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Abstract

Today’s computers allow us to simulate large, complex physical prob-

lems. Many times the mathematical models describing such problems are

based on a relatively small amount of available information such as exper-

imental measurements. The question arises whether the computed data

could be used as the basis for decision in critical engineering, economic,

medicine applications. The representative list of engineering accidents oc-

curred in the past years and their reasons illustrates the question. The

paper describes a general framework for Verification and Validation which

deals with this question. The framework is then applied to an illustrative

engineering problem, in which the basis for decision is a specific quantity

of interest, namely the probability that the quantity does not exceed a

given value. The V&V framework is applied and explained in detail. The

result of the analysis is the computation of the failure probability as well

as a quantification of the confidence in the computation, depending on

the amount of available experimental data.

1 Introduction

Computational Science is a discipline concerned with the use of computers for
the prediction of physical phenomena. These predictions are used as the basis
for critical decisions in engineering and in other fields such as environment,
heath, management, etc. Rapid development of computer hardware allows us
to make predictions of more and more complex phenomena.

The major problem arises: How reliable are these predictions? Could they
be the basis for decisions, often very crucial and with large implications? The
reliability problem has many aspects: mathematical, numerical, computational,
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experimental, and philosophical. The present paper addresses some of these
aspects in a general way and particularizes them to specific applications.

We will start with few examples of specific engineering accidents and their
reasons. We divide them into four categories: A) the modeling, B) the numerical
treatment, C) computer science problems and D) human errors.

A. Modeling problem

• The Tacoma Narrows Bridge. The suspension bridge across Puget-
Sound (Washington State) collapsed November 7, 1940. Reason: the
model did not properly describe the aero-dynamical forces and the
effects of the Von Karman vortices. In addition, the behavior of the
cables was not correctly modeled.

• The Hartford Civic Center roof (Connecticut). It collapsed January
18, 1978. Reason: linear model and models of the joints were inade-
quate.

• The Columbia Shuttle Accident June 2003. It was caused by a piece of
foam broken off the fuel tank. After it was observed, the potential of
the damage was judged, upon computations, as non-serious. Reason:
the model used did not take properly into consideration the size of
the foam debris.

B. Numerical treatment problem

• The Sleipner accident. The gravity base structure of Sleipner, a off-
shore platform made of reinforced concrete, sank during ballast test
operation in Gandsfjorden, Norway, August 23rd, 1991. Reason Fi-
nite element analysis gave a 47% underestimation of the shear forces
in the critical part of the base structure.

C. Computer science problem

• Failure of the ARIANE 5 rocket, June 1996. Reason: problem of
computer science, implementation of the round offs.

D. Human error

• Mars Climate Orbiter. The Orbiter was lost September 23, 1999, in
the Mars Atmosphere. Reason: unintended mixture of English and
metric units.

There were many more accidents and mishaps. We wanted to mention only
a few, as representatives of the main four categories. Today, in most cases, the
bottleneck of reliability is the proper modeling of the physical system, giving rise
to problems in the category A. This paper elaborates mostly on this category but
also briefly on the category B. The categories C and D will not be addressed here.
The category B problems relate directly to the mathematics, while category A
is broader.
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The question of the reliability of predictions based on mathematical models
has received much attention in many fields of applications for a long time.
Nevertheless now, thanks to the availability of large computers, the problem of
the reliability is becoming more and more important. There is a vast literature
available but the field is still developing. The reliability problem is directly
related to the Verification and Validation (V&V) field.

This paper has essentially two parts. In Part I, the section 2 is addressing
a sample of the literature on the subject of V&V while Sections 3-8 formulate
the basic notions and main ideas and their philosophical underpinning. Part
II (Sections 9 on) applies and implements the main ideas of Part I on a spe-
cific problem of the reliability of a frame. We address the reliability of the
computational prediction which is based on a small number of available exper-
imental data used to determine the input parameters of the numerically solved
mathematical problem.

The goal of the paper is to show some basic ideas of the V&V field and an
application of these ideas to an academic engineering problem when only limited
information is available. The ideas and methodology presented in the paper are
general and applicable to much more complex problems and not only those of
an engineering type. The paper is in some sense an overview paper referring
to [BNT06] for various details. We hope that the richness of open problems of
mathematical character in the V&V field will be apparent.

Part I

General V&V framework

2 Selected literature on V&V

Here we will mention a small sample of relevant papers on V&V.

• [AIA98] is the report of AIAA which was one of the first addressing V&V.
It is a very influential report and is very often cited.

• [OT02] is a survey paper with a large list of literature.

• [Roa98] is a good, easily readable book on the subject addressing in details
main ideas of Verification (mostly based on Richardson extrapolation) and
Validation.

• [CF99] is a book surveying the probabilistic techniques related to the
validation. The book contains a large list of references.

• [Pos04] is a very interesting and essential paper. It formulates and dis-
cusses three basic challenges of the Computational Science: A) perfor-
mance, B) programming and verification, C) modeling and validation.
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The paper arrives at the conclusion that the modeling (validation) prob-
lem is the major challenge and the bottleneck of the success or crisis of
computational science.

• [BS01] is a voluminous book addressing the reliability of the finite ele-
ment method, a-priori error estimates, convergence, pollution, supercon-
vergence, a-posteriori estimates. Many numerical computational illustra-
tions are presented.

• [HCB04] is a book focusing on the effects of uncertainty in the input data
on the solution. It is a mathematical book addressing the worst scenario
approach. The book has a large introductory chapter about several ap-
proaches to treat uncertainty.

• [BO04] presents the basic notions of Verification and Validation and their
implications.

• [BO05] is more or less a survey paper on V&V with specific characteristic
examples: a) The linear elasticity problem when the material coefficients
are given by the fuzzy sets. Mathematics of it is addressed in [BNT05]. b)
The problem of the constitutive law for cyclic plasticity discussed in light
of extensive experiments addressed in [BJLS93]. c) Stochastic formulation
and its application, which are elaborated in detail in [BTZ04, BTZ05].

• [BNT05] addresses the problem when the only information on the coeffi-
cients of the partial differential equation is their range. Given the quantity
of interest the problem is to obtain its range, a-posteriori error estimation
and the coefficients leading to the bounds of the range.

