 it(po) — logit( )}2) (3)
0iP1, P2, - )\pg(l _po)\/2_7r' P 2)\2 g10(Po gL P12 .

Omne can also use the probit link function instead of the logit, which should give similar
results. These models are straightforward to generalize flexibly to the case where covariates
affect the reliabilities of the components and hence the system. The normal distribution is

not critical here; in particular, a double exponential (Laplace) structure may be used.



In this model, A\ should not be chosen to be too large, (A < 2 is a reasonable rough |
guideline) especially if there are no failures or no successes at the system level. Very large A
generates a U-shaped prior for py given (p1, p2) and favors values of pg closer to 1 or 0 than

may be desired.

2.2 Beta error model

Another possibility assumes that py has a Beta distribution centered around the series system

model p1p, as follows:

I(1/A)

1?2/A—1(1 —
D(pipa/NI((1 — pip2)/A) 0

po)(1~mm)/>\—1_ (4)

7(polp1, p2, A) =

In this model, A should be constrained to be no more than one; otherwise an improper
posterior distribution is a possibility. This model behaves similarly to the logit model and

is not discussed further.

2.3 Extensions to more components and to parallel systems

Naturally, the generalization of the logit model to the case of a series system of d components
is

d
logit(po) ~ N (10git(H i), Ag) :
g=1

In a parallel system with d components, we assume

d
logit(1 — po) ~ N (logit {H(l —Pg)} ,)\2) o

i=1

For a system with more than two levels, we can build a model using elements already
discussed. In this case, there is potentially one A parameter at each upper-level node. One
can use fixed As and they can be different or the same throughout the graph. Once a

system has several subsystems, the possibility exists for assuming a common but unknown
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A throughout the network, and estimating this parameter. The common A then governs the

overall level of correctness of the structure function throughout the system.

2.4 Default priors for component reliabilities

If prior information is available on the component reliabilities p; for ¢ € C, this should
be used. Priors such as those given in Lynn et al. (1998) can be employed here. In the
absence of such information, a number of options are available: the components can be
given independent uniform priors, Beta(0.5,0.5) priors, for example. The negative log gamma
distribution (Hamada et al. 2008) is also worthy of consideration; in this way independent
priors on the component reliabilities yield a given reliability for the series system. We also
recommend a hierarchical model for the component reliabilities, in which p; ~ Beta(vp, v(1—
P)) for ¢« € C, with a flat or Beta(0.5,0.5) prior for p, and, for example, a prior for v
proportional to %2 on (Ui, 00). (This form of the prior for v results from a uniform (0, s)
prior on ¥~Y/2, a prior recommended for standard deviation parameters by Gelman et al.
(2008).) The hierarchical model for component reliabilities helps minimize the phenomenon
in which the estimated reliability of a system depends on the number of components in the
model of the system; see Johnson et al. (2003). In much of this paper we use the uniform

(0,1) prior for component reliabilities.

3 Algorithms

To combine the data with the expert knowledge represented by the various prior distributions,

we use Bayes’ Theorem:

7(6]z) = n(x|0)7(8) / / ()€ (€)de, (5)

where @ is the parameter vector (i.e., the node reliabilities p; and ), z is the data vector,
7(0) is the prior probability density function and m(2|@) is the data probability density

function (i.e., the binomial probability mass function for binomial data) which viewed as

11



a function of the parameter vector given the data is known as the likelihood. The result
of combining the data with expert knowledge is the posterior distribution, 7(8|x). Since
the 1990’s, advances in Bayesian computing through Markov chain Monte Carlo (MCMC)
have made it possible to sample from the posterior distribution (Gelfand and Smith (1990)).
Consequently, a Bayesian analysis requires an implementation of an MCMC algorithm such

as Metropolis-Hastings; see, for example, Chib and Greenberg (1995).

The models discussed in this paper do not lend themselves to routine MCMC algorithms.
Consider a two component series system with reliabilities p;, py and py =~ p1ps and a Gibbs-
sampler type algorithm that attempts to sample from conditional distributions po|(p1, p2),
then p;|(pg, pe), then po|(po, p1). If the discrepancy between py and pips is small but there
is nontrivial uncertainty in the near-common value of py and p;ps, steps taken by py can
only be very small. Since p; and ps are also taking small steps, it can take a long time to
adequately explore the posterior distribution. In this case, one might prefer to remove py
from the model altogether, assuming that py = pi1p», but in a bigger model, it may not be
obvious beforehand that this will happen and may be inconvenient to rewrite the model with
fewer parameters. For that reason one needs Metropolis-Hastings steps that propose moves
to all the p parameters simultaneously, while preserving the current amount of discrepancy

in order that accepted moves are proposed more frequently.

