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Abstract.—Many empirical studies have revealed considerable differences between nonparametric bootstrapping and
Bayesian posterior probabilities in terms of the support values for branches, despite claimed predictions about their approx-
imate equivalence. We investigated this problem by simulating data, which were then analyzed by maximum likelihood
bootstrapping and Bayesian phylogenetic analysis using identical models and reoptimization of parameter values. We show
that Bayesian posterior probabilities are significantly higher than corresponding nonparametric bootstrap frequencies for
true clades, but also that erroneous conclusions will be made more often. These errors are strongly accentuated when
the models used for analyses are underparameterized. When data are analyzed under the correct model, nonparametric
bootstrapping is conservative. Bayesian posterior probabilities are also conservative in this respect, but less so. [Bayesian
inference; bootstrap; model misspecification; phylogeny; posterior probability; simulations; support; true sampling.]

During the past 10–15 years, the focus of phyloge-
netic research has shifted from finding the best topology
by maximizing an optimality criterion to quantifica-
tion of the support for certain clades. Bootstrap val-
ues (Felsenstein, 1985), Bremer support values (Bremer,
1988, 1994), jackknife values (Farris et al., 1996), and
recently Bayesian posterior probabilities (Rannala and
Yang, 1996; Yang and Rannala, 1997; Huelsenbeck et al.,
2001) are commonly used measures. The interpretation of
support could be nonprobabilistic, as for Bremer support
and some interpretations of bootstrapping and jackknif-
ing (Farris et al., 1996; Oxelman et al., 1999). A proba-
bilistic measure of support has been considered prefer-
able by some authors (e.g., Felsenstein, 1985; Sanderson,
1989) because it quantifies how likely a certain clade is to
be correct, given the data at hand and the assumptions
made. For the rest of this article, we will restrict the dis-
cussion to probabilistic interpretations of bootstrapping
and Bayesian inference.

Generally speaking, phylogenetic methods should be
efficient, powerful, consistent, robust, and falsifiable
(Penny et al., 1992). In terms of support, this means that
methods that need a minimum number of data to attain
high support values for true clades are preferable. Non-
parametric bootstrapping is considered conservative by
some authors (Zharkikh and Li, 1992; Hillis and Bull,
1993), but Efron et al. (1996) claimed that bootstrap fre-
quencies are not biased systematically downward but
represent unbiased probability estimates in a Bayesian
sense.

In a Bayesian analysis, inferences of phylogeny are
based upon the posterior probabilities of phylogenetic
trees. The posterior probability, following Bayes’s theo-
rem, is a function of a prior probability and the likelihood
of the data under some assumed model. The equation
is not feasible to solve analytically, and therefore it has
until recently not been much used. With the introduc-
tion of Markov chain Monte Carlo (MCMC) algorithms
to estimate posterior probabilities of phylogenetic tree
topologies (Yang and Rannala, 1997), support analyses
can be performed for data sets with hundreds of taxa

(Huelsenbeck et al., 2001), with explicit models of evolu-
tion specified.

One of the distinct advantages with Bayesian infer-
ence in phylogenetics is claimed to be that the poste-
rior probabilities have a clear-cut interpretation, i.e., they
represent the probability that the corresponding clade is
true conditional on the model, the priors, and the data
(Huelsenbeck et al., 2002). Following this line of reason-
ing, nonparametric bootstrapping does not have such a
clear-cut interpretation in terms of phylogenetic recon-
struction (e.g., Larget and Simon, 1999). One interpre-
tation of nonparametric bootstrapping that validates a
comparison with Bayesian inference was proposed by
Efron et al. (1996:7090): “In a Bayesian sense, the α [boot-
strap confidence level] can be thought of as reasonable
assessments of error for the estimated tree.” Durbin et al.
(1998:212) claimed that “the bootstrap confidence for a
feature approximates the posterior probability of that
feature, assuming a flat prior over trees.” This would
suggest that nonparametric bootstrapping and MCMC-
generated posterior probabilities would be similar, pro-
vided that the prior is negligible or, as Huelsenbeck et al.
(2001:2311) put it “this [Bayesian inference] is roughly
equivalent to performing a maximum likelihood analy-
sis with bootstrap resampling, but much faster.” At first
glance, this prediction seems to be reasonable because
of the standard practice of using a flat prior distribution
and because the influence of the prior distribution de-
creases as the amount of data (i.e., basically sequence
length) increases.