• [BJLS93] addresses the reliability of the constitutive law for cyclic plas-
ticity in the light of one dimensional experiments. Large number of ex-
periments were performed and statistically analyzed. Among others it
was shown that the classical constitutive law used in engineering is very
unreliable.

• [BTZ04] addresses theoretical foundations and convergence of the finite
element method for stochastic partial differential equations.

• [BTZ05] addresses the adaptive FEM for solving stochastic PDEs. Intro-
ductory chapters give a survey of various aspects of treatments of problems
with uncertainties.

• [BLT03] analyzes the question of solving simple bar problems based on the
use of various number of the experimental data of the Young’s modulus of
elasticity. The statistics of the experimental data is used in the Karhunen-
Loève formulation, which is at the basis of the probabilistic description of
the problem.
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• [Bab61] is a very old paper addressing the stochastic solution of the
Laplace equation with stochastic right hand side. This methodology was
used for the computational analysis of certain aspects (concrete freezing)
related to the building of the dam Orlik in early fifties in Czechoslovakia.

• [BNT06] is the basis of the second part of the present paper. It is related
to the Validation Challenge problem, Sandia National Laboratory, May
2006.

• [NF67] is an old paper, mostly addressing economic problems where valida-
tion issues have been of interest for a long time. It discusses philosophical
aspects and has influenced many simulation textbooks.

• [KOG98] is very general with examples mostly related to the economy.
It addresses various philosophical foundations of the validation. The ap-
proach of the validation of the frame problem addressed in this paper is
philosophically in the direction of Methodological Falsification in the sense
of Popper and Lakatos.

3 Basic notions

The purpose of computation is to provide the quantitative data of interest
(sometimes called quantities of interest) on which a decision is made.

These quantities are predictions of certain phenomena relevant for the decision.
Decision making techniques, as for example the utility theory, are not discussed
in the present paper.

Sometimes the computation is made only for understanding certain phenom-
ena and only qualitative characterization is of interest. We will not elaborate
on it in this paper

The scheme of the Computational Science approach is shown in the Fig. 1.
“Mathematical Model” is a synonym for “Mathematical Problem”. Its relation

Reality Model
Mathematical Computational

Model
Prediction
(output) Decision

Validation Verification

Figure 1: Scheme of the Computational Science

to the reality is the Validation problem.

The mathematical model only transforms the available information into
the prediction of the quantity of interest.
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Hence the reliability of the prediction depends on the quality of the available
information. The mathematical problem is then solved by a numerical approach,
which creates a computational model. The relation between the solution of
the mathematical and the computational models is the subject of Verification.
Accidents of the category A mentioned in Section 1 are related to the Validation
process. The accidents of the categories B, C, D are related to the Verification
process.

4 Mathematical Problem

The scheme of the mathematical problem of interest is shown in Fig. 2.

Structure
Output

quantity of interest
Input

UncertaintyUncertainty

Figure 2: Scheme of the mathematical problem

The structure of the problem could be for example an elliptic PDE and the
Newton boundary condition. The input data are the coefficients of the PDE,
the functional form of the right hand side and boundary conditions as well as
the physical domain. The output could be the value of a functional, for example
the value of the solution in a particular point. The problem, the admissible sets
(spaces) of the solution and the input data have to be well defined. The output
has to be properly defined so that it has a proper sense with respect to the
space of admissible solutions. An essential part of the mathematical problem
is the definition of the quantities of interest or other goals for computations.
The mathematical problem has to have reasonable properties, for example the
existence of the solution, its continuous dependence on input data etc.

The mathematical model defines a general problem. When endowed with
input data (for computational analysis) then the problem become specific and is
used for the prediction. The specific (prediction) problem reflects the available
information and its character. It can be deterministic, stochastic, worst scenario
type etc.

5 Quantification of the uncertainties

We said that the mathematical problem creates the transformation of the avail-
able information into the desired ones. This information is obtained by exper-
iments, experience, expert opinions and always contains uncertainties. They
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have to be quantitatively specified via probability fields, fuzzy sets, ranges (for
the worst scenario approach) etc. This specification is usually not easy because
not enough experimental data is available. The mathematical problem, i.e. the
input, the structure and the output, reflects the character of the uncertainties
and their quantitative description. This description is directly related to the
goal of the computation (quantity of interest). Sensitivity analysis plays here
an important role: it influences the decision on which uncertainties in the input
data have to be retained and which ones can be neglected, instead.

The uncertainty can be aleatory or epistemic. The aleatory uncertainty is re-
lated to the physical uncertainty and cannot be decreased or avoided. The epis-
temic uncertainty (called sometimes the ignorance) can be in principle avoided
by better experimental technology, better understanding etc. Nevertheless, in
practice, it cannot be totally eliminated either. The quantitative description of
the aleatory and the epistemic uncertainties is usually different and this is also
reflected in the formulation of the mathematical problem.

6 Calibration

To identify all or part on the input data in the specific mathematical problem
of interest, we select suitable calibration problems. These have to be related to
the goal of the analysis (i.e. the prediction) and could be both experimentally
and numerically analyzed via a possibly simpler mathematical model.

The input data are selected so that a good agreement between the results
based on the model and the experiments is obtained in the specific calibration
problems. The determination of these input data is called the calibration. The
calibration problems can have a deterministic or stochastic nature and have
to be relevant for the problem of interest. Let us consider for example the
three dimensional problem of plasticity and cyclic loading. The major part
of the problem is the specification of the constitutive law. Then the (three
dimensional) constitutive law is selected and calibrated so that results are in
good agreement with one dimensional experiments. (This of course does not
mean that the law will be good in three dimensions. This is the subject of
validation).

The calibration experiments are relatively cheap. The calibration is always
based on experiments that are different from the prediction problem, because
the prediction problem cannot be experimentally analyzed. (It seldom occurs
that, after the computational analysis has been performed, experimental mea-
surements become available for the prediction problem. In this case we speak
about post-audit. The post audit analysis is typically done when an accident
occurs). The specific mathematical problem with the input data based on the
calibration is then addressed in the validation phase.
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7 Validation

Validation is a process determining if the mathematical model describes
sufficiently well the reality with respect to the decision which has to be
made.

