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Abstract

Pore network models (PNMs) offer a computationally efficient way to analyse transport in 

porous media. Their effectiveness depends on how well they represent the topology and 

geometry of real pore systems, for example as imaged by X-ray CT. The performance of 

two popular algorithms, maximum ball and watershed, is evaluated for three porous sys-

tems: an idealised medium with known pore throat properties and two rocks with differ-

ent morphogenesis—carbonate and sandstone. It is demonstrated that while the extracted 

PNM simulates simple flow (permeability) with acceptable accuracy, their topological and 

geometric properties are significantly different. This suggests that such PNM may not serve 

more complex studies, such as reactive/convective transport of contaminants or bacteria, 

and further research is necessary to improve the interpretation of real pore spaces with net-

works. Linear topology–geometry relations are derived and presented to stimulate develop-

ment of more realistic PNM.
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1 Introduction

Studying, understanding and thereby predicting fluid flow through porous media are of fun-

damental importance to many areas of science and engineering, including carbon capture 

and storage, hydraulic fracturing, water management systems, in situ leaching, hydrocar-

bon extraction, fuel cell design, bio-scaffolds and the construction industry. For example, 

a significant challenge to the nuclear industry is the design and construction of geological 

disposal facilities that will house spent nuclear fuel and waste. The problem arises from 

the longevity of the radionuclides (100,000’s of years) and the resulting need to contain 

the waste away from the biosphere for geological timescales. To emphasise the challenges 

involved in designing such a facility and its fitness-for-purpose over its life time, it is worth 

noting that the oldest known man-made structure, the cairn of Barnenez, is dated from 

4900 to 3600 BC (Giot et al. 1994). Understanding and predicting fluid flow in the vicinity 

of the depository is the key to dealing effectively and responsibly with the legacy nuclear 

waste. The oil and gas industry could also benefit, as the effectiveness of oil recovery from 

reservoirs is dependent on the understanding of multiphase flow behaviour.

Common to all application areas is the need for an in-depth understanding of how (sin-

gle- or multiphase) flow interacts with porous media on the physical, chemical and biologi-

cal levels (Baldwin et al. 1996; Xiong et al. 2014). Such an understanding can be achieved 

at the pore-scale level, but will be based on limited material volumes and hence pore struc-

tures. It needs to be translated into engineering-scale predictive transport modelling, where 

conducting field experiments for large-scale transport predictions is notoriously difficult 

and expensive (Xiong et al. 2016).

Advances in digital imaging, in particular X-ray micro- and nano-computed tomography 

(XCT), allow for non-destructive scanning of samples of dimensions from 10’s of centime-

tres to 10’s of micrometres to obtain 3D images at resolutions around 1000 times smaller 

(Maire and Withers 2014) ranging from a hundreds of micrometres down to 10’s of nano-

metres (Baldwin et al. 1996; Withers 2007). Being able to quantify the pore architecture at 

such detail allows the development and testing of pore-scale modelling approaches, which 

are used to understand flow behaviour at the micron-scale and to inform continuum-scale 

models; for example, see Varloteaux et al. (2013).

Pore-scale modelling approaches are dominated by “direct” methods such as the lat-

tice Boltzmann method (Hao and Cheng 2010; Zhang et al. 2014), smooth particle hydro-

dynamics (Tartakovsky et  al. 2007; Tartakovsky and Meakin 2006) and finite difference 

methods for solving Navier–Stokes equations (Oren et al. 2007) based on the imaged pore 

architectures. These direct image-based methods provide good and detailed results. Their 

main limitation is the level of detail as the computational costs limit the volume that can 

be studied, and hence it is difficult to infer useful relationships between the topology and 

geometry of the porous media and their macroscopic (longer-scale) properties.

Pore network model (PNM), on the other hand, allows for the examination of large vol-

umes as it simplifies the real porosity and the hydrodynamics of the system while captur-

ing a number of pore-scale properties in statistical sense (Blunt et al. 2013). PNM discre-

tises the complex porosity of the media into pores and connects pore throats of different 

sizes (which we refer to as the “geometry” of the pore network). The way that pores and 

throats are connected defines the “topology” of the network. Depending on the applica-

tion, the geometrical shapes of the pores and throats vary. For example, the pores are often 

modelled as spheres and the throats, which interconnect the pores, and are represented as 

cylinders for single-phase flow simulations or as cuboids or prisms for multiphase flow 
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(Varloteaux et  al. 2013a, b; de Jong 2006; Valvatne et  al. 2004; Blunt et  al. 2002). The 

use of the latter allows for the explicit modelling of wetting layers, which is difficult to 

achieve with the cylindrical geometry. Two general types of PNM exist: irregular pore net-

work model (IPNM) and regular pore network model (RPNM). The most notable differ-

ence between them is that IPNMs do not have any pattern in the location of the pore bodies 

in the network, whereas RPNMs usually tessellate the volume of interest using repeating 

unit cells of a fixed geometrical shape such as a cube (Varloteaux et al. 2013; Varloteaux 

et al. 2013; Matthews and Spearing 1992; Reeves and Celia 1996), a rhombic dodecahe-

dron (Vogel and Roth 2001) or a truncated octahedron (Jivkov et al. 2013). The pores are 

then usually located at the centres of each unit cell and the interconnecting throats pass 

through the faces of the cell, although this is not always the case (Raoof and Hassanizadeh 

2010; Xiong and Jivkov 2015; Xiong et al. 2016). The differences in the location of the 

pores predetermine the capabilities and limitations of each model type. IPNMs are usually 

constructed by mapping the “real” interior structure of the porous samples into an equiva-

lent pore network.

The “real” microstructure is usually obtained through 3D imaging techniques such 

as micro-CT (Jivkov et  al. 2013) and serial section focused ion beam/scanning electron 

microscopy. Such models are sample specific and may not necessarily be statistically repre-

sentative of the medium as a whole (Ebrahimi et al. 2013; Dong et al. 2009; Rabbani et al. 

2014; Van Marcke et al. 2010; Lindquist et al. 1996). Even though the volumes obtained 

by XCT are generally small enough to be computationally feasible for modelling transport 

process using any of the direct methods, IPNMs can provide valuable statistical informa-

tion regarding the effect of geometry and topology of the porosity on transport properties 

for a given medium. This information could then be implemented into a RPNM, which is 

not bound by the volume restrictions of the 3D CT image. A RPNM constructed within 

a larger volume allows for capturing statistics from a number of imaged samples and for 

calculating transport over dimensions closer to the engineering length scale (Xiong et al. 

2016).

The overall aim of this work is to provide the diverse microstructural information 

required for the construction of physically realistic RPNM for longer-scale simulations 

of transport. Critical to such constructions is the quality of the pore structure statistics 

extracted from XCT images. Previous comparisons between different pore network extrac-

tion algorithms suggest a number of discrepancies in between algorithm outputs and pose 

questions about the reliability of the data (Dong et al. 2008). Maximum ball (MB) (Dong 

et al. 2009) and the watershed algorithm (WA) (Rabbani et al. 2014) are widely used in 

current pore network studies (Chen et al. 2017; Li et al. 2017; Ju et al. 2017; Rabbani et al. 