Empirically, Bayesian posterior probabilities for clades
in phylogenetic trees are usually found to be consid-
erably higher than corresponding nonparametric boot-
strap frequencies (e.g., Karol et al., 2001; Murphy et al.,
2001; Leaché and Reeder, 2002; Whittingham et al., 2002).
Objective comparisons are difficult because few stud-
ies have applied exactly the same analysis model for
bootstrapping and Bayesian analysis. A common prac-
tice is to fix the parameter values for the pseudoreplicates
in bootstrapping. It is not clear how this practice affects
the results.
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In this study, we used a simulation approach to test the
hypothesis that there are no differences between non-
parametric bootstrap frequencies and posterior proba-
bilities. If there are differences, we want to explore the
relative amounts of type I and type II errors of the two
methods. A method that consistently gives higher prob-
abilities may be more powerful, in the sense that fewer
data are needed to reach the correct conclusion (i.e., the
method is less prone to type II error). On the other hand,
it is also possible that erroneous conclusions will be made
more often (i.e., the method has higher type I error rate).
We also briefly explored the effect of model misspecifica-
tion on the results and investigated the effect of sequence
length on the difference between the two methods.

METHODS

An unrooted five-taxon tree, ((((A:0.07, B:0.18):0.02,
C:0.16):0.02, D:0.12), E:0.38), was used for all simulation
of data except for the investigation of the effect of se-
quence length (see below). The numbers in the tree no-
tation represent expected number of substitutions per
site. These numbers were specified to give some rate
heterogeneity over the tree and relatively short internal
branches, resulting in clades of medium to high support
for a sequence length of 1,000 bases. This, we believe, is
a reasonably realistic shape of a tree. All data sets were
generated using the software Seq-Gen 1.2.5 (Rambaut
and Grassly, 1997). DNA sequences were generated un-
der the Jukes–Cantor model (JC69), where all base fre-
quencies and substitution rates are equal, and under a
more parameter-rich model: the general time reversible
model with rate variation among sites assumed to fol-
low a discrete gamma distribution (i.e., GTR+�) with
a shape parameter of 0.5 and four rate categories. The
base frequencies were set to give AT-rich sequences (fre-
quency of A = T = 0.3, C = G = 0.2) to have some de-
viation from equal frequencies used in the JC69 model.
The rate matrix values were chosen arbitrarily by simu-
lating one data set with a transition:transversion ratio of
2.0 and then estimating the rate matrix by analyzing that
data set with maximum likelihood under the GTR+�
model, thereby making transitions more frequent than
transversions (rAC = 0.7156, rAG = 3.7054, rAT = 0.8245,
rCG = 1.0219, rCT = 3.1090, rGT = 1.0). Initially, 50 data
sets (the 550 data sets) were generated for the JC69 model
and 50 were generated for the GTR+� model. For each
data set, statistical inference was performed using both
nonparametric bootstrapping with maximum likelihood
(MLBOOT) as well as analyses within a Bayesian frame-
work using MCMC algorithms (BAYES) in order to iden-
tify differences between the two methods. The JC69 data
sets were also analyzed with the GTR+� model and vice
versa, i.e., with an incorrect model, to compare BAYES
and MLBOOT under model misspecification. The expec-
tation is that analysis with incorrect model would give
lower support for both methods. There are nine more pa-
rameters in the GTR+� model than in the JC69 model,
and this case of model misspecification is severe in the
context of models commonly available in software used

for phylogenetic reconstruction. For both BAYES and
each pseudoreplicate in MLBOOT, all model parameter
values were estimated from the data except the shape
parameter in the GTR+� model, which was set to 0.5.