The validation process usually is related to the validation pyramid of experi-
ments with increasing complexity approaching the prediction. The cost of the
validation experiments is increasing with their complexity. Hence the number
of the available experiments decreases with their complexity. In the Fig. 3 we
show an idealized validation pyramid, which is related to an aircraft structural
design. Other validation tests outside of the pyramid are often added. We are
in dept to Mr. Stéphane Guinard of European Aeronautic Defense and Space
(EADS) Corporate Research for the permission to publish this figure. On the

Figure 3: An idealized validation pyramid related to an aircraft structural de-
sign.

left hand side of the pyramid are the experiments with the increasing complex-
ity. On the right hand side are the computational models. At the lowest level
of the pyramid are the simple calibration experiments. On the highest level are
very complex experiments and their computational analysis. Some of them are
called accreditation (certification) experiments and serve as the basis for the
demonstration of compliance with regulatory requirements. Sometimes, tests
on the lower level might be accreditation tests, too.
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The comparison between the experimental (validation) data and the com-
puted data is based on a specific metric (i.e. how the difference is measured)
and the rejection criterion, which is a quantitative measure of the difference.
The metric and the criterion have to be directly related to the prediction and
the decision based on it. If the criterion is larger then the given tolerance, which
is related to some threshold conditions, the model will be rejected. If the model
at any level of the pyramid is rejected then the model has to be changed and to
pass all the lower level tests and possibly more experiments would be needed. If
the model is not rejected at a certain level of the validation pyramid, then the
higher level is performed.

The used tolerance is not arbitrary. It relates to the required accuracy of
the prediction. If the required accuracy is low then the tolerance could be large
so that even a very crude model will not be rejected. If the desired accuracy
is high then the tolerance has to be small and many models could be rejected.
The tolerance has to be chosen reasonably, otherwise any practical model could
possibly be rejected. If more than one model are calibrated and validated then
the best model could be possibly chosen and the tolerance adjusted so that the
model will not be rejected. This can be done only if the adjustment is admissible
for the decision based on the prediction. If the model is rejected then a new
model has to be created.

The design of the validation pyramid is crucial. It is essentially an optimiza-
tion problem: find the pyramid in the financial budget so that the reliability of
the prediction is maximal.

To illustrate how the accreditation tests may lead to the rejection of the
model, we mention the Airbus A380 test. The accreditation wing test failed
on February 14, 2006. (Flight International 16/02/2006). EASA (European
Aviation Safety Agency) specifies that the wing in the static test has to endure
a load which is 150% of the limit load (worst scenario metric) for 3sec. The
wing broke at the point between the inboard and outboard engine at the 147%
of the limit load. Some adjustment of the wing design is expected.

Airbus Executive Vice President of Engineering A. Garcia said at the press
conference: This is within 3% of the 1.5 target which shows the accuracy of the
finite element analysis.

In this connection we also cite the comment of J. Kirby ( see Flight In-
ternational): No computer code is 100% accurate. Tests are required to verify
code predictions. Hopefully the test data show that the code predictions are con-
servative. But premature failure is not necessarily a disaster. I recall that on
one test program we had a premature failure (also a structural test). We found
with the aid of the test data that we had not modeled one aspect of the design
correctly. Correcting the computer model showed that the premature failure was
predictable. That gave us the confidence to modify the design so that we met the
ultimate load. Although the terminology in this citation is not completely the
one we are using in our present paper it shows nicely the rejection based on the
validation test and the change of the mathematical model.

By the validation test we can only reject a model based on a particular
tolerance. It does not necessarily mean that the prediction model not rejected
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is an accurate description of the reality in the range of the given tolerance.
Validation is an induction process. If a model is not rejected on an increasing

number of validation experiments our confidence in the prediction grows. This
process is very closely related to the philosophy of Popper and Lakatos, namely
their Methodological Falsification (see [KOG98]).

Let us mention that the accreditation test is part of the legal process and is
not necessarily a characterization of an engineering accuracy. For example, ob-
taining a value of 1.47 instead of 1.5 in the Airbus A380 test, could be sufficient
from the engineering point of view, to access the accuracy of the computational
model in the prediction. Nevertheless, it is a clear failure from the regulatory
standpoint. The objective, taking into account the regulatory constraints is to
achieve a larger value than 1.5.

8 Verification

Verification is a process of determining if the computational model and
the implementation lead to the prediction with sufficient accuracy i.e.
the difference between the exact and computed prediction is sufficiently
small.

Verification consists of: a) mathematical part, i.e. the analysis of the numerical
method, convergence, a-posteriori error estimation with respect to the desired
output, (the quantities of interest). It is a purely mathematical process; b)
the analysis of the correctness of the code. Here the manufactured solution
technique is one important tool. Also finding errors in the input data and other
subtle computer science aspects belong to the verification process.

Verification is also important in calibration and validation. We need to have
a sufficiently accurate numerical solution of the problem which is compared
with the experimental data, otherwise it would be impossible to analyze the
reliability of the model. Verification of the computational model cannot be
based on the comparison with the experimental data. Although in practice the
computational model is compared with the experiments (see the citation of J.
Kirby in the previous section), it is necessary to assume that the computational
model was verified so that its error is negligible with respect to the measure of
the difference between computed and experimental data.

Finally let us remark that verification applies also to the experimental work.
Here we mean that the data which are measured are those which are needed
and that their accuracy is sufficient.
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Part II

An illustrative engineering

problem

9 The frame prediction problem

In this and the following sections we apply the ideas of the previous sections to
the analysis of the reliability of a frame. It is a simple academic problem which
illustrates well the general ideas and addresses the general methodology of the
solution approach. The problem is one of the Validation Challenge Workshop,
Sandia National Laboratory, May 27-29, 2006, Albuquerque, NM. For detailed
analysis we refer to [BNT06]. Fig. 4 shows the frame problem, whose dimensions
are given in Table 1. The bar 4 is loaded by the uniform load of intensity
q = 6KN/m.

y

x

2
3

1

A

C

D

B
4

q

Pm

Figure 4: Prediction frame: structure and uniform load q under study. We are
interested in the vertical displacement of point Pm.