2017; Kelly et al. 2016; Li et al. 2018). However, to the best of our knowledge, WA and 

MB methods have not been compared comprehensively in the previous literature. There-

fore, our main objective is to evaluate the performance of the two pore network extrac-

tion algorithms in terms of derivable statistical data by applying them to micro-CT images 

of different resolutions and to a synthetic pore space with known characteristics. This is 

intended to facilitate future selection of appropriate network extraction algorithm.

In the first instance, the two algorithms are tested on an idealised pore structure hav-

ing known pore throat geometry statistics. Subsequently, the algorithms are applied 

to two benchmark materials—carbonate rock and sandstone. These rocks are selected 

due to the differences in their distinctive pore spaces resulting from the processes that 

formed them. Sandstones are sedimentary rocks composed of lithic fragments and detri-

tal mineral grains from 63 to 2 mm in size sourced from other igneous, metamorphic 

and sedimentary rocks under erosion and deposited under a range of marine, fluvial, 
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lacustrine and volcano-sedimentary environments. On the other hand, carbonate rocks 

are the result of biological processes or chemical precipitation, which also determine 

the grain sizes although reworking processes may reduce clast/grain size. Carbonates 

also have a higher potential of intra-particle porosity due to the presence of voids within 

structures of shelly organisms that may have formed them (Nichols 2009).

In order to assess the effect of CT resolution on the extracted network statistics, the 

two rocks are imaged at different resolutions. For all studied cases (idealised and natural 

pore systems), single-phase permeability values are calculated by the constructed IPNM 

and by direct fluid mechanics simulations on the XCT images to demonstrate IPNM per-

formance for simple flow simulations.

2  Data Sets of Porous Systems

2.1  Idealised Porous Medium

A sample having pre-defined pore space statistics was first considered for evaluation of 

the two network extraction algorithms. It was created by starting with random distribu-

tion of 800 points within a predefined volume of 400 × 400 × 400 voxels. A Voronoi 

tessellation of the volume around the points was performed next using Voro++ (http://

math.lbl.gov/voro++/). Spherical pores were then assigned to all points with volumes 

proportional to the corresponding Voronoi cell volumes; the assigned pore radii were 

varied between 1 and 31 voxels. Further, cylindrical throats were introduced between 

pairs of pores in neighbouring Voronoi cells (cells with common faces). Throat cross-

sectional areas were made proportional to the areas of the cell faces they cross so that 

any intersections of throats in the physical space were avoided. Once the pore network 

was generated, additional checks were carried out in order to reduce any ambiguity in 

the interpretation of the features. In particular, the algorithm did not allow for throats 

with larger radii than the pores they connect. The last step of the generation of the ideal-

ised porous media was to convert the volume containing the artificial pore network into 

a voxelised representation. This was accomplished by checking whether the coordinates 

of every voxel from the volume lay within the volumes of any of the pores or throats 

from the originally generated network. If so, the voxel was marked as empty, or else it 

was marked as solid. The idealised network is shown in Fig. 1, and more information 

on voxelised representation and interpretation of the pore space could be found in Dong 

et al. (2009).

2.2  Benchmark 3D Image Data Sets

Two different types of sedimentary rocks were imaged at two different resolutions: a 

carbonate rock and Hollington sandstone. The CT scans and the segmentation of the 

carbonate rock samples have been reported previously by Dong et al. (2007). The Hol-

lington sandstone samples were obtained from a quarry near Stoke-on-Trent, England, 

and imaged as part of this work. Examples of the two materials with scanning resolu-

tions are shown in Fig. 2 with additional details given in Sects. 2.2.1 and 2.2.2.

http://math.lbl.gov/voro%2b%2b/
http://math.lbl.gov/voro%2b%2b/
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2.2.1  Carbonate Data Sets

As described by Dong et al. (2007), the scans of the carbonate rock were conducted using 

Phoenix|x v|tome|ex micro-CT scanner. A total of 720 projections were collected as the 

sample was rotated 360°. Both scans were acquired at a voltage of 90 kV and a current of 

100 μA. The voxel size of the fine-resolution scan was 2.85 microns (Carbonate H), and 

that of the coarse-resolution scan was 5.35 microns (Carbonate L). These voxel sizes trans-

late into spatial resolutions (recognition of features) of approximately 8.6 and 16 microns, 

respectively. After image acquisition, data sets were reconstructed using the Sixtos soft-

ware and then binarised.

2.2.2  Sandstone Data Sets

2.2.2.1 Coarse‑Resolution Scan A sample of approximately 1  cm3 (Sandstone L) was 

scanned using a Nikon Custom Bay CT system. The voxel size was 8.35 microns giving a 

spatial resolution around three times the voxel size, i.e. 25 microns. The specimen to source 

distance was 58.5 mm, and the specimen to detector distance was 1400 mm. During the 

XCT analysis, the specimen was rotated over a  360o rotation range collecting 3142 projec-

tions (1 s/projection) per scan using an accelerating voltage of 60 kV and a beam current of 

200 μA. After image acquisition, data sets were reconstructed using the Nikon Metris CT-

Pro reconstruction software (version 2.2.4693.17506, 10 November 2012) and a voxel size 

of 8.35 microns was obtained.

2.2.2.2 Fine‑Resolution Scan The sandstone was crushed and pieces around 1 mm × 2 mm 

were put in a Kapton tube to ensure minimum X-ray absorption. A specimen, denoted hereon 

by Sandstone H, was placed on the Zeiss Versa XRM-520 CT system rotation stage with a 

specimen to source distance of 11.0 mm and a specimen to detector distance of 15.1 mm. 

During the CT scan, the specimen was rotated over a  360o rotation collecting 1601 projec-

tions (1 s/projection) using an accelerating voltage of 80 kV and beam current of 87 μΑ, 

Fig. 1  Idealised material with predefined pore network statistics: a voxelised representation of the pore 

space structure and b voxelised rendering of the solid material used in the direct permeability simulations
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voxel size of 1.42 microns and a spatial resolution around 4.3 microns. After image acquisi-

tion, data sets were reconstructed using the Zeiss Reconstructor Scout-and-Scan reconstruc-

tion software (version 11.0.4779) and a voxel size of 1.42 microns was obtained.

After reconstruction, the data were loaded into Avizo standard 7.0 (Visualization 

Sciences Group, Bordeaux (VSG), France) for examination of the virtual slices and 3D 

volume renderings. For Sandstone H, a sub-volume of size 350 × 350 × 350 voxels was 

extracted from the interior of the sample to minimise any effects from the sample prepara-

tion. For Sandstone L, the extracted cubical sub-volume was of size 400 × 400 × 400 voxels. 

The samples underwent non-local means filtering, available in the Avizo software, prior to 

segmentation. The same software was used to segment the pore space from the solid phase. 