MLBOOT was implemented by using PAUP∗ 4.0b10
(Swofford, 2002) with heuristic search (tree bisection–
reconnection branch swapping, random addition se-
quence with one replicate, multrees not in effect, and
LCollapse = no) and 300 pseudoreplicates for each data
set. The model parameters were reestimated in every
pseudoreplicate. This is important in order to make a
fair comparison with Bayesian inference. Some of the
pseudoreplicates will give ML trees with one of the in-
ternal branches of length zero. When the default settings
in PAUP∗ are used, these trees will be collapsed and they
will not contribute to the bootstrap frequencies, which
in turn will not sum to 1. This process would result in a
systematic difference between the bootstrap frequencies
and MCMC-generated posteriors because the latter will
always sum to 1 with the software we used. By setting
LCollapse = no, this pitfall is avoided.

MrBayes 2.01 (Huelsenbeck and Ronquist, 2001) was
used to estimate posterior probabilities. Model param-
eters were assigned uniform priors. The default priors
for the branch lengths were random values between
0 and 10 substitutions per site in the sequence. The anal-
yses were initiated with random starting trees and were
run with four separate Markov chains for 500,000 gen-
erations, with a tree saved each 100th generation. The
first 500 trees were discarded as a conservative general-
ization of the “burn-in” phase. Usually, the chains reach
stationarity with respect to likelihood score after only a
few hundred generations. The 4,500 remaining trees were
used to calculate the posterior probabilities (BAYES) for
the two internal branches of the prespecified tree topol-
ogy for each data set.

Statistical evaluation of differences between the two
sets of support values from BAYES and MLBOOT were
performed with the nonparametric Wilcoxon signed-
rank test. There is a stochastic error in the MLBOOT
values because of the limited number of replicates. The
confidence interval, based on a binomial distribution, is
largest for support values of 50%. In the case of 300 pseu-
doreplicates, the 95% confidence interval is ±5.6% units
(Hedges, 1992). Because this error is random, we expect
the mean of 50 such errors (in the 50 data sets) to be small
enough to be negligible for the conclusions we want to
draw.

The support for the two internal branches was also cal-
culated by using true sampling (i.e., a parametric boot-
strap). For both models, 10,000 independent data sets
were simulated on the five-taxon tree. The ML tree was
calculated for each of these data sets. The frequencies
(MLtrue) for the two internal branches were obtained by
counting their occurrence in the ML trees of the 10,000
data sets.

To identify the type I error of BAYES and MLBOOT,
an additional 2,000 data sets (the 52000 data sets) with
1,000 characters each were simulated under the GTR+�
model on the five-taxon tree. The large number of data
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sets is needed because only a small fraction of the high
support values are for wrong clades, e.g., 5% of support
values >95% are expected to be wrong. These data sets
were analyzed under the GTR+� model in the same way
as described above but using ML bootstrapping with
100 pseudoreplicates and Bayesian inference with the
MCMC running for 60,000 generations giving 600 trees
of which the first 100 were discarded. To check whether
the MCMC chains reached stationarity, the first 1,000 of
the 52000 data sets were analyzed twice with different
random starting priors. Results were strongly correlated
(R2 = 0.993), implicating stationarity of the topology pa-
rameter. To explore how the type I error of two methods
is affected by underparameterization, these data were
also analyzed with the JC69 model. The aim here is
not primarily to compare BAYES under a correct model
versus an incorrect model or MLBOOT under a correct
model versus an incorrect model but rather to investi-
gate the relative behavior of BAYES and MLBOOT when
underparameterized compared with analysis the correct
model, i.e., to investigate if one of the methods is more
affected by underparameterization.