The vertical displacement of the point Pm is the phenomenon of interest.
It is the basis of the decision on the frame reliability. The joints (hinges) are
assumed to be perfect and their support in the points A and D is rigid. In reality
the hinges are not perfect and the support is not completely rigid. Nevertheless,
from a careful analysis of the design details and a simple sensitivity analysis,
it was concluded that this idealization has no influence on the decision based
on the displacement in the point Pm. The geometrical data are assumed to
be completely accurate and the load q is given by the regulation. It was also
concluded that the use of the Kirchhoff bending theory for the bar 4 is acceptable
for the decision. The material property, specifically the Young’s modulus of
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Point x(cm) y(cm)
A 0 20
B 20 0
C 220 0
D 150 100

Bar # A(cm2) I(cm4)
1 16
2 16
3 16
4 80 5333

Table 1: The geometrical data of the frame from Figure 4. Observe that only
beam 4 is subject to bending.

elasticity significantly influences the displacement and hence the reliability of
the analysis of the frame. The mathematical model is linear. Input data and
quantity of interest are given in Fig. 4 and Table 1. The input are the position of
the hinges, the point Pm, the cross-sections and modulus of elasticity of the bars
as well as the load. The structure of the problem is derived from the classical
linear structural mechanics. The quantity of interest is the probability that the
displacement w(Pm) in the point Pm will not exceed 3mm. The goal of the
analysis is to give this probability and describe the confidence in the computed
data.

10 Quantification of the uncertainty for the frame

problem

It was concluded that the only uncertainty influencing the decision is the ma-
terial property characterized by the Young’s modulus of elasticity E. It is de-
scribed in a probabilistic way. It will be assumed that the compliance C = 1/E
is a stochastic function described by a stationary random field that is completely
characterized by the marginal distribution of C and two additional parameters
Lc and α > 0 (defined in Section 12). The bars in the frame are assumed to
be independent in the probabilistic sense. The information about the modulus
of elasticity and its probability distribution is obtained from the calibration ex-
periments. Because the number of experiments is small there is still uncertainty
in the constructed probability field. It is assumed that all experimental mea-
surements are perfect. Since the input data are described in a probabilistic way
with uncertainty, the quantity of interest, namely the displacement in Pm will
be also described in probabilistic terms with uncertainty. Further it is assumed
that all used algorithms are verified.

11 The validation pyramid

The calibration, validation and accreditation experiments described bellow cre-
ate the validation pyramid analogous to the one shown in Fig. 3.

a) Calibration experiments. The calibration experiments are the basis for
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the specifics of the input data so that the specific (prediction) model will
be defined. The experiment is the material coupon of cross-section A =
4.0cm2, length L = 20cm which is loaded by the force F = 1.2KN . In
the middle of the coupon the strain is measured by a strain gage and
the elasticity modulus is computed. In addition the elongation of the
bar, δL is measured. See Fig. 5. For disposition are three groups of
measurements with different number of experiments (samples): Nc = 5,
Nc = 20, Nc = 30. Because the calibration experiments are cheap, more
samples can be measured than for validation. Table 2 gives the elongation
and the strain for the coupon samples.

F

R

L

Figure 5: Scheme of the calibration experiments.

b) Validation. The validation is testing the specific model based on the cali-
bration data. The model could be possibly rejected. The validation test
is the bar of the length Lv = 80cm with the cross-section A = 4.0cm2,
loaded by the force F = 1.2KN . The elongation δLv is measured. To
simulate higher costs of the validation tests we have for the three groups
only a smaller number of samples, namely Nv = 2, Nv = 4 and Nv = 10.
See Fig. 6. Table 3 gives the elongation measurements.

Lv

Fv

Figure 6: Scheme of the validation experiment.

c) Accreditation. The accreditation (certification) experiment is the most
expensive test at the top of the pyramid, just below the prediction. The
accreditation test is the frame shown in Fig. 7. It consists of four bars.
The bar 1 is bended by the concentrated force F = 6KN located in the
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Sample # δL(mm) E(Lc/2) (GPa)
1 5.15e-02 13.26
2 5.35e-02 10.86
3 5.24e-02 14.77
4 5.51e-02 10.94
5 5.14e-02 11.05
6 5.38e-02 11.06
7 4.97e-02 11.97
8 5.41e-02 11.66
9 4.95e-02 12.09
10 5.42e-02 11.30
11 5.47e-02 10.98
12 5.74e-02 11.92
13 5.36e-02 11.12
14 5.42e-02 12.00
15 5.34e-02 10.98
16 5.60e-02 10.71
17 5.06e-02 10.91
18 4.99e-02 11.89
19 5.22e-02 11.43
20 5.57e-02 10.87
21 5.28e-02 11.75
22 5.10e-02 13.47
23 5.48e-02 11.44
24 5.35e-02 12.44
25 4.92e-02 12.13
26 5.51e-02 11.38
27 5.27e-02 10.75
28 5.14e-02 11.92
29 5.61e-02 10.82
30 5.56e-02 11.04

Table 2: Measured elongation δL and the modulus of elasticity E(L/2) in the
calibration experiments

middle of the bar. The displacement is measured in the point under the
load. The bars 2 and 4 are not attached at their crossing. The geometrical
data of the frame are given in Table 4. Because of the high cost of the
accreditation test we have for disposition only Na = 1 sample in the group
1 and 2 and Na = 2 accreditation frames in the group 3. Table 5 gives
the displacement under the load.
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Sample # δL(mm)
1 2.01e-01
2 2.06e-01
3 2.01e-01
4 2.08e-01
5 2.04e-01
6 2.01e-01
7 2.06e-01
8 2.11e-01
9 1.98e-01
10 2.08e-01

Table 3: Elongation measurements for the validation test.

y

x

B

A D

C1

3
4

2

P

Q

Figure 7: The accreditation test frame.

Point x(cm) y(cm)
A 0 50
B 0 0
C 50 0
D 50 50

Bar # A(cm2) I(cm4)
1 16 333.3
2 16
3 16
4 20

Table 4: Geometrical data of the accreditation test.