The algorithm we use here cycles through several Metropolis-Hastings proposals, each
of which is accepted or rejected according to the standard rule. In all of what follows,
we write § = (p,\) as the unknown parameter and # for an unnormalized version of the
posterior density function. In what follows we discuss our choices for T}, using the symbol
# to represent a generic “current value” of the unknown parameter, & to denote a generic
new proposal. A generic algorithm is a vector (T3, ...,Ty) of conditional probability density
functions T'(#'|#), for some number N of proposal distributions. Let n be the number of

MCMC of samples from 7 we wish to draw. The algorithm is as follows:

1. Initialize with 8 = 0.
2. Fori=1,...,n{

12



3. For j=1,...,N{
4. Propose a new value of & by sampling & ; ~ T;(-|6; ;1)

5. Calculate the acceptance probability

o — min( 15(0i5-1107,;) =(0;;) )
" " T5(0; 5105,5-1) w05 5-1)

6. Sample a U(0, 1) random variable Uj ;.

7. If Ui; < oy, then let 0;; = 6] ;. Otherwise let 0;; = 6;;_,. } #end j-for-loop } #end

i-for loop

Most commonly, Monte Carlo averages will be calculated using 0, v, .. ., 8, n, with 8; ; for
Jj < N discarded, although this is not required. We describe a proposal mechanism in terms
of how it changes a subvector of 8, in which case it is to be understood that the remaining
subvector remains fixed with probability one. When defining acceptance probabilities, we

will report the ratio of 7T}’s and leave the ratio of 7’s unstated.

The first several 7; have a one-to-one correspondence with the p;, and T; attempts to

change p; alone, through the proposal logit p; ~ N(logit p;, s7). The acceptance probability
p;{(1-p})
pi{1-p;)
tuned in a burn-in period so that approximately 40% of the proposed moves are accepted,;

for this move is then multiplied by the ratio of posterior density values. The s; are
see Graves (2005). Following these moves, we propose new values for A, according to log \' ~

N(log )\, s2), where the acceptance probability is the posterior ratio multiplied by X'/A.
A

Finally, we have a set of proposal mechanisms that attempt to move all of the p; simul-
taneously. We have one of these beginning at each of the p;’s, and this p; will generally be
making the largest move, but we will then also traverse the graph in all directions, proposing
moves to the other p’s that compensate for the proposed move to the previously changed pa-
rameters. The first parameter changed follows a Gaussian move on the logit scale as above,

which contributes a factor of H to the acceptance probability.

In this way, whenever we alter a new set of parameters corresponding to a given gate,

exactly one of the parameters has been changed already. For each of the four cases considered,
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we describe how to propose a new value for each node reliability that has not yet been
changed, and report by what factor we should multiply the acceptance probability for the

move,

Step A If the gate is a series gate with d compbnents, and the parent node 0 has been
changed already, define U = log{pp/po}, and let (Vi,...,Vy) be drawn from the
Dirichlet distribution with parameters (8/d,...,5/d). Then let p} = p; exp(UV;) for
i =1,...,d. Multiply the acceptance probability by Hle p./pi. In this way we pre-
serve the amount of discrepancy as log(py/ [T, p}) = log(po/ T1L, p:)-

Step B If the gate is a parallel gate, and the parent node 0 is the node that has been
already changed, then U = log{(1—p})/(1—po)}. Draw Dirichlet V’s as above, and let
P, = 1—(1-p;) exp(UV;). Multiply the acceptance probability by Hf=1(1 —pi)/ (1 —p;).
Again we preserve the amount of discrepancy as log{(1—pj)/ [T, (1—p})} = log{(1—
Po)/ H?:l(l —pi)}-

Step C If the gate is a series gate, and child 1 has already been changed, let U = log{p}/p }.
Let py = poexp(UVy), and for i > 1, let pi = pyexp(—UV;). Multiply the ac-
ceptance probability by (pj/po) Hsz Pi/p;. Again this preserves log(p,/ Hle p,) =
log(po/ [Ti=y Pi).