This was done manually by inspecting greyscale values along a longitudinal and transverse 

slice of the specimens to ensure accurate results. The resulting segmented volumes were 

exported for further processing as binary files.

Fig. 2  Segmented pore space slices of the benchmark carbonate rock scanned at voxel sizes of a 2.85 μm 

and b 5.35 μm and Hollington sandstone scanned at voxel sizes of c 1.42 μm and d 8.35 μm
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3  Pore Network Extraction Algorithms

3.1  Maximum Ball (MB) Pore Network Extraction Algorithm

The maximal ball algorithm, initially introduced by Silin et  al. (2004) and Silin and 

Patzek (2006) to calculate dimensionless capillary pressures and then further developed 

by Dong and Blunt (2009), is used to identify the pore locations and generate equivalent 

pore networks. The throat identification algorithm, however, is based on a watershed 

segmentation of a distance map. The distance map is defined as the distance of each 

void voxel to the nearest solid wall. It is approximated as the distance of the void voxel 

centre to the centre of the nearest solid voxel minus half the voxel length. After com-

puting the distance map, the next step is to find the location of pore centres as the local 

maximum of the distance map, which is obtained by generating a hierarchy of maximal 

balls inscribed in the pore space.

The maximal-ball hierarchy is generated by first assigning the balls to pore voxels 

uniformly throughout the pore space, one every two voxels in each direction. In this 

work, we did not allow balls less than three voxels in diameter, to filter out the high fre-

quency roughness on the solid walls. Then, the balls that are fully overlapped are elimi-

nated and the rest, called maximal balls, are used to generate the maximal-ball hierar-

chy. The pairs of maximal balls that partially overlap are identified, and the smaller ball 

is considered as a child of the bigger ball. The local maximum of the distance map is 

obtained as the collection of the maximal balls that are not a child of any other maximal 

ball, and a pore index is assigned to each of the local maxima.

To identify and characterise the throats, we use a watershed segmentation algorithm 

to obtain the exact boundaries of the individual pore bodies. To achieve this, the index 

of the maximal balls at the centres of the pores from the previous step is painted on 

the original image and then a region growing algorithm is used to grow these indices 

towards voxels with smaller radii until filling all the pore space. A throat is assigned 

wherever voxels from two pore bodies touch each other.

The last stage in the network extraction is computation of the throat and pore proper-

ties. The properties of the pores and throats computed in this work are compatible with 

the description used by network flow simulator codes (Valvatne and Blunt 2004; Oren 

and Bakke 2003). In summary, each pore and throat is assigned a volume, inscribed 

radius, a length and a shape factor which are discussed in detail by Dong and Blunt 

(2009).

3.2  Watershed Algorithm (WA) for Pore Network Extraction

The watershed method was initially pioneered by Thompson et  al. (2006) and Sheppard 

et al. (2006) for analysing X-ray tomography images of rocks. Here, we provide a workflow 

for segmenting the porous space using the watershed algorithm (Rabbani et al. 2014).

3.2.1  Pre‑processing

Here, the binary 3-D image is prepared for segmentation (majority transform, noise fil-

tering and removing small objects). If the input image is noisy, the resulted image will 
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be over-segmented (Rabbani and Ayatollahi 2015). Majority and any other noise-filtering 

methods help to avoid small unconnected pores, which threaten the quality of results.

3.2.2  Processing

A city block distance transform is applied to the pore space of the rocks followed by 

median filtering to avoid detection of the prolate shapes (Wildenschild and Sheppard 

2013). Now, the watershed algorithm, illustrated in Fig. 3, is applied to detect the ridge 

surfaces (Rabbani et al. 2016).

In three dimensions, the distance transform creates a cloud-like object within the porous 

space, in Fig. 3a. The denser parts of the cloud are located at the pixels farthest from the 

pore boundaries. The watershed algorithm initially places virtual fluid at the thicker parts 

of the clouds and gradually enlarges the fluid kernels to reach the outline, in Fig. 3b, c. 

Pixels, in which the filling fluids from two different pores touch, form the ridge surface, in 

Fig. 3d. Ridge surfaces are detected and their surface area measured. They represent the 

throats of the network. If these surfaces were removed, the remaining parts would be iso-

lated pores. The pores are then labelled and their volumes evaluated (Rabbani et al. 2014).

3.2.3  Post‑processing

In this step, we gather information to represent the extracted network. First, we find which 

pores are connected and the size of the connecting throat. The approach used by Rabbani et al. 

(Rabbani et  al. 2016) is computationally cost-effective where they have dilated the binary 

image of the throats by a 1 × 1×1 or 2 × 2×2 cubic constructing element. Then, this dilated 

binary image is multiplied by the labelled image of throats and labelled image of pores. It 

Fig. 3  Processing steps of pore network extraction using watershed algorithm: a the realistic geometry of 

two connected pores; b the schematic distance map of the pore space; c growing fluid kernels within each 

pore; and d first contact between the fluid of two adjacent pores that has formed some pixels of ridge sur-

face (orange line)
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should be noted that this dilated image of throats has one for the pixels within and around the 

throats (ridge surfaces) and has zero for all other pixels. The result is an integer triplet: two 

different labels for adjacent pores and one label for the connecting throat—see Fig. 4c where a 

throat with label 1 couples two pores with labels 5 and 8. By analysing all triplets, the connec-

tions are delineated to construct a connectivity/incidence matrix describing which pores are 

connected via which throat.

In the processing step, we calculate the pore volumes and throat cross-sectional areas. The 

idealised pore is a sphere with the same volume as the real one, and the idealised throat is a 

cylinder with the same cross section area as the real throat. The idealised pores are centred at 

the centroids of the real pores. In addition, the length of a throat is obtained by subtracting the 

radius of adjacent pores from the distance between their centroids.

Finally, this network is tuned to match the porosity of the underlying image. For this, we 

can multiply the radius of all pores and throats by a correcting coefficient to obtain the pores 

and throats as shown in Fig. 4d.

The application of this algorithm to an isolated pore space in the Hollington sample is illus-

trated in Fig. 5.

Fig. 4  Post-processing steps of pore network extraction using watershed algorithm: a a realistic geometry of 

two connected pores; b the detected and labelled pore bodies and the connecting throat; c magnified image 

of the triple-labelled object which is used to form the connectivity matrix; and d extracted and matched 

pore network with the real sample porosity
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Fig. 5  Extraction of the pore network using watershed segmentation algorithm: a the region of interest 

within the porous body of Hollington Sandstone H (cube size: 840 microns); b a close view of the region 

of interest; c subdividing the structure using watershed algorithm; d labelling the detected pores with dif-

ferent colours; and e generating spheres and tubes inside the geometry representing the pores and throats, 

respectively
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4  Pore Network Models Performance

4.1  Qualitative and Quantitative Assessment of Pore Space Interpretations

The images of the idealised and real materials, described in Sects.  2.1 and 2.2, respec-

tively, are used to evaluate the performance of the two pore network extraction algorithms, 

described in Sect. 3, by the quality of the pore network statistics they provide. Figure 6 

gives a qualitative insight into the way the two algorithms interpret the pore space of the 

idealised pore structure and the sandstone at the lower resolution.