12 The methodology of the approach

The goal of the analysis is to give the probability that the displacement at the
point Pm of the frame will not exceed 3mm. Also the confidence in the com-
puted probability has to be given. For disposition are data from the calibration,
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Sample # w(P )(mm)
1 -6.50e-01
2 -6.73e-01

Table 5: Measured displacements under the load for the accreditation tests.
The first measurement is used for cases 1 and 2

validation and accreditation experiments. To see how the results are influenced
by the number of experiments, three sample sets of data, described in the pre-
vious section, are analyzed. The ideas and the methodology used in the paper
are general and are not restricted to the academic frame problem.

First, we design the calibration experiments from which we will obtain the
probability field of the compliance. We consider various marginal probability
distributions, parametric and non parametric and fit the data. We use the
bootstrapping approach [Efr82, ET93] to give variability bounds for the fitted
parameters. After calibration is performed, we rank the marginal probability
distribution models by the Kullback-Leibler discrepancy theory [KL51]. Due to
the small amount of validation data, we adopted a Bayesian approach to include
the new available information and produce an updated (possibly better) model.
Then, the metric and criterion for rejection is based on the distance between
the prediction of the quantity of interest (displacement of the point Pm of the
frame) using the calibrated model and the Bayesian updated one. A similar
Bayesian approach is used for the accreditation metric and criterion.

The calibrated model, if not rejected, is then used for the prediction. The
confidence in the computed prediction is based on the computed distance be-
tween the calibration and validation, resp. accreditation data. We also include
in the prediction information on the variability of the calibrated input data,
estimated by bootstrapping, to account for the fact that only a small number
of experiments is available.

We do not use simultaneously all the available data, i.e. calibration, valida-
tion and accreditation for the prediction. We only use the calibration data for
the prediction, while the validation and accreditation data are used to charac-
terize the confidence in the prediction. The main reason is that in a complicated
problem as for example the airplane design (see Fig. 3) the simultaneous use of
all the data from the validation pyramid is practically impossible. The metric
we are using here is based on the frame prediction problem. In other words,
the mismatch between the computed and experimental validation (resp. ac-
creditation) data is “mapped” onto the prediction and the metric and rejection
criterion are defined directly at the prediction level. For a more complex prob-
lem, this “map” can be very difficult to achieve and one could use a surrogate
simplified model, instead.

We consider a family of stationary random probability fields1 for the com-

1For the reader unfamiliar with these concepts, classical references on probability and
Bayesian statistics, elementary and more advances, are for instance [McD04, Jay03, Lee04,
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pliance C. They are completely characterized by the marginal distribution and
two parameters Lc and α which fully characterize the covariance structure. To
describe this family we use an auxiliary mean zero and unit stationary Gaussian
field G(x, ω) that has covariance function

Cov[G](x − y) = E[G(x)G(y)] = ρG(x − y) = ρ

(

x − y

Lc

)

= e−( |x−y|
Lc

)
α

. (1)

The compliance model is then a transformation of the auxiliary field to match
the desired marginal distribution, i.e.

C = C(x, ω) = E[C] + std[C]F−1 ◦ Φ (G(x, ω)) . (2)

Here Φ is the cumulative distribution of standard normal random variable, while
the function F is related to the marginal distribution of the compliance C. In
fact F is the marginal cumulative distribution of the normalized field

Z =
C − E[C]

std[C]
.

13 Calibration problem

The calibration step uses the data from the calibration experiments, which are
pointwise compliance measurements and the elongation of the calibration bar.

13.1 Fitting the compliance with parametric and non-parametric

marginal distributions

We consider four parametric distributions to fit the compliance experimental
data, namely: uniform, normal, lognormal and inverse lognormal, as well as two
non-parametric distributions.

a) Parametric distributions. In all cases the parameters of the distributions
are chosen to match the first two sample moments of the compliance data.
We denote by

A[C;N ] =
1

N

N
∑

j=1

C(ωj) (3)

the sample mean and by

S[C;N ] =

√

√

√

√

1

N − 1

N
∑

j=1

(C(ωj) −A[C;N ])2 (4)

the sample standard deviation.

From the experimental data we get the mean and the standard deviation
for the three groups of measurements, shown in Table 6. Using these data
we get the parameters of the distributions:

BT73]
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Case A[C;Nc] × 1011 S[C;Nc] × 1011

1, Nc = 5 8.34 1.12
2, Nc = 20 8.68 0.64
3, Nc = 30 8.65 0.61

Table 6: Mean and standard deviation of the pointwise compliance for the three
groups of samples

1. Uniform distribution. Here we fit C(0, ω) ∼ U(A,B) and A, B are
given in the Table 7

Case A × 1011 B × 1011

1, Nc = 5 6.41 10.28
2, Nc = 20 7.58 9.78
3, Nc = 30 7.59 9.70

Table 7: The parameters A and B for the uniform distribution.

2. Normal distribution. Here we fit C(0, ω) ∼ N(µG, σ2
G). The parame-

ters and given in Table 8.

Case µG × 1011 σG × 1011

1, Nc = 5 8.34 1.12
2, Nc = 20 8.68 0.64
3, Nc = 30 8.65 0.61

Table 8: The parameters µG and σG for the normal distribution.

3. Inverse log normal distribution. Here we fit C(0, ω) = 1
EILG+exp(N(µILG,σ2

ILG
))

.

The offset constant EILG is chosen to get positive minimal value of
the modulus of elasticity E. The parameters µILG, σILG and EILG

are given in Table 9.

Case µILG σILG EILG × 10−10

1, Nc = 5 20.77 1.11 1.05
2, Nc = 20 20.77 0.617 1.03
3, Nc = 30 20.82 0.612 1.03

Table 9: The parameters of the inverse log normal distribution.
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4. Log-normal distribution. Here we fit C(0, ω) ∼ exp(N(µLG, σ2
LG)).

The parameters µLG and σLGare given in Table 10.

Case µLG σLG

1, Nc = 5 -23.21 0.14
2, Nc = 20 -23.17 0.078
3, Nc = 30 -23.17 0.074

Table 10: The parameters of the log normal distribution.