Step D If the gate is a parallel gate, and child 1 has already been changed, let U = log{(1 —
p1)/(1—p)}. Let (1—pp) = (1 — po)exp(UV3), and for i > 1, let (1 —p}) = (1 —
pi) exp(—UV;). Multiply the acceptance probability by (1 — pj)/(1 — po) Hfzg(l —
#{)/(1 —p;). This preserves log{(1 —p)/ [Ti; (1 — 7))} = log{(1 — po)/ [Ty (1 — p)}-

It is possible to propose p] € (0,1), in which case the proposal algorithm is terminated with
a rejected move. Moves like these continue until each of the p’s in the entire graph has
been proposed to be changed exactly once, at which point the acceptance/rejection step is

attempted, and all those p’s changed are either accepted or rejected at once.

For example, consider the system with five components, two subsystems given in Figure

1. Suppose we first change node 0: the next step is to change nodes 1 and 2 using Step A,

14



then (in either order) to change nodes 3 and 4 according to Step B and nodes 5-7 using
Step A. If, on the other hand, the first node to change is node 3, our next step is to change
nodes 1 and 4 using Step D; then we change nodes 0 and 2 according to Step C; finally
changing nodes 5-7 again according to Step A.

4 Examples

As a simple example, consider the case of a two component system with flat (uniform) priors
on their reliabilities, where each component is tested n; = ny = 10 times, resulting in nine
successes. The system is also tested ten times but only zy = 2 successes were obtained.
Assuming py = p1pe, the maximum likelihood estimate for both p, and p, is 0.717 and for
po is 0.514. Given the MLEs, the probability of two or fewer successes in ten system tests is
0.0454, while the probability of eighteen or more successful component tests in twenty trials
is 0.0497, so these results are fairly unlikely for a true series system. We analyze these data
for several values of (fixed) A, then repeat the analysis with exponential prior distributions
for A with varying prior means. Figure 3 displays the results. The top plots show the results
for the fixed A analyses: for different values of log(A), solid lines show the posterior medians
for po (left), p1 (center; this plot also applies for pa), and po/(p1p2) (right). The corresponding
dashed lines show the 5th and 95th posterior percentiles for these quantities. The bottom
plots display the same quantities for analyses with exponential prior distributions for A, with
the log of the prior mean on the z—axis. For the fixed A analysis and for large A, the results
are consistent with the Beta(2,8) distribution for py and with the Beta(10,2) distribution for
p1 and po; these beta posteriors would be the result if each node were analyzed separately,
with uniform priors on p; and ps, and with essentially a Beta(0,0) prior for py, since the
large A\ prior works like a U-shaped prior. Results change slowly with decreasing A, with
most rapid changes occurring for moderate A. Results are similar when ) is random with an
exponential prior distribution, with the prior mean for X being slightly less influential than

X's value when it is fixed.
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Figure 4: Results for non-discrepant data, fixed and random A.

For another example, we assume data with minimal discrepancy: again ng = ny = ng =
10, with z¢ = 8, 1 = z2 = 9. With little evidence of discrepancy, we hope that allowing
for the possibility of pg # p1pe does not greatly increase the posterior variance. As shown in
Figure 4, The posterior medians for the p’s are nearly independent of A (or its prior mean),
but the uncertainty in the p; increases to some extent with increasing A: the width of the

90% interval increases by about 30% from minimal A (no discrepancy) to maximal A.

In our next example, we consider a larger network with five components and two sub-
systems. We assume that a single A applies to both subsystems and to the full system’s
relationship to the subsystems, with an exponential prior distribution with mean one. In
principle one could consider a hierarchical model for three X’s, but even estimating a vari-
ance parameter based on three observations is ambitious. The assumed system structure is
given in Figure 2; components 3 and 4, with reliabilities p3 and ps combine in parallel to

give subsystem 1, with reliability p; ~ 1 — (1 — p3)(1 — p4); components 5, 6, and 7 combine
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Table 1: Data for Simplified System

Node Data p
0 15/20 0.8
1 0.9
2 10/10 0.9
3 34/40 0.9
4 A7/50 0.9
5 3/5 0.95
6 8/8 0.95
7 16/17 0.95

in series to form subsystem 2, whose reliability satisfies ps =~ pspepr, and the system (node
0) is an approximate series system of subsystems 1 and 2. The observed data are given in

Table 1. We use Beta(0.5,0.5) priors for each of the components.

We analyze these data with no discrepancy and with the A ~ Exponential(1) prior, and
display quantile-quantile plots of posterior samples under the two models in Figure 5, with
the no-discrepancy model on the y-axis. The amount of discrepancy in these data is modest:

the posterior median of A is 1.03, with a 90% interval (0.09, 3.46).