It can be observed that MB tends to produce smaller pores in general, and particularly 

for sandstone, and in many cases interprets a pore space as a throat where WA interprets 

the same pore space as a pore. Further MB appears to miss a substantial fraction of the 

pore volume, while WA appears to shift the positions of the interpreted pores, possibly 

Fig. 6  Comparison of real pore spaces (black) with equivalent pores (red) and throats (blue) networks by 

MB and WA on selected 2D sections: a MB and b WA networks of the idealised sample; c MB and d WA 

networks of Sandstone L
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because of taking surrounding throats as part of the pore when calculating its volume and 

position. In general, both algorithms tend to overestimate the number of pores, as observed 

clearly in the idealised case, by splitting pore spaces, which should have been interpreted 

as throats. It can be argued that the same is valid for the interpretation of Sandstone L. 

These qualitative observations are quantified with the following data for extracted porosity 

and pore and throat numbers.

Table 1 provides data for the geometry of the analysed images and the volume fraction 

of the pore space (porosity) as determined by Avizo by counting pore space voxels and as 

calculated from the irregular pore networks extracted by the two algorithms. As expected, 

the “real” porosity calculated by Avizo is dependent on the resolution: Higher resolution 

images (Sandstone H and Carbonate H) show higher porosity because a number of addi-

tional features of the pore space are revealed. Evidently, the constructed networks omit 

fractions of the real pore spaces. For the watershed algorithm (WA), these fractions are 

relatively small, showing that WA maps the geometry of the real pore space to the geom-

etry of the network with acceptable accuracy on average. For the maximum ball (MB), the 

omitted pore space is particularly large, confirming the qualitative observation from Fig. 6. 

The reason for this is that MB reports the inscribed radius of a pore, while WA computes 

the effective hydraulic radius. In addition, the MB algorithm also reports the volumes of 

the features as extracted from the tomography and they could be tracked separately from 

the underlying shapes of the pores and throats in the extracted networks.

Tables 2 and 3 provide data for the pore and throat number statistics, respectively, illus-

trating how the two algorithms interpret differently the notions of pore and throat. The 

results for the idealised model confirm the observation from Fig. 6 that both algorithms 

interpret a large number of regions in the original throats as pores, which split original 

Table 1  Geometry and porosity of samples determined by voxel count (AVIZO) and by the watershed algo-

rithm (WA) and the maximum ball (MB)

Sample-image cube Voxel size (μm) Sample 

edge 

(voxels)

Sample 

volume 

 (mm3)

AVIZO 

porosity 

(%)

WA porosity (%) MB 

porosity 

(%)

Idealised 1.00 400 0.064 11.1 9.8 8.8

Sst. H 1.43 350 0.125 19.6 18.5 5.9

Sst. L 8.35 400 37.3 13.6 10.3 2.4

Carb. H 2.85 400 1.48 23.3 21.6 6.4

Carb. L 5.35 400 9.80 16.8 15.3 4.3

Table 2  Pore statistics determined by the watershed algorithm (WA) and the maximum ball (MB)

Sample Known pores Pore 

density 

 (mm−3)

WA 

resolved 

pores

WA pore den-

sity  (mm−3)

MB resolved pores MB pore 

density 

 (mm−3)

Idealised 800 12,500 2348 36,688 3770 58,906

Sst. H n/a n/a 2307 18,400 4726 37,695

Sst. L n/a n/a 8406 226 19,341 519

Carb. H n/a n/a 3235 2184 6310 4259

Carb. L n/a n/a 5510 562 10,540 1075
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throats and lead to increased numbers of pores and throats in the resulting network. This 

affects the coordination spectrum and the overall size distributions, which will be presented 

and discussed in Sect. 4.2. Further, it is noted that MB consistently produces about twice 

as many pores and 2–3 times more throats than WA for each material and each resolution, 

suggesting that the potential throat-splitting effect is much stronger with MB. This differ-

ence is also due to the fact that the WA employs additional filtering before pore network 

extraction, which eliminates some of the small features. Such differences in the reported 

number of pores/throats from different algorithms have been previously observed (Dong 

et al. 2008).

In line with the porosity results, the number density of resolved features increases sig-

nificantly on going from low resolution to high with the pore density rising by a factor of 

4× for the carbonate (2× higher resolution) and 70×–80× for sandstone (6× higher resolu-

tion) and throat density increasing by a factor of 10 for carbonate and 110–180 times for 

sandstone. This suggests that the sandstone sample possesses substantially more complex 

pore space across length scales. Details on the geometric and topological properties of the 

pore networks constructed by the two algorithms are given in Sect. 4.2. These include data 

typically used in the construction of regular pore network models, such as the pore coordi-

nation number spectrum (distribution) required for connectivity representation, the cumu-

lative distribution functions of the pore and throat sizes required for random generation of 

pore and throat sizes obeying the given distribution (e.g. Jivkov and Xiong 2014), as well 

as data not presently used in regular network models—the cumulative distribution function 

of the throat lengths. The latter is used for illustration of the network characterisation capa-

bilities of the two algorithms.

4.2  Topological and Geometric Characteristics

Properties of the idealised pore network, as constructed and as interpreted by the two algo-

rithms into PNMs, are presented in Fig. 7.

Regarding the pore coordination number distribution, in Fig. 7a, the PNMs constructed 

by both algorithms have peaks at coordination number two, which are not present in the 

original medium. This is clearly due to the introduction of significant number of pores 

within original throats, creating a strong bias towards pores with coordination of two. As a 

result, the average coordination numbers determined by the two algorithms are more than 

two times smaller than the “real” case. In addition, the MB model has recognised a much 

Table 3  Throat statistics determined by the watershed algorithm (WA) and the maximum ball (MB)

Sample Known throats Throat den-

sity  (mm−3)

WA 

resolved 

throats

WA throat den-

sity  (mm−3)

MB 

resolved 

throats

MB throat 

density 

 (mm−3)

Idealised 2256 35,250 3024 47,250 5361 83,766

Sst. H n/a n/a 4723 37,671 10,276 81,962

Sst. L n/a n/a 7687 206 27,324 733

Carb. H n/a n/a 5236 3534 10,822 7305

Carb. L n/a n/a 6377 325 14,621 746
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smaller number of isolated pores (coordination number zero) than the WA, apparently due 

to interpreting isolated pores as chains of pores and throats.

Figure 7b indicates relatively good agreement between the prescribed cumulative distri-

bution of pore sizes and that for the extracted models. The WA curve is shifted to the left 

because this algorithm scales all physically determined pore sizes in order to match poros-

ity. The MB curve starts higher than the prescribed one, reflecting the significant num-

ber of small pores introduced by this algorithm within prescribed throats. Figure 7c shows 

similarly good agreement between the prescribed cumulative distribution of throat sizes 

and that for the extracted models, with the exception that MB finds throats with larger cross 

sections because it interprets some of large pores as throats.