Fig. 8 shows the fitted cumulative distributions, together with the empir-
ical one, for the three groups of measurements.
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Figure 8: The fitted and the empirical cumulative distributions for the three
groups of experiments: (a) Nc = 5, (b) Nc = 20, (c) Nc = 30.

b) Nonparametric distributions. Here we are using the kernel density function
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based on two kernels, the Gaussian and the Epanetchnikov (for details see
[BNT06]). The cumulative distribution based on the kernel density func-
tion, together with the empirical one, for the three groups of measurements
are shown in Fig. 9.
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Figure 9: The cumulative distribution based on the kernel approach and the
empirical distribution, for the three groups of the measurements: (a) Nc = 5,
(b) Nc = 20, (c) Nc = 30.

Since the Gaussian and Epanetchnikov density functions are leading prac-
tically to the same results, only the former will be considered below.

13.2 Ranking the models for the marginal distribution

In Section 13.1 we constructed various models of the marginal distribution.
We have to rank them with respect to the goal of the analysis. We use the
discrepancy theory and the Kullback-Leibler measure (for details see [BNT06,
KL51]) and use bootstrapping (see next section) to estimate the distribution of
such discrepancies. We rank then all considered parametric and nonparametric
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Nc = 5 Nc = 20 Nc = 30 Rank
Marginal Median Mean Median Mean Median Mean (Median)

Uniform +Inf +Inf +Inf +Inf +Inf +Inf (5)
Normal 1.38 +Inf 1.43 1.48 1.43 1.45 (3)
LogNormal 1.97 1.96 2.31 2.29 2.32 2.31 (4)
Inverse LN 1.04 1.26 1.19 1.20 1.26 1.27 (1)
KDE 1.35 +Inf 1.28 1.36 1.32 1.35 (2)

Table 11: Ranking of various models by the mean and the median of the boot-
strapped discrepancy.

marginal distributions according to the mean or median of the bootstrapped
discrepancy distribution. Lower values characterize smaller discrepancy and
hence higher quality of the model. The values are given in Table 11.

The uniform distribution leads to infinite discrepancy (for details see [BNT06]).
We see that the inverse log-normal is the best, but the kernel density distribu-
tion is close. Note that the kernel density distribution is not assuming any
particular form of probability density function (pdf) and is robust.

13.3 Fitting the correlation length Lc

The covariance structure in (1) depends on two parameters, namely, α and the
correlation length Lc. We will consider three cases: a) fully correlated random
field (α = 0, Lc > 0), b) partially correlated random field (α = 2, Lc > 0) and
c) perfectly uncorrelated field (α > 0, Lc = 0). These choices were selected
as the extreme cases although other intermediate cases could be considered as
well. To get feeling on the two extreme choices we show in Fig. 10 the raw data
for the compliance and elongation together with the relation between these data
based on the models from the two extreme cases.

For α = 0 the compliance is constant over the entire length of the sample
and the relation between the compliance in the middle if the sample C(L/2)
and the elongation δL is linear.

In the uncorrelated case the elongation is independent of the compliance
value C(L/2). It is necessary to determine carefully this value from the raw
data for the three groups of experiments. (For detail see [BNT06]). We see that
the fully correlated case gives very bad results, while the uncorrelated case is
reasonable.

In the case α = 2 the correlation length Lc has to be determined. We ob-
serve that formulas (1) and (2), allow to determine the cross-covariance between
C(L/2) and the elongation δL, as well as the variance of δL, as a function of
Lc. The same quantities (cross-covariance and variance) can also be determined
from the experimental data. The correlation length Lc is then determined by
least square so that the sample variance and cross-covariance are best fitted.
The computed correlation length is given, for the three cases, in Table 12. The
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Figure 10: Elongation and point compliance data from the calibration exper-
iment as well as the two extreme models, for the three groups of calibration
experiments: (a) Nc = 5, (b) Nc = 20, (c) Nc = 30

computed correlation length Lc was practically independent of the marginal
distribution model.

13.4 Variability in the fitted data

The variability of the parameters of the compliance models is very essential to
establish the confidence in the model, especially in presence of a small set of
experimental data. It is done by the boot-strapping approach [Efr82, ET93] as
follows. The joint probability density function of C(L/2) and δL is reconstructed
by the Gaussian kernel density approach. The reconstruction is shown in Fig.11.

We draw samples of size Nc from the reconstructed pdf, and fit the param-
eters of the compliance model, as described in the previous sections, for each
bootstrapped sample. We repeat the procedure B = 1000 times and get a distri-
bution for the fitted parameters. In Fig. 12 we show the bootstrapped samples
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Figure 11: The reconstructed joint probability density from the calibration
measurements, for the three groups: (a) Nc = 5, (b) Nc = 20, (c) Nc = 30.
Right side shows the level lines. The squares are the original experimental data.
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Case Lc (m)

1, Nc = 5 0.009
2, Nc = 20 0.030
3, Nc = 30 0.035

Table 12: The correlation length Lc determined from three sets of experimental
data.

and the original experimental data.
Similarly it is possible to reconstruct the marginal distribution for C(L/2)

separately (or use the data from the joint probability). Then the bootstrapped
cumulative distribution of the pointwise compliance can be computed (see Fig.
12 right). We see how the width of the distribution function decreases with
increasing number of experiments. This width is related to the confidence in
the cumulative distribution function.

In Fig. 13 we show the bootstrapped sample compliance variance versus the
compliance mean (left) and the sample compliance correlation length Lc versus
the compliance mean. These figures show the confidence of the mean, variance
and correlation length.

13.5 On the model and the calibration data

We considered a few models based on different marginal probabilities and co-
variance form (1). We concluded that two marginal distributions, the inverse
log normal and the kernel density function lead to the best results. It was seen
that the partially correlation model gives very reasonable results while the fully
correlated model is inappropriate. The perfectly uncorrelated model gives prac-
tically acceptable results. It was clear that various models should be considered
and ranked. The small number of experimental data significantly influences the
approach. The model we consider is a stochastic model, which already char-
acterizes the aleatory uncertainty. Nevertheless, we still have uncertainties of
epistemic type stemming from the small number of experimental data. The
statistical analysis addressed in this section relates to the quantification of the
uncertainties as discussed in general in section 5 and particularly in Section 10.
After finishing the calibration, we proceed to the validation phase.