The results from the analyses with the correct model
of the 52000 data sets were also used to make a logistic
regression where we modeled the probability π that the
true clade has been found as a function of the support
value, x. Let Y be a binary response variable indicating
whether the clade is true or not (Y = 1 if the clade is in
the true tree and 0 otherwise), then P(Yi = 1) = π (xi ).
We applied, assuming the observations (xi , yi ) to be in-
dependent, a logit model where α and β are estimated
from data. Because π (xi ) = xi (meaning that the support
value, as intended, equals the probability that the clade
is in the true tree) is not part of this model, we also
applied the logit model with transformed support val-
ues: log{π (xi )/[1 − π (xi )]} = α + β log[xi/(1 − xi )]. The
corresponding probit models were also applied to data
(Agresti, 1990).

There is a conceptual difference between the methods
in that Bayesian inference aims at estimating the frequen-
cies of different topologies in the posterior distribution,
whereas ML seeks the single topology with the highest
likelihood. Theoretically, a non-ML topology can have
a higher posterior probability than the ML topology if
the ML topology has very specific parameter values (i.e.,
the ML topology represents a narrow peak in parameter
space) but would have only slightly higher likelihood
than another topology with a much broader range of pa-
rameter values. We applied a standard χ2-test to the re-
sults of the analyses of the 52000 data sets under the correct
model to check this hypothesis. The test variable was the
frequency with which BAYES and MLBOOT found the
correct topology.

We chose to use a single tree for simulations because
we were primarily interested in testing the idea that non-
parametric bootstrap frequencies and Bayesian poste-
rior probabilities are generally roughly interchangeable
(Efron et al., 1996; Durbin et al., 1998; Huelsenbeck et al.,
2001). Because the methods can be assumed to be con-
sistent under the correct model, we did not expect that

the shape of the tree would affect the generality of the re-
sults whenever the topology and branch length param-
eters were within a realistic range (but see Cummings
et al., 2003, for a more thorough exploration of parame-
ter space). Our null hypothesis is that when BAYES and
MLBOOT are performed using the same inconsistent
model, they are based on the same likelihood function
and should be inconsistent in the same way.

To investigate the effect of sequence length, a large
number of four-taxon data sets were simulated and an-
alyzed under the JC69 model and two different set-
ups. First, 500 data sets were generated for eight dif-
ferent sequence lengths (1,000, 2,000, 3,000, 4,000, 5,000,
6,000, 8,000, and 10,000 bases) using a four-taxon tree
with one short internal branch: (V:0.04, X:0.15):0.01,
Y:0.04),Z:0.15). Second, to minimize the problem of sup-
port values reaching 100% when sequence length in-
creases, the two long terminal branches were made 0.15
expected substitutions longer when sequence length was
doubled, starting at 1,000 bases using the function Y =
α + β ln(X), where Y is branch length and X is sequence
length. The two constants α and β were set to −1.3448676
and 0.2164043, respectively, to give the desired result of
keeping the expected support (as determined by para-
metric bootstrapping) approximately constant in the se-
quence length interval 1,000–64,000 bases. This process
was used for the same eight sequence lengths used above
plus three additional longer sequences (16,000, 32,000,
and 64,000 bases) and 500 data sets for each sequence
length. All data sets were analyzed with ML bootstrap-
ping with 200 pseudoreplicates and Bayesian inference
with the MCMC running for 60,000 generations giving
600 trees, of which the first 100 were discarded.

RESULTS

Bayesian inference yielded significantly higher sup-
port values than ML bootstrap values, with mean dif-
ferences of 4.1 and 3.3 percent units, respectively, for
the two internal branches under the GTR+� model and
mean differences of 3.9 and 2.7 percent units under the
JC69 model for the 550 data sets (Table 1). The support
values were substantially higher under the JC69 model.
The “true sampling” frequencies, using ML, were higher
than both MLBOOT and BAYES, except in one case (JC69,
BAYES clade AB). The BAYES value in that case was
not significantly different from the MLtrue value (un-
paired comparison), because the MLtrue value (98.9) is
well within the 95% confidence interval for the BAYES
value (98.6–99.8).