We see that system reliability is more uncertain if one allows discrepancy (node 0),
and uncertainty increases dramatically under discrepancy for node 1, for which there is no
data. Nodes 3 and 4 have ample data so that their estimates are not affected by possible
discrepancy. Node 2’s reliability estimates increase when discrepancy is allowed, for three
reasons: it has no failures of its own, the failures at nodes 5, 6, and 7 become less relevant,
and the data at nodes 3 and 4 suggest that node 1 should be highly reliable, forcing node 2
to help explain the system failures. Nodes 5, 6, and 7 all appear at least a little more reliable

when the perfect record of node 2 is not ameliorated by discrepancy.

4.1 Missile Series System Example

In this section, we apply the discrepancy model to the analysis of a published reliability

assessment. Martz et al. (1988) considered the reliability of a certain air-to-air heat-seeking
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Figure 5: Comparison of results for larger system between (z-axis) a single A for the entire

model and (y-axis) no discrepancy.
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missile system consisting of five subsystems in series each consisting of multiple components
themselves combined in series. The data and prior information that Martz et al. (1988) used
are presented in Table 2 as (successes/trials) and best guesses § and precisions v. Martz
et al. (1988) did not provide details on how these data were obtained and how the prior
information was arrived at. We treat the precisions as constants and use an Exponential(1)

prior for A.

This example highlights a modeling strategy that can be used in situations where analysts
have multiple pieces of information derived from expert opinion, and wish to determine
whether this information should be used at face value. First, we fit the approximate structure
function model to the expert information alone, omitting the data. We then examine the
results to evaluate whether there are substantial departures from the structure function. If so,
we interpret this as evidence that the expert information is questionable rather than evidence
that the structure function is faulty. We then remove the upper-level (subsystem and system)
expert opinion from subsequent analyses; other approaches to resolving the inconsistent
expert opinion can also be considered. Next, we add the data to the remaining expert
opinion-based information, and fit the model again, and this time evidence of departure
from the structure function is interpreted as just that. If there is no evidence that the
structure assumption is violated, one can consider refitting a system reliability model with
an exact structure function for final results. This is an iterative model-building approach
to Bayesian analysis rather than an exact adherence to a narrowly defined version of the

Bayesian paradigm.

First, we use the proposed method to assess the discrepancy of the expert opinion-based
information, omitting the data from the analysis. The results are given in columns 2-4 of
Table 3. For example for the system (node 0), we evaluate ﬁ'ﬁﬁg from the posterior.
Similarly, for the subsystems (nodes 1-5), we compare their posterior reliabilities to the
products of their respective component reliabilities. We see from Table 3 that the expert
opinion do not constitute a consistent description of a series system: the evidence is espe-

cially strong for the system and subsystems 1 and 3. To resolve this inconsistency, here we

remove the higher-level expert opinion, i.e., for the five subsystems and system. We now

20



Table 2: Data for Missile Series System Example
Node Data D v

0 115/265 265
1 8/8

2 7/8

3 191/205  257/260 269
4 55/66 66
5

i1 30/30 05 1
12 80/80 05 1
13 39/40 05 1
14 30/30 05 1
15 90/90  846/848 848
16 10/10 05 1
17 29/30 05 1
18 20/20 05 1
19 5/5 05 1

21 50/50 3997402 402
22 50/50  278/302 302
23 99/100 1098/1102 1102
24 23/25  654/690 690
25 50/50  299/301 302
26 55/55  348/352 352
31 129/130  246/250 250
32 130/130  245/250 250
33 129/130  247/250 250
34 129/130  272/276 276
35 130/130  357/360 360
36 247/250  254/257 257
37 129/130  250/252 252
38 249/250  250/252 252
39 330/330  341/352 352

a1 797/802 802
42 796/802 802
43 794/802 802
44 791/802 802
45 386/402 402
51 1026/1122 1122
52 1087/1092 1092
53 1084/1092 1092
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Table 3: Discrepancy Assessment Results for Missile Series System Example (0.05, 0.5, 0.95
quantiles)