14 The Validation process

The goal of the validation is to assess reliability of the calibrated model. There
is a much smaller number of validation experiments than for calibration. The
process which is used in this paper has three parts:

a) Using the calibrated model, the probability field of the validation elonga-
tion is constructed, typically by the Monte Carlo method;
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Figure 12: On the left: 100 bootstrapped samples from the reconstructed joint
pdf of C(L/2) and δL, for the three groups of experiments: (a) Nc = 5, (b) Nc =
10, (c) Nc = 30. On the right: bootstrapped empirical cumulative distribution
of the compliance.
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Figure 13: The bootstrapped compliance variance versus compliance mean (left)
and correlation length versus compliance means (right), for the three groups of
experiments: (a) Nc = 5, (b) Nc = 20, (c) Nc = 30.
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b) Using the available validation measurements a Bayesian update of the
compliance model parameters is computed. A noninformative prior ( see
[Tan96, Jef98] ) is used. The updating is in some cases computationally
intensive. The updated model is assumed to be much more accurate then
the calibrated one.

c) Using both the calibrated and updated model, the probability distribu-
tion of the quantity of interest (in the prediction problem) is constructed.
A notion of the distance between these two probability distributions is
defined; this distance is used as the metric. The reason for it is that the
metric has to be closely related to the quantity of interest, i.e. the goal of
the analysis. The distance is also used for the definition of the rejection
criterion. Based on it and the given tolerance the calibrated model could
be rejected

14.1 The distance between two cumulative distributions

and the rejection criterion

Definition 1 (Horizontal distance between CDFs) Let F,G : R → [0, 1]
be two cumulative distributions and Iε(G) the ε−level

Iε(G) ≡ {x ∈ R |
ε

2
≤ G(x) ≤ 1 −

ε

2
}.

We define the distance between F and G as

dε(F,G) := max
x∈Iε(G)

|F−1 ◦ G(x) − x| (5)

The distance is well suited for the quantity of interest which has to be pre-
dicted, i.e. the probability that the displacement in the point Pm is not exceed-
ing 3mm.

Fig. 14 gives graphical interpretation of the distance.
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Figure 14: The graphical interpretation of the distance, which is related to the
metric used in the validation.

The idea of the distance is the following. Assume that Y is the true value of
the quantity of interest and Y cal resp Y up are the quantities predicted by the
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calibrated, respectively updated, model. Then we assume that

dε(FY , FY cal) ≈ dε(FY up , FY cal). (6)

The value of the parameter ε is more or less arbitrary. We selected ε = 0.005.
The reason is to avoid the reliance on the tail which is unstable and practically
not significant if it is sufficiently small as in our case. Then the neighborhood
of size +/- ε is used as the probability box which characterizes the reliability of
the model. This leads directly to the definition of the metric and the criterion
based on a given tolerance tol:

Definition 2 (Rejection criterion) Given a tolerance level tol we reject the
model Y cal if

dε(FY up , FY cal) ≥ tol × 3mm (7)

The value of the tolerance could be different and has to be related to the deci-
sion based on the computed data. Selecting a larger tolerance, the cruder and
simpler model will not be rejected but the reliability of the prediction will be
smaller. This has to be taken into consideration when the decision (for which
the computation is the basis) is made. If the tolerance is small, then possibly
all models will be rejected when only small number of data is available. The
models not rejected could be much more complex and computationally more
expensive. In what follows we use tol = 0.10. Let us mention that rejection
depends not only on the tolerance but also on the value of the parameter ε and
the selection of both depends on the purpose of the computation.

14.2 The Bayesian updating of the parameters

For every model we compute the updated parameters using the noninformative
prior. Here we will report only the mean and standard deviation of updated
marginal distribution, for the three models:

(a) Full correlation, α = 0, Lc > 0. In Table 13 we give the ratio of the means
and standard deviations (std) between the updated and the calibrated
models.

Uniform Normal Inverse LN

Case
µ

up

U

µcal
U

σ
up

U

σcal
U

µ
up

G

µcal
G

σ
up

G

σcal
G

E[C(0)]up

E[C(0)]cal

std[C(0)]up

std[C(0)]cal

1, Nv = 2 1.02 0.055 1.02 0.1 1.01 0.1
2, Nv = 4 0.98 0.14 0.98 0.2 0.97 0.2
3, Nv = 10 0.99 0.26 0.99 0.3 0.98 0.3

Table 13: The ratio of the calibrated and updated means and std for uniform,
normal and inverse log normal marginal distribution and full correlation.
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(b) Partial correlation, α = 2, and calibrated value of Lc. In this case, we do
not update the covariance length Lc because Lv ≫ Lc and the influence
of specific value of Lc is very small. In Table 14 we show the ratios for
the partial correlation model, for uniform, normal and inverse log normal
marginal distributions

Uniform Normal Inverse LN

Case
µ

up

U

µcal
U

σ
up

U

σcal
U

µ
up

G

µcal
G

σ
up

G

σcal
G

E[C(0)]up

E[C(0)]cal

std[C(0)]up

std[C(0)]cal

1, Nv = 2 1.01 0.57 1.01 0.56 1.02 0.57
2, Nv = 4 0.98 0.81 0.98 0.80 0.98 0.80
3, Nv = 10 0.99 0.98 0.99 1.00 0.98 1.00

Table 14: The ratio of the calibrated and updated means and std for the uniform,
normal and inverse log normal marginal distributions for the partial correlation
model.

(c) Perfect non-correlation, Lc = 0. This case has to be handled differently
because the problem become deterministic with the material described by
the effective modulus Eeff only. The predicted elongation has std = 0
and depends only on the mean value µ independently of the marginal
distribution. Hence only the mean can be updated. Yet this updating
has a drawback because its variation cannot be updated and hence the
assumption that the updated model is accurate does not hold. Therefore
as a more accurate model we use the normal distribution with the updated
mean and the standard deviation computed from the measured data.