Mean support values for true clades were generally
lower when analyzing the JC69 550 data sets with the
GTR+� model and vice versa, i.e., with an incorrect
model. However, in the case of underparameterization
BAYES gave slightly higher mean support compared
with analysis under correct model (clades AB and ABC
combined: 75.5 vs. 73.6, P = 0.044). A more detailed com-
parison of the support value distributions from BAYES
and MLBOOT was therefore performed on the 52000 data
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TABLE 1. Comparison of support values from phylogenetic
analysis with Bayesian inference (BAYES) and ML bootstrapping
(MLBOOT). Fifty data sets were generated and analyzed under two
evolutionary models (GTR+� and JC69) using a five-taxon tree. Prob-
abilities (P) that BAYES and MLBOOT are incorrectly rejected as being
equal were calculated with the nonparametric Wilcoxon signed-rank
test. Frequencies for true sampling (MLtrue) based on 10,000 data sets
are presented together with mean values for BAYES and MLBOOT.

Model Clade Method Mean (%) Median (%) P

GTR+� AB MLtrue 89.8
BAYES 80.3 88.0
MLBOOT 76.2 82.5 <0.0001

ABC MLtrue 76.5
BAYES 66.9 76.4
MLBOOT 63.6 66.8 0.0025

JC69 AB MLtrue 98.9
BAYES 99.2 100
MLBOOT 95.3 98.6 <0.0001

ABC MLtrue 93.2
BAYES 79.9 97.3
MLBOOT 77.2 89.8 0.0002

FIGURE 1. Histograms of support value distributions for true clades in the 52000 data sets (simulated under the GTR+� model). The y-axis
represents number of true clades in each support category. Total number of support values for true clades is 4,000. (a) MLBOOT analyzed
with GTR+�, correct model; (b) MLBOOT analyzed with JC69, underparameterized model; (c) BAYES analyzed with GTR+�, correct model;
(d) BAYES analyzed with JC69, underparameterized model.

sets, analyzed both with the correct model and with un-
derparameterization. There was a substantial difference
between the shape of the support value distributions
for BAYES and MLBOOT (Fig. 1). The analysis with the
correct model showed that low support values (0–25%)
for true clades were proportionally more frequent for
BAYES, than for MLBOOT, but all support categories in
the range of 35–95% were more frequent for MLBOOT.
Support values >95% were more than twice as frequent
for BAYES compared with MLBOOT. When underpa-
rameterized, this pattern was accentuated, giving BAYES
a strongly bimodal distribution (Fig. 1D). There was no
significant difference in how often BAYES and MLBOOT
retrieved the true tree topology (support disregarded)
among the 52000 data sets analyzed with the correct model
(68.7% vs. 68.1%, P = 0.35).

The analysis of the 52000 data sets showed that the
risk of making an erroneous conclusion (type I error)
is higher with BAYES than with MLBOOT. Of support

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/52/5/665/1681867 by guest on 16 August 2022



2003 ERIXON ET AL.—POSTERIOR PROBABILITIES VS. BOOTSTRAP FREQUENCIES 669

TABLE 2. Error rates of BAYES and MLBOOT based on 4,000 clades from 2,000 data sets generated under the GTR+� model and analyzed
with the GTR+� and JC69 models, respectively. The support values were put in four categories. The total number of clades (N), in each category
and the proportion of these that were wrong (i.e., not AB or ABC) are shown.

BAYES MLBOOT

Correct model Incorrect model Correct model Incorrect model

Support category (%) N % wrong N % wrong N % wrong N % wrong

70.1–80.0 418 17.3 262 54.6 612 10.8 634 15.3
80.1–90.0 542 10.2 337 37.4 713 4.5 622 8.5
90.1–95.0 409 6.2 292 40.4 399 2.0 301 4.7
95.1–100.0 1,216 1.7 2,622 15.6 505 0.2 293 2.0

values >95%, only 0.2% were for wrong groups with
MLBOOT compared with 1.7% with BAYES (Table 2)
when GTR+�-generated data were analyzed with the
correct model. When data were analyzed with an un-
derparameterized model (GTR+� data analyzed with
the JC69 model), the type I error rate increased for both
BAYES and MLBOOT, but much less for MLBOOT. The
type I error with BAYES increased from 1.7% to 15.6%
for support values >95% under this kind of model mis-
specification. The number of clades with support values
>95% increases more than twofold (Table 2), indicating
that the absolute number of high support values for true
groups also increases (see also Fig. 1).