Figure 7b, c suggests that the statistics for pore and throat sizes could be considered 

as sufficiently reliable for random generation of pore and throat sizes from this distribu-

tion. However, the outcome should be considered with caution as the average pore and 

throat sizes, depicted in the plots, do not agree well with the prescribed values. Simplified 

pore network models use the average pore coordination number and the average pore and 

throat sizes instead of the distributions presented here. In such case, the pore space inter-

pretation by both algorithms will be inaccurate. Further, Fig. 7d shows significant differ-

ences between the throat lengths inferred by the PNMs and the prescribed ones. This is the 

strongest evidence of how the two algorithms (MB more than WA) interpret many throat 

regions as pores, increasing pore and throat numbers, reducing throat lengths, and as a con-

sequence biasing the results for pore coordination spectrum and size distributions.
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Fig. 7  Statistical data for pore space structure of the idealised material: a coordination number (CN) distri-

butions; b cumulative distribution function of pore radius (PR); c cumulative distribution function of throat 

radius (TR); and d cumulative distribution function of throat length (TL)
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Figure 8 presents the properties of Sandstone H, as translated by the two algorithms into 

PNMs.

Figure 8a shows that the pore network extracted by MB identifies fewer isolated pores 

than the WA (possibly for the same reasons as with the idealised model) and larger num-

ber of pores coordinated by two to six throats. Both models are in agreement for pores 

with coordination larger than six. While such spectra can be used for future construction of 

regular pore networks, there is nothing to suggest that they are not biased towards smaller 

coordination numbers similarly to the result with the idealised model. Hence, the use of 

these spectra or the resulting average pore coordination number in regular pore network 

constructions may introduce inaccurate connectivity representation.

Figure 8a, b shows that the two models are in good agreement about the cumulative dis-

tributions of pore and throat sizes. Due to the possible bias in the coordination spectrum, 

i.e. misinterpretation of pores and throats, the use of these distributions in pore network 

construction may also introduce error, albeit smaller than the connectivity inaccuracy. Fig-

ure 8d indicates that similarly to the idealised results, MB is consistently producing shorter 

throats due to splitting pore volumes, interpreted as throats by WA, into pore–throat–pore 

chains.

The data for sandstone extracted from the lower resolution image, in Fig. 9, show 

substantial differences between the algorithms. For example, Fig.  9a shows that 

MB recognises around 5% of the pores to be isolated, whereas WA reports 23%. 

The explanation for this is the same as in the previous two cases—MB considers as 
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Fig. 8  Statistical data for pore space structure of Sandstone H: a coordination number (CN) distributions; 

b cumulative distribution function of pore radius (PR); c cumulative distribution function of throat radius 

(TR); and d cumulative distribution function of throat length (TL)



286 T. G. Baychev et al.

1 3

pore–throat–chains some pore volumes, which WA considers as throats. At the same 

time MB network has a larger number of highly coordinated pores than the WA. The 

possibility here is that for largely coordinated pores, some of the coordinating throats 

interpreted by MB are considered as part of the pore by WA.

Apart from this, Fig. 9b–d shows that MB produces consistently more and smaller 

pores and throat radii as well as throat lengths. In general, the results from this lower 

resolution do not provide a clear choice about which spectrum and size distributions 

are to be used in regular network constructions. However, a comparison with Fig.  8 

illustrates the strong effect of the imaging resolution on the extracted pore network sta-

tistics. The interpretation of the more complex pore space revealed with the higher res-

olution (Sandstone H) by the two algorithms is in better agreement than the interpreta-

tion of the lower resolution pore space. In particular, a comparison between Figs. 8a 

and 9a shows that the higher resolution images provide substantially richer pore space 

detail yielding smoother coordination number distributions and nearly two times larger 

average coordination numbers. This makes it difficult to consider a coordination spec-

trum and distributions spanning the two length scales.

The interpretations of the two algorithms of the carbonate samples are given in 

Appendix A.
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Fig. 9  Statistical data for pore space structure of Sandstone L: a coordination number (CN) distributions; 

b cumulative distribution function of pore radius (PR); c cumulative distribution function of throat radius 

(TR); and d cumulative distribution function of throat length (TL)
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4.3  Geometry and Topology Relationships

Figures  10 and 11 show relations between pore topological and geometric character-

istics in the analysed rocks, which have not been studied in detail. The existence of a 

relationship between coordination number and averaged pore volume was suggested by 

a previous study (Sok et al. 2002) for Fontainbleau sandstone imaged at a voxel resolu-

tion of 5.7 μm. Specifically, Fig. 10 illustrates the dependence of pore size on coordina-

tion number by presenting the average pore radius of all pores with given coordination 

number. Observed are approximately linear relations for both rocks and at both resolu-

tions. It is important to note that more substantial deviations from linearity occur for a 

small fraction of very large pores with large coordination numbers. These data points 

are excluded from these plots. For example, the number of pores in Sandstone L, in 

Fig. 10a, with a coordination number between 0 and 9 is 99.4% of the total number of 

pores; hence, the average values calculated for CN > 9 are not reliable because there 

are simply not enough features contained within the volume at this resolution and field 

of view. Hence, the linear relations between pore size and coordination number can be 

assumed as valid for both materials. This provides very useful additional information 

for future development of regular network models. In the existing construction strate-

gies, the connectivity and the size of any given pore are not linked.

Finally, Fig. 11 shows relations between pore radii and average radius of the throats 

by which these pores are coordinated. The earliest attempt to study these relationships 

has been made by Lindquist et al. (Lindquist et al. 2000) with Fontainbleau sandstone. 

It is worth noting that the MB model is present with consistently smaller feature sizes 

which is due to the difference in the pore and throat definition with the WA model. Fur-

thermore, at least 99% of all accounted pores are in the region where the relations are 

linear as depicted by the fitting lines. For example, the throats in the linear region for 

sandstone, in Fig. 11a, b, contribute 98.8% to the total number of throats. The deviation 

from linearity is observed only for a small fraction of pores—the largest and the small-

est—the numbers of which are insufficient for deriving reliable statistics for pore–throat 
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size relations. Similarly to the results in Fig. 10, these linear pore–throat size relations 

can be used in future advanced pore network models construction strategies.

4.4  Evaluation of Flow Properties

This section aims to evaluate the performance of the two pore network extraction algo-

rithms in terms of the accuracy of their permeability predictions by comparison with a 

direct approach.

4.4.1  Direct Evaluation of Permeability

The direct evaluation of the permeability of the segmented 3D images was undertaken 

using the Avizo’s XLab Hydro module. The computational solver in this module has 

been validated previously against theoretical models and standard glass bead pack models 
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Fig. 11  Relations between average radius of coordinating throats and radius of coordinated pore and the 
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(Zhang et  al. 2011). The computational framework used in that module is the Absolute 

Permeability Experiment Simulation (APES) which utilises the finite volume method (Har-

low and Welch 1965) to solve the Stokes equations for the velocity and pressure field. The 

Stokes equations are given by:

where u is the fluid velocity (m s−1), μ is the fluid dynamic viscosity (Pa s) and p is the 

pressure (Pa).