Expert Opinion Expert Opinion Component Priors
At All Levels At Component Level With Data
Node | 0.025 0.50 0975 0.025 0.50 0.9750.025 0.50 0.975
1.18 4.06 5039 0.00 1.00 2239{ 031 1.01 158
1.29 1144 55432 0.00 093 1631 092 1.02 136
0.26 0.88 1.15| 0.18 1.00 1.171 0.83 1.00 1.12
1.03 1.08 1.14 '} 0.27 1.00 1.14| 098 1.01 1.06
0.79 0.90 0981 0.35 1.00 .08 071 1.00 1.07
0.30 0.88 1.04 1 042 1.00 1.05| 079 1.00 1.04
082 184 3.81 0.02 0.68 392 0.02 040 218

e U b 0N = O

see from columns 5-7 of Table 3 that there is no longer any inconsistency, and A is much
smaller. In practice, once a discrepancy between higher level and component priors has been
identified, engineering knowledge should be used to resolve the inconsistency. Now with
a prior distribution consisting of expert opinion at the component level but not at higher
levels, let us assess whether there is any discrepancy when the data are added (i.e., whether
the data indicates that it is not a series system). We see from columns 8-10 of Table 3 that

there is no inconsistency, as all the intervals include the value 1.

Historically, we would have used the results for the model without discrepancy. These
results are provided in columns 5-7 of Table 4. We also display the results for the model
with discrepancy, which show that they are more dispersed from assessing discrepancy. We
also see some slight differences between the medians, especially for subsystem 1. Plots of the
posterior densities for nodes 0-5 are given in Figure 6 and show slight differences. Subsystems
1 and 3 are estimated to be more reliable when we use the discrepancy model; the other

subsystems get more uncertainty.

We also see the results for the components in Table 5 are less variable for the model
without discrepancy. Recall that there are 9 components in subsystem 1, 6 components in
subsystem 2, 9 components in subsystem 3, 5 components in subsystem 4, and 3 components

in subsystem 5.
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Table 4: Comparison of System and Subsystem Posteriors for Series System Example (0.05,

0.5, 0.95 quantiles) for Discrepancy and No Discrepancy Models

Discrepancy No Discrepancy
Node | 0.025 0.50 0.9750.025 0.50 0.975
0 [0.145 0.583 0.905| 0460 0.579 0.655
1 0.672 0.873 0.987 | 0.673 0.842 0.938
2 10710 0.862 0.960 | 0.825 0.858 (.888
3 10893 0924 0.955)0.893 0.915 0.935
4 10.655 0925 0986|0901 0926 0.946
5 | 0.748 0.949 0.991 | 0.927 0.949 0.966

¥
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44 05 (23 87 08

®
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1

5

Figure 6: Posterior densities for nodes 0-5 based on models with discrepancy (solid line) and

without discrepancy (dashed line).
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Table 5: Comparison of Component Posteriors for Series System Example (0.05, 0.5, 0.95
quantiles) for Discrepancy and No Discrepancy Models

Node Discrepancy No Discrepancy
0.025 0.50 0.975|0.025 0.50 0.975
11 10930 0994 1.000|0.937 0.994 1.000
12 10.971 0.997 1.000|0.972 0.997 1.000
13 10.901 0.975 0.998 | 0.905 0.976 0.998
14 10.935 0.994 1.000|0.937 0.994 1.000
15 10.995 0.999 1.000)0.995 0.999 1.000
16 | 0.858 0.987 1.000|0.873 0.987 1.000
17 10.879 0.968 0.997 | 0.885 0.969 0.997
18 10.909 0992 1.000|0.915 0.992 1.000
19 | 0.788 0.979 1.000 | 0.828 0.984 1.000
21 | 0985 0.994 0.999 | 0.985 0.995 0.999
22 10.904 0.933 0.956 | 0.904 0.933 0.957
23 10991 0.996 0.998 | 0.991 0.996 0.998
24 10929 0947 0.962 | 0.930 0.948 0.962
25 10980 0.992 0.998 !0.980 0992 0.998
26 10979 0991 0.998 | 0.979 0.991 0.997
31 10974 0.988 0.996 | 0.976 0.989 0.996
32 {0975 0.988 0.996 | 0.976 0.989 0.996
33 10978 0.991 0.997 | 0.979 0.991 0.997
34 10976 0.989 0.996 | 0.978 0.990 0.996
35 10.986 0.995 0.999 ] 0.987 0.995 0.999
36 10978 0.989 0.996 | 0.979 0.989 0.996
37 10982 0.993 0.998 | 0.983 0.994 0.999
38 (098 0.995 0999 ! 0.987 0.995 0.999
39 0974 0.985 0.992 | 0.975 0.985 0.993
41 10988 0.994 0.998 | 0.988 0.994 0.998
42 10986 0.993 0.998 | 0.986 0.993 0.998
43 10982 0.990 0.996 | 0.982 0.990 0.996
44 10977 0.986 0.993 0.977 0.986 0.993
45 |0.938 0.961 0.977 | 0.939 0.961 0.977
51 10939 0.961 0.977 | 0.939 0.961 0.977
52 10990 0.995 0.998 | 0.9950 0.995 0.998
53 | 0.987 0.993 0.997 | 0.987 0.993 0.997
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5 Models Incorporating Covariates