Because the residual sum of squares for the logit mod-
els for transformed support values was smaller than that
for any of the probit models (both for BAYES and for
MLBOOT), we chose the logit model. Given the support
value xi , π (xi ) is the probability that the estimated clades
are the true clades. In this logit model, the relationship be-
tween xi and π (xi ) is modeled by log[π (xi )/(1 − π (xi )] =
α + β log[xi/(1 − xi )]. The parameters α and β are esti-
mated from the data. In Figure 2, the estimated functions
of the logit model for our simulations are shown. The
simplest relationship between xi and π (xi ) is π (xi ) = xi ,
with the natural interpretation that the support value
equals the probability of having the true clade. This
is a special case of the model, with α = 0 and β = 1,
but this hypothesis is rejected, in this particular study
(P < 0.0001, for both BAYES and MLBOOT, using a like-
lihood ratio test). This is also seen in the figure. For exam-
ple, a probability of 95% corresponds to a BAYES value
of 91% and an MLBOOT value of 84%.

In the four-taxon case with varying sequence length
under the same simulation tree, support values quickly
approach 100% for both methods, but BAYES needs
shorter sequence length than does MLBOOT to reach
a certain support level (Fig. 3a). BAYES also needs
a smaller relative increase in sequence length than
MLBOOT to increase the support value by the same
amount (e.g., from 95% to 99%). The ratio of nonsup-
port of the two methods, i.e., (1-MLBOOT)/(1-BAYES),
is not only always larger than 1 (indicating that BAYES
supports are larger), but in fact the ratio increases with
sequence length, indicating that the BAYES support has a
higher rate of convergence to complete support (Fig. 3b).

When the simulation tree is modified to keep support
values roughly constant (Fig. 4), the mean support value

of MLBOOT initially approaches that of BAYES with in-
creased sequence length. For 3,000 bases and more, the
difference seems to stabilize at a level significantly differ-
ent from zero, even for very long sequences (Fig. 5). The
95% confidence interval of the difference for 64,000 bases
is large, indicating that problems with substitution sat-
uration (the long terminal branches have 1.05 expected
substitutions per site) are becoming apparent.

DISCUSSION

Our results reject the idea that nonparametric boot-
strap frequencies for ML estimates and Bayesian poste-
rior probabilities for clades in phylogenetic trees are uni-
versally equivalent. The results also show that Bayesian
posterior probabilities, on average, are substantially
higher than corresponding bootstrap frequencies. These
findings together with the observations generally made
based on empirical data (e.g., Karol et al., 2001; Murphy
et al., 2001; Leaché and Reeder, 2002; Whittingham et al.,
2002) strongly indicate that there is, contrary to theo-
retical claims (Efron et al., 1996; Durbin et al., 1998), a
systematic difference between nonparametric bootstrap
frequencies and Bayesian posterior probabilities.

The explanation for the observed difference be-
tween MLBOOT and BAYES is unknown. It could be
that Bayesian posterior probabilities and nonparamet-
ric bootstrap frequencies for ML estimates are approxi-
mately equivalent in other applications but that this is
not true for the complexity of phylogenetic reconstruc-
tion. Durbin et al. (1998) pointed out that there must be
enough data if bootstrapping is to be a good approxima-
tion of the posterior probability. With an infinite amount
of data both methods will give absolute support (100%)
because they are both consistent, given that the model
used is correct. To keep support values roughly constant,
we lengthened two of the terminal branches in the four-
taxon tree with increased sequence length. The problem
with this approach is that substitutions on those branches
eventually get saturated. An alternative approach would
be to shorten the internal branch, but for a four-taxon tree
this means that the internal branch has to be shortened
relatively more than the increase in sequence length. The
result of this is that the number of expected substitutions
on the internal branch quickly approaches zero.