The flow in the APES simulation is driven by the pressure gradient across two opposite 

boundaries of the studied geometry by introducing an accommodation zones at the inlet and 

outlet of the sample to ensure that there is a consistent pressure field. The module also intro-

duces a one-voxel-wide impermeable boundary around the other faces of the geometry in 

order to prevent loss of fluid. The algorithm then builds the finite volume mesh directly onto 

the voxelised pore domain of the 3D sample and solves for the velocities and pressures in the 

system. The process is illustrated in Fig. 12. Once the equations are solved and the volumetric 

(1)

{

∇ ⋅ u = 0

�∇
2
u − ∇p = 0

,

Fig. 12  Schematic illustration of the flow modelling using XLab for Sandstone H in the X direction: a voxel 

rendering of the pore space structure; b the flow field of a virtual fluid is displayed as streamlines and 

colour-coded according to the relative velocity; and c the resulting pressure field
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fluxes qtotal  (m
3 s−1) through the permeable boundaries are quantified, the APES utilises Dar-

cy’s law to evaluate permeability k  (m2):

where μ is the fluid viscosity (Pa s), L is the distance between the two opposite permeable 

faces (m) and A is the area of the permeable face  (m2).

Apart from the parameters described above and the segmented pore space, the module also 

takes the convergence error criterion (CEC) as an input, on which depends the precision of the 

outputs of the simulation. We conducted a sensitivity study in order to assess the influence of 

CEC on the permeability estimation and found that the value of 1 × 10−7 was a good compro-

mise between precision and computational time. A single simulation in any of the directions 

was found to take in the order of days, depending on the volume and complexity of the seg-

mented pore space. In this study, the permeability of each segmented sample was evaluated in 

all directions (X, Y and Z) in order to capture any anisotropy at the length scale of the samples.

4.4.2  Evaluation of Permeability from the PNMs

Even though the outputs from the different network extraction approaches vary, the method 

(Valvatne et al. 2004; Jivkov et al. 2013) used to evaluate the permeability is similar in order 

to compare the final results. Mathematically, the output from the pore network extraction algo-

rithms could be treated as 3D graph with the bonds being the pore–throats–pore assemblies 

and the nodes being the centres of the pores where bonds intersect. Mass transport is allowed 

to take place along the bonds, with the flow obeying the mass conservation at every node i:

where j represents all bonds connected to node i. It should be noted that this is strictly true 

only for incompressible flow and that the pressure changes in the nodes due to the flow are 

negligible. The flow rate qb,i−j passing through a bond that connects node i and node j is 

described as follows:

where cb,i−j is the bond conductance, Li−j is the geometric distance between node i and 

node j and Pi/j are the pressures at nodes i/j, respectively. This equation assumes that flow is 

laminar and incompressible and that the radius of the bond is considerably smaller than the 

bond length. These assumptions are consistent with the presumptions for mass conserva-

tion at the nodes.

Since our model takes into account the contribution of pores to total flow as well as the 

throats, we describe the conductance of a bond (pore–throat–pore assembly) as a simpli-

fication of three cylindrical throats in series using the harmonic mean of the individual 

conductance:

(2)k = −
�Lqtotal

ΔPA
,

(3)

∑

j

qn,i−j = 0,

(4)qb,i−j = cb,i−j

(

Pi − Pj

)

Li−j

,

(5)
Lb,i−j

cb,i−j

=

Lp,i

cp,i

+

Lt

ct,i−j

+

Lp,j

cp,j

,
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where t indicates the connecting throat. In addition, the hydraulic conductance c is given 

by Hagen–Poiseuille equation:

where k is ½ for a circular throat and G is the dimensionless shape factor which is the ratio 

of the throat area to its perimeter squared.

Combining Eqs. (3) and (4) results in a system of linear equations, with the unknown 

being the pressures at the nodes. The last step, before solving the system, is to establish 

a criterion for the boundary nodes. We define the boundary nodes by first adding the 

pore radii to the respective coordinates of the pore. If the resulting coordinates lay out-

side of the predefined sample boundaries, they are marked as boundary nodes. Any pore 

that obeys this condition would be open to the inflow/outflow in the system. The pres-

sures at the nodes residing in the permeable boundaries in the geometry are fixed. By 

solving the system, the pressures and consequently the flow rates in the whole geometry 

are obtained. The flow rates through the bonds that are connecting a boundary node to 

a node in the interior of the system are summed up to calculate the total flux coming in 

and out of the system. Note that mass conservation yields

Darcy’s law (Eq.  (2)) is then utilised to find the permeability of the network. This 

procedure has been implemented in MATLAB R2014a with typical computational times 

for the materials used in this paper being in the order of seconds.

The methodology described above used to calculate the sample permeability is the 

same for both the WA and the MB algorithms, apart from the fashion in which we cal-

culate the conductance of the individual bonds. This difference arises from the nature of 

the individual approaches. The WA algorithm, for example, reports the pore and throat 

radii, coordinates for the pores and the connectivity of the individual pores. The con-

ductance for a bond cb,i−j is again calculated using the harmonic mean of the individual 

contributors:

where Rp,i/j is the radius of the pores, Lt,i−j and Rt,i−j are the length and the radius of the 

throat and CC is a global coefficient which predetermines the contribution of the pore 

radius to the area of the cylinder. The calibration for the value of CC is given in Sect. 4.4.3. 

We find this value by calculating the values of permeability in all principal directions for 

the idealised pore network (not the voxelised version of it) with values of CC ranging from 

0 to 1 with an increment of 0.0001. Then, we take the value of CC for the lowest value 

of the second norm between the estimates of permeability reported from XLab (PXLab) 

and MATLAB (PMat). Note that PXlab = [PermX; PermY; PermZ] and PMat = [PermX(CC); 

PermY(CC); PermZ(CC)], and we calculate the second norm as:

where k = 1, 2, 3 indicates the direction in which the geometry is evaluated.

(6)c = k
A2G

�
,

(7)qtotal,inlet = qtotal, outlet.

(8)

Lb,i−j

cb,i−j

=
Rp,i

�(Rp,iCC)4

8�

+
Lt,i−j

�R4

t,i−j

8�

+
Rp,j

�(Rp,jCC)4

8�

(9)norm =

√

∑

(P
XLab

k
− P

Mat
k
)2
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In contrast to the WA, the MB algorithm has more detailed outputs. The most signifi-

cant difference is the fact that MB reports shape factors for the individual pores (Gp,i/j) and 

throats (Gt,i-j) as well as pore lengths (Lp,i/j). We calculate the bond conductance using:

The shape factor for a circular cross section is 1/(4π), which is what is used in calculat-

ing the conductance of the bonds in the WA model. With the MB, these shape factors are 

calculated as an average over the length of the reported feature and they reduce as irregu-

larity increases (Valvatne et al. 2004). More information on the definition of the shape fac-

tors and pore lengths can be found in Dong et al. (2009).