We have discussed the possibility of an unobserved covariate affecting the reliabilities of
multiple components, leading to dependence between component performance and violation
of the probabilistic structure assumption. We also wish to consider the case where a measured
covariate is known or expected to influence component reliability, but where even after
accounting for this covariate, the structure assumption is not exactly satisfied. First, consider
a simple model where a single deviation from the specified structure affects the reliabilities
in the same way regardless of the value of the covariate. Given the single covariate age,
denoted by ¢, let the reliabilities of the components at age ¢ be p;(¢) and po(¢). The simplest

model for an almost-series system is
logit po(t) = logit{p1(t)p2(t)} + Z, (6)
with Z ~ N(0,\?), the same random variable Z applying for all ¢.

A more complicated model is

logit po(t) = logit{p1(t)p2(t)} + Z(¢), (7

where Z(t) is a Gaussian process, with E{Z(¢)} = ¢ and Cov{Z(s), Z(t)} = M exp{—v(s —
t)%}.

For example, consider a latent covariate model in a two-component series system, with
each component aging according to a logistic regression model. For component 7 = 1,2 and
unit 7, we have

logit pi(t) = o + B;(t: — 10) + ~ju;. (8)
Here ¢; is the age of the ith unit, which is assumed to range from 0 to 20, so that we center
the variable by subtracting 10. Unit ¢ has an observed manufacturing or testing effect given
by u;. We simulated data from a; = 3, ay = 2.2, f; = —0.1, f = —0.08, and y; = v, = 2.5,
and u; ~ N(0,1). The (simulated) data are shown in Table 6. We collect 50 pass/fail tests
for each component and for the system, at each of ages (0, 5, 10, 15, 20). The true reliabilities

at various ages are given in Table 7. The effect of w; on both components insures positive
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Table 6: Data for Covariate Example (Successes in 50 Tests)

Age | Comp1 Comp 2 System
0 46 41 43

5 49 44 41

10 42 40 28
15 38 41 33
20 38 31 32

Table 7: True Parameter Values In Covariate Example

Age m pa po logit(po) — logit(pipa)
0 0.905 0.837 0.798 0.237
5 0.874 0.803 0.755 0.270
10 0.835 0.763 0.704 0.303
15 0.791 0.719 0.649 0.335
20 0.745 0.678 0.597 0.373

correlation and hence higher system reliability po than would be expected from pyps. The
magnitude of this discrepancy (on the logit scale) is dependent on age, so a model that

assumes a common discrepancy for each age cannot be expected to work perfectly.

In our analysis, we use N(0,10%) priors for the o; and 3; and a N(0,1) prior for the
common value of logit(po) — logit(pipa) (ie., A = 1).

The results are shown in Figure 7, with posterior medians and 90% intervals for reliability
for both components and the system at ages ranging from zero to twenty-five. Points are
used to display true reliabilities and are shown for ages at which data were available. The
model mildly overestimates system reliability at young ages and underestimates it at older

ages, since true discrepancy changes with age, but is not allowed to by the model.

We also fit the model (7), which features a different amount of discrepancy at each value
of the covariate ¢, with discrepancies being drawn from a Gaussian process, to these data.

Because the amount of noise in these data is such that it is not obvious from the data that
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different discrepancies are necessary, the extra complexity of the model does not improve

the results.

6 Conclusions

By considering possible discrepancies between estimates of system reliability based on dif-
ferent sources of data, we are able to gain better understanding of the system structure and
possible inconsistencies. The inclusion of a discrepancy term in the model can also help to
give more realistic summaries of the true uncertainty in our estimates. Different possible
mechanisms for modeling discrepancy are provided, as well as several examples to illustrate

its use and effect on results.

The methodology described can be used both to assess any inconsistencies between ex-
pert opinion-based information included in priors for various levels of the system, and for
examining whether data from the various sources indicate potential discrepancies. The rem-
edy for different types of discrepancy should be based on engineering understanding of the
system and on the type of information which is in conflict. If contradictions are revealed in
the priors, a re-examination of expert opinion should be considered. If discrepancies in the
data are found, then the system structure or the calibration of different data types should

be examined.
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