Huelsenbeck et al. (2002) argued that one of the distinct
advantages of Bayesian inference is that the posterior
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FIGURE 2. Estimated probability π that the true clades are found as a function of support values xi for MLBOOT (dashed line, log{π [xi ]/[1 −
π (xi )]} = 0.3282 + 1.5396 log[xi /(1 − xi )]) and BAYES (continuous line, log{π (xi )/[1 − π (xi )]} = 0.1508 + 1.2118 log[xi /(1 − xi )]) using the 52000

data sets and logistic regression with logit model and log[xi /(1 − xi )] as explanatory variable. Help line indicates support values of BAYES and
MLBOOT that correspond to 95% probability of the clade being true.

FIGURE 3. Comparison of BAYES and MLBOOT when sequence length is increased. Five hundred data sets for each sequence length
were simulated on the four-taxon tree, (V:0.04, X:0.15):0.01,Y:0.04),Z:0.15), with the JC69 model. Data were analyzed under the correct model.
(a) Support value as a function of sequence length; (b) increase of the ratio (1 − MLBOOT)/(1 − BAYES) with increased sequence length. BAYES
has a higher rate of convergence than does MLBOOT.
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FIGURE 4. Mean support of MLBOOT, BAYES, and true sampling as a function of sequence length, when support is kept roughly constant.
The length of two terminal branches were set using the function Y = −1.3448676 + 0.2164043ln(X), where Y is branch length and X is sequence
length, i.e., branch length increases with 0.15 expected substitutions per site when sequence length is doubled. The internal branch and the other
two terminal branches were held constant. For BAYES and MLBOOT, 500 data sets were simulated and analyzed with the JC69 model for each
four-taxon tree/sequence length. Ten thousand data sets were analyzed for True sampling at each sequence length. The 1,000-bases tree, (V:0.04,
X:0.15):0.01, Y:0.04),Z:0.15), the 4,000-bases tree, (V:0.04, X:0.45):0.01, Y:0.04),Z:0.45), and the 8,000-bases tree, (V:0.04, X:0.6):0.01, Y:0.04),Z:0.6),
are shown.

probabilities have a clear-cut interpretation, i.e., they rep-
resent the probability that the corresponding clade is true
given the model, the priors, and the data. This statement
is not in agreement with the results of our study. With a
reasonable agreement between model of simulation and
model of analysis, our results show that BAYES is con-
servative, although less so than MLBOOT, in this par-
ticular case. Even if evolution followed the JC69 model,
we would have model misspecification every time an
erroneous topology is evaluated because this results in
a different set of branch length parameters. Thus, the
interpretation of posterior probabilities is not clear-cut
in the context of phylogenetic reconstruction. Different
nonnested models are compared in both BAYES and
MLBOOT. It is far from clear how this difference should
affect the interpretations of the results from the methods
(Yang, 1997).

BAYES performs better than MLBOOT by getting
closer to the actual probability that the clade exists in
the true phylogeny, because the actual probability is
underestimated more, on average, by MLBOOT. In other
words, BAYES has a lower type II error. However, BAYES
has a much higher type I error rate, especially in the
case of model misspecification. BAYES values appear,
on average, to be higher than MLBOOT values for well-
supported true clades, and it takes fewer characters to get
a certain support value with BAYES than with MLBOOT.