It should be noted that the approach used to calculate the conductivities with both mod-

els and the inherent simplifications does not account for the effects of the flow on the pres-

sure when passing through throats with different cross sections. However, we assume that 

these influences are negligible at low flow velocities.

4.4.3  Permeability Results

As described in the previous section, prior to calculating permeability values with the 

extracted irregular pore networks by WA, a calibration of the pore contribution parame-

ter CC in Eq. (8) has been performed using the idealised network. Figure 13 shows the 

calculated permeability in all directions of this network with changing CC from 0 to 1, 

as well as the permeability values calculated by XLab on the voxelised representation as 

described in Sect. 2.1. The value that provides the lowest second norm between the two 

estimates, in Eq. (9), is CC = 0.63. This value is used for calculating the permeability of all 

WA extracted networks. It is noteworthy that this value is close to the value used by Dong 

and Blunt (2009).

Table 4 summarises the results of all permeability calculations. For the two rocks, the 

table also provides the ranges of experimentally determined permeability values. The 
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results in the table are illustrated also in Fig. 14. The largest deviations between XLab and 

WA are observed in the Sandstone L material, especially in the Y and Z directions. These 

discrepancies are potentially the result of inaccurate interpretations of the boundary pores 

Table 4  Permeability values calculated by direct fluid dynamics (XLab) and by pore networks obtained 

with watershed algorithm (WA) and maximum ball (MB)

Sample Axis XLab perme-

ability  (m2)

WA permeability  (m2) MB permeability  (m2) Experimental  (m2)

Idealised X 3.41E−14 4.39E−14 2.86E−14 n/a

Y 4.24E−14 2.50E−14 5.23E−14 n/a

Z 3.87E−14 2.88E−14 3.68E−14 n/a

Sst. H X 2.98E−13 4.24E−13 2.94E−13 3.0 × 10−14  m2 to 

3.3 × 10−12  m2 53
Y 5.96E−13 3.09E−13 5.29E−13

Z 3.12E−13 3.08E−13 3.46E−13

Sst. L X 0.00E+00 0.00E+00 8.68E−14

Y 8.97E−14 1.94E−13 1.96E−14

Z 2.32E−13 7.81E−14 4.73E−14

Carb. H X 1.21E−12 1.51E−12 1.36E−12 7.0 × 10−15  m2 to 

7.0 × 10−13  m2 54
Y 2.22E−12 7.70E−13 2.24E−12

Z 1.45E−12 1.06E−12 1.53E−12

Carb. L X 6.10E−13 4.35E−13 8.47E−14

Y 3.77E−13 2.54E−13 1.29E−13

Z 1.70E−13 1.85E−13 5.97E−14
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and their connectivity. The pore networks of Sandstone L and Carbonate L extracted from 

MB algorithm tend to predict values smaller than the respective prediction from XLab, 

whereas this trend is not present with the WA pore networks. This trend is also observed 

for the other low-resolution sample: Carbonate L. It is interesting to point out that XLab 

and WA report zero permeability for Sandstone 2 in X direction, whereas MB calculates 

it as 8.64 ×  10−14  m2. The segmented geometry does not have a percolation path in the X 

direction, which indicates that the MB has introduced links between pores that are not pre-

sent. If we exclude this sample, the average difference between MB and XLab is 33% and 

that between WA and XLab is 40%.

In terms of overall performance, both methods provide reasonable predictions, despite the 

differences in the interpretation of the same pore space. This outcome is expected since the 

main observation for both algorithms is that they tend to interpret pore volumes, which are 

potentially throats, by systems of pores and throats, MB more so than WA. While this intro-

duces biases in the pore coordination spectra and the pore and throat size distributions, it 

does not affect the simple laminar non-reactive flow through the constructed pore networks. 

However, the potentially incorrect interpretation of some pore volumes may result in inaccu-

rate calculations of more complex reactive flows in the constructed irregular pore networks.

5  Discussion

In this study, we have compared the performance of two of the leading algorithms for pore 

network extraction. The key findings are that MB tends to identify a larger number of fea-

tures (both pores and throats) than WA. In most cases, the pore sizes from MB are much 

smaller than the ones from WA. Further, MB throats tend to be smaller and shorter than 

the ones reported by WA. These differences arise from the manner in which both algo-

rithms produce the equivalent networks. Taking the pores reconstruction for example, MB 

inscribes a sphere with maximum radius inside a cavity, whereas the WA measures the 

volume of the cavity and reports a sphere with the equivalent radius to match the volume. 

This explains the discrepancies between the average pore and throat radii as reported from 

the two algorithms.

The comparison between the extracted statistics and the known statistics for the ideal-

ised model shows interesting trends in both models. The spike at CN = 2 and the gener-

ally shorter throats indicate that both models interpret the long throats as a series of pores 

joined by shorter throats. Over-segmentation is a ubiquitous challenge for the watershed 

approach (Thompson et al. 2006) and strongly suggests the need for pore merging. Regard-

ing isolated pores (CN = 0), the MB and WA report 1 and 169 such pores, respectively, 

whereas the idealised geometry actually contains 97 such pores. This implies that MB tends 

to introduce links that are not present in the original segmented pore space. This observa-

tion is also supported by the permeability results for Sandstone L in the X direction, which 

has no percolation path between the permeable boundaries. MB reproduces more accu-

rately the cumulative distribution of pore sizes of the idealised model, but tends to extract 

smaller features for the rest of the material in comparison with the WA. This could be due 

to the fact the WA employs additional filtering that removes any small features that might 

not contribute to the permeability of the network but influence the model construction. 

In general, both models overestimate the number of pores and throats and underestimate 

throat lengths and average coordination numbers. The medial axis algorithm (Lindquist 

et al. 1996) is reported to generate topologically equivalent skeletons of the porous media. 
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However, it suffers from unambiguously identifying pore locations, which can also result 

in skewing the geometrical and topological statistics of the extracted networks, as observed 

with the MB and the WA. Clearly, there is a need to recalibrate the coordination spectrum 

and the distributions of pore and throat sizes if the results were to be considered reliable for 

subsequent physically realistic regular pore network construction. This could be achieved 

by a series of synthetic models and is a subject of ongoing work to be reported in future.

The permeability of real materials ranges across many orders of magnitude. For exam-

ple, experimental measurements of Hollington sandstone’s permeability report values 

in the range 3.0 × 10−14  m2 to 3.3 × 10−12  m2 (Makse et  al. 1996) which is in agreement 

with the pore network predictions from two models. Similarly, the values for carbonate 

rock reported range from 7.0 × 10−15  m2 to 7.0 × 10−13  m2 (Ehrenberg and Nadeau 2005), 

which is also in agreement with the values calculated in this work. In terms of porosities 

of the equivalent networks, MB tends to produce networks with significantly lower porosi-

ties than the segmented pore space. The reason it is still predicting the permeability of the 

sample is the use of shape factors, calculated from the voxelised representation, which are 

not accounted for in the porosity estimation. WA, on the other hand, also underestimates 

porosity but not as much as MB. WA does not output any shape factors for the reported 

features, and hence the permeability is calculated based on the feature sizes.