Huelsenbeck et al. (2002) suggested three potential
explanations for the observed discrepancies between
BAYES and MLBOOT. First, Bayesian analysis could be
more sensitive to model misspecification, and because
we do not generally know the correct model, this could
explain the discrepancy. We have shown, for our partic-
ular example, that BAYES is more sensitive to underpa-
rameterization. However, this does not explain why we
see differences in the analyses with correct model. Their
second suggestion, that the corrected bootstrap method
(Efron et al., 1996) should reduce the discrepancy, is
odd because the correction was actually invented for
those who wanted to use the bootstrap in a non-Bayesian
sense (i.e., frequency probability). The third suggestion
points to the methodological difference, that nonpara-
metric bootstrapping simulates a stochastic distribution
of the parameter space using profile likelihoods, whereas
Bayesian methods use marginal likelihoods. We have
shown that there can be a discrepancy between the sup-
port values of the two methods even when there is no
detectable difference in how often they find the cor-
rect topology. Further, Efron et al. (1996) argued that
nonparametric bootstrapping in phylogenetic trees ac-
curately estimate posterior probabilities, although they
gave no proof for this statement. Alfaro et al. (2003) ar-
gued that because data are parameterized differently in
BAYES and MLBOOT, the methods are expected to give
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FIGURE 5. Mean difference of support values from BAYES and MLBOOT for different sequence lengths, with 95% confidence intervals (see
Fig. 4 for details on tree modification with sequence length). Five hundred data sets were simulated and analyzed with the JC69 model for each
four-taxon tree/sequence length. The 1,000-bases tree, the 4,000-bases tree, and the 8,000-bases tree are shown. The right part of the x-axis is not
a linear scale.

different results. In MLBOOT, the site pattern frequencies
are the only parameters. In BAYES, branch length, sub-
stitution rate matrix, tree topology, and base frequency
are all parameterized, and the site patterns are not. This
area of research clearly needs scrutiny, especially the re-
lationship to sample size.

Nonparametric bootstrapping was originally intro-
duced to phylogenetic reconstruction to give probabili-
ties of clades representing their occurrence in an estimate
based on many characters (N → ∞) from the underlying
pool of characters (Felsenstein, 1985). Our results show
that both BAYES and MLBOOT probabilities are lower
than those given by true sampling. In other words, both
BAYES and MLBOOT are biased estimators of the prob-
ability of recovering a certain (true) topology if we were
to sample the same number of characters over and over
again.

Poorly supported clades are unreliable because those
clades may have been recovered by chance, for exam-
ple if the sample size is small. But if they are true, we
have committed a type II error by not acknowledging a
true relationship. Further data collection can be a rem-
edy to this type of error. A high support value makes re-
searchers believe in that clade relationship, but it could
nevertheless be wrong (type I error). This is generally a
more serious problem because researchers may not have
any motivation to collect further data when there already
exists a well-supported phylogeny. The behavior of

BAYES is especially cumbersome in this context. Douady
et al. (2003) found that slight differences in taxon or char-
acter sampling could give strongly supported conflicting
topologies with BAYES. Suzuki et al. (2002) showed that
BAYES often gives high support values for groups, even
with completely uninformative data. They also observed
that this behavior is accentuated when analyses were un-
derparameterized, which corroborates our results. The
nonparametric bootstrap is a long-used support mea-
sure, and even though its statistical interpretation is not
clear, it is conservative, a property that we find desir-
able, at least when the model of evolution is unknown
and probably more complex than any of the models avail-
able for analyses. It is tempting to use the higher support
values generated by Bayesian inference as if they were
equivalent. The effect of this would be a more frequent
acceptance of false phylogenetic hypotheses. Model mis-
specification can, as we have shown, accentuate this
problem. It is important to note that in our particular
case of underparameterization, even though the type I
error was very high for BAYES, the total number of true
clades with a support value >95% increased much more.
The behavior of BAYES under model misspecification is
clearly an area in need of more research.

Because the true relationship between taxa rarely, if
ever, can be observed, any phylogenetic hypotheses will
always run the risk of being falsified in the light of
new data. High support values cannot guarantee correct
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conclusions, only well supported conclusions. More
data, if sampled from the same phylogeny, make con-
clusions more reliable and robust.
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