The fact that both models report different topological and geometrical statistics but still 

manage to predict permeability with reasonable accuracy shows that this property is fairly 

insensitive to over-segmentation of throats. It can be concluded that the study of simple 

flow through irregular network constructed directly on images is not affected by the deci-

sion of what constitutes a pore and a throat, as long as the connectivity is close to the real 

pore space. However, the statistical information extracted by the algorithms should be used 

with caution for constructing synthetic pore network, clearly for the materials studied in 

this work. Further, even for the image-based networks, the over-segmentation may lead to 

erroneous simulations for more complex transport processes, for example reactive trans-

port. For example, modelling a sorption process using the MB network might yield faster 

blocking (unless the individual volumes of the features are tracked separately) due to the 

generally smaller porosity than the WA. Depending on the length scales of the model, sim-

ulating bacterial proliferation or colloidal transport in porous media using both networks 

could have very different results. A bacteria cell with a size of a couple of microns might 

not be able to pass through small pores and throats, resulting in parts of the network being 

physically inaccessible. Furthermore, an experimental study reports bacteria (Delftia aci-

dovorans) preferentially establishing in the pores of the synthetic media used (Zhang et al. 

2010). Modelling the process using the extracted networks may result in unrealistic results, 

given that the models report elevated number of pores.

When interpreting the relationships between coordination number and the average pore 

radius and pore radii and average throat radii, one should take into account the fact that 

at different resolutions the tomography scans capture different numbers of features of a 

certain size. The number of identifiable pores and throats drops off as their sizes approach 

the resolution limit, as shown by Lowe et al. (2015). This is due to the resolution-limiting 

factor and the noise filtering applied to the samples and does not necessarily reflect reality. 

The significance of these relationships for the carbonate and the sandstone at the resolu-

tions imaged is that: the more coordinated a pore is, the larger on average it is; the larger a 

pore is, the wider on average are the throats coordinating this pore. Whether such relation-

ships hold for other materials or for the same materials at different observation windows 

is a question for further investigation. Depending on the studied problems, these relations 

might have to be considered, especially if the pore network model is not based on actual 
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tomography scans but on extracted statistics. Building a network that does not obey them 

might result in different mixing and dispersion coefficients from the ones observed in the 

real sample. These relationships have been shown to be important for predicting the rela-

tive permeability in regular pore networks (Arns et  al. 2004). The significance of these 

relationships for predicting single-phase permeability remains to be investigated.

It is interesting to point out that the methodology used for the construction of the ideal-

ised model, namely using Voronoi tessellation and scaling the pore and throat sizes to the 

sizes of the resulting cells and faces, generated a medium that possesses such linear rela-

tions between pore sizes, coordination numbers and throat sizes. This suggests that a com-

bination of dynamically constructed Voronoi tessellations with one of the two algorithms 

could provide an improved approach for pore network extraction.

In terms of computational speed and resources for evaluating the permeability of seg-

mented pore space, this study showed significant benefits of using PNM over XLab. The 

computational time needed for the extraction and the calculation of permeability of the 

equivalent network is in the order of minutes, whereas using XLab computation takes days. 

Similar observations are made by Varloteaux et al. (Varloteaux et al. 2013) but for model-

ling reactive transport. Comparing the performance of the WA and the MB in terms of per-

meability computational time, the WA is faster than the MB due to the fact that it outputs 

less pores and throats, which ultimately results in less variables that need to be evaluated.

6  Conclusions

In conclusion, our study outlined the importance of understanding what characterisa-

tion approach is used to describe the pore space of a medium. Different approaches inter-

pret the same pore space differently and in addition use alternative methods for calculat-

ing permeability. Both methods tend to over-segment longer throats and represent them as 

pore–throat–pore assemblies. The elevated number of pores could yield unrealistic results, 

if the modelled process is particularly relevant to the pores, i.e., precipitation or biofilm 

growth. Additionally, our results suggest that in some cases the MB may introduce throats, 

whereas the WA could remove existing small throats that are present in the segmented pore 

space. This effect should be considered in transport modelling directly onto the extracted 

networks, as it may result in including/excluding certain parts of the network, which would 

affect the global concentration of solutes. Further, the topological and geometric statisti-

cal characteristics of the resulting pore networks depend on the window of observation. 

The results presented do not suggest repeatability of these characteristics at different length 

scales; i.e. based on the results, one cannot claim a fractal nature of the pore space for 

extending potential models beyond these windows of observation. Despite these differences, 

the networks generated by both algorithms predict permeability values for single-phase flow 

with acceptable accuracy (33% and 40% on average, for MB and WA, respectively). Addi-

tionally, the permeability estimates from the two models are in better agreement for the fine-

resolution samples, as opposed to the coarse-resolution data sets. The computational effort 

required for evaluating flow properties of the extracted networks is significantly less than 

direct fluid mechanics calculations. This implies the use of pore networks will continue to 

play important role in understanding structure–properties relations in porous media; how-

ever, improved approaches for pore space interpretation need to be developed. Our study 

does not claim that pore network modelling is not a reliable method for analysis of transport, 

but that the two algorithms considered are not sufficiently advanced to interpret accurately 

the pore spaces studied here. It is possible that the algorithms provide better results for other 
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porous structures with simpler pore space, but we emphasise the necessity for developing 

improved algorithms, which is a subject of ongoing work. Finally, the linear relationships 

between pore size, pore coordination number and radii of coordinating throats should be 

used in future developments of regular pore networks to improve their physical realism.
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Appendix: Carbonate H and L Statistics

Properties of the carbonate rock extracted by the two algorithms from higher and lower 

resolution images are shown in Figs. 15 and 16, respectively.
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Fig. 15  Statistical data for pore space structure of Carbonate H: a coordination number (CN) distributions; 

b cumulative distribution function of pore radius (PR); c cumulative distribution function of throat radius 

(TR); and d cumulative distribution function of throat length (TL)
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Possibly due to the smaller difference between the two resolutions, two times for car-

bonate rock, the difference between the results at these resolutions is much smaller than for 

sandstone. Regarding the coordination spectra, in Figs. 15a and 16a, both algorithms peak 

at the same numbers, 2 and 1, respectively, with WA interpreting a much larger fraction of 

pores as isolated than MB. This is consistent with the previous observation of the tendency 

of MB to treat isolated pores as systems of pores and throats. Nevertheless, the calculated 

average coordination numbers by the two algorithms are in a relatively good agreement. 

The tendency of MB to interpret many pore volumes as chains of pores and throats, where 

WA interprets these as throats, leads to the results shown in Figs. 15a–c and 16a–c. At both 

resolutions, MB derives larger numbers of smaller pores and throats, as well as shorter 

throats, than WA. The results at the two resolutions are not very dissimilar, suggesting that 

the carbonate has a less complex pores system within this window of observation than the 

sandstone. Unlike the sandstone, the results for carbonate could be reconciled to span this 

window of observation in terms of coordination and size distributions.
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