14.3 Distance computation and model rejection

Once we have updated the models we can compute the cumulative distribution
of the predicted quantity of interest by the calibrated and the updated models.
Then we compute the distance between both distributions. Table 15 shows the
ratio of the distance and the critical displacement 3mm for the three groups of
the validation experiments. In boldface are the rejected models for a tolerance
tol = 0.10. We see that for the tolerance tol = 0.10 the fully correlated model
has to be rejected for all marginal distributions although its reliability slightly
grows with the increase of the number of experiments. Of course this model is
the simplest one. The partial correlation model leads to the best results for all
marginal distributions. The completely uncorrelated one still leads to a reason-
able accuracy and it is computationally simpler than the partially correlated
model. Hence we do reject the completely correlated model and keep the par-
tially correlated and uncorrelated ones. Note that the ratios in Table 15 are
not in all cases decreasing when increasing the number of experiments. This is
caused by the influence of the small number of experiments.
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Case 1 Case 2 Case 3
(Nc, Nv) = (5, 2) (20, 4) (30, 10)

(a) Fully correlated model α = 0

Uniform 0.25 0.14 0.12
Normal 0.25 0.13 0.11
Inverse LN 0.25 0.17 0.12

(b) Partially correlated model α = 2

Uniform 0.02 0.04 0.025
Normal 0.03 0.035 0.025
Inverse LN 0.025 0.035 0.03

(c) Perfectly uncorrelated model Lc = 0

Effective model 0.07 0.08 0.09

Table 15: The ratio of the horizontal distances and the critical prediction dis-
placement.

To further illustrate the results we show, on the left side of Fig. 15 the cumu-
lative distribution of the elongation Lv, empirical, predicted by the calibrated
model and by the updated one, for the uniform marginal and fully correlated
model. On the right side we show the cumulative distribution of the quantity of
interest (prediction) and the bounds based on the computed distance. Note that
on the left the cumulative distribution of the elongation Lv has been computed
analytically, while on the right the cumulative distribution has been computed
by the Monte Carlo Method (although it could also have been computed analyt-
ically as well). In Fig. 16 we show analogous results for the partially correlated
model with normal marginal distribution.

15 The accreditation

The accreditation process is analogous to the validation one. We have to take
here into account that only a very small number of experimental data is avail-
able. Using the calibrated model we compute the displacement of the midpoint
Q of bar 1 in the accreditation frame, and by the Bayesian approach we update
the mean and the std of the compliance model using the available accreditation
measured data. In the case when only one experiment is available, only the mean
is updated and. Then we compute the cumulative distribution of the quantity
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Figure 15: The uniform marginal distribution and full correlation. On the
left is the cumulative distribution of the elongation Lv, empirical, predicted by
the calibrated model and by the updated one. On the right is the cumulative
distribution of the quantity of interest with the bounds based on the distance.
The bounds are creating the probability box.
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Figure 16: The partially correlated model with normal marginal distribution.
On the left is the cumulative distribution of the elongation Lv, empirical, pre-
dicted by the calibrated model and by the updated one. On the right is the
probability box for the quantity of interest, based on the computed distance.
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of interest in the prediction problem using the calibrated and updated model
and compute the distance of these two distributions. In Table 16 we give the
ratio of the distance and the critical value. Because the fully correlated model
was rejected on the validation level we do not address it in the accreditation
phase. From the table we see that with the tolerance tol = 0.1 we do not reject

Case 1 Case 2 Case 3
(Nc, Na) = (5, 1) (20, 1) (30, 2)

(a) Partially correlated model α = 2

Uniform 0.015 0.028 0.037
Normal 0.015 0.028 0.037
Inverse LN 0.015 0.026 0.033

(b) Perfectly uncorrelated model Lc = 0

Effective model 0.072 0.072 0.1

Table 16: The ratio of the distance and the critical value, in the accreditation
procedure, for the partially correlated models and the perfectly uncorrelated
model.

the models, with the exception of the perfectly uncorrelated model in the case
3.

16 The prediction

As we have said above the prediction is based on the calibrated model taking into
account also the variability in the fitted data, estimated by bootstrapping, es-
pecially in the case of a small number of calibration experiments. The distances
computed in the validation and accreditation processes are used for determining
bounds in the predicted failure. The goal is to approximate P (w(Pm) > 3mm)
where w(Pm) is the displacement in the midpoint Pm of the bar 4 in the frame.
To properly account for the variability in the prediction due to the small amount
of calibration information, we consider the parameters defining the compliance
model (2) (hereafter denoted by Θ) as random variables and sample them by
bootstrapping, using the procedure described in Section 13.4. If (Ω̃, F̃ , P̃ ) is
the probability space for Θ and (Ω,G, Q) is the probability space for the model
prediction displacement for a given Θ, then

P (|w(Pm,Θ)| ≥ 3(mm)) =

∫

Ω̃

∫

Ω

1{|w(Pm,Θ(ω̃),ω)|≥3(mm)}dQ(ω)dP̃ (ω̃). (8)
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Given two natural numbers B and M we hierarchically sample first B times the
model parameters Θ by bootstrapping, then, for each sampled Θ, we sample
w(Pm,Θ) M times to generate B × M corresponding bootstrap samples. This
is computationally intensive and various simplification described in [BNT06]
have been made. This procedure is important when only a small number of
calibration experiments is available. We note that also for a large number
of experiments the bootstrapping results will not coincide with the prediction
based on the calibrated model. This is because the calibrated model is only
approximate. In Table 17 we are giving the failure probability evaluated by the
bootstrapping for various marginal probability distributions.

Case 1 Case 2 Case 3
(Nc, Nv, Na) = (5, 2, 1) (20, 4, 1) (30, 10, 2)

Uniform 2.0 × 10−2 4.7 × 10−5 5.6 × 10−8

Normal 2.1 × 10−2 5.8 × 10−5 8.6 × 10−8

Inverse LN 1.4 × 10−2 4.6 × 10−5 5.6 × 10−8

Table 17: Failure probabilities for the prediction displacement P (|w(Pm)| ≥
3mm), evaluated with the bootstrapping procedure for the partially correlated
models.

We augment the results by the information we have obtained during the
validation and accreditation phases to get bounds. For this, instead of providing
as failure probability the quantity P (|w(Pm)| > 3mm) we use P (|w(Pm)| >
3(1 ± dε)mm), where dε is the maximum of the distances measured in the
validation and the accreditation phases. In Table 18 we show upper bounds
on the failure probability, evaluated by combining the bootstrapping and the
distances in the validation and accreditation procedure.

Case 1 Case 2 Case 3
(Nc, Nv, Na) = (5, 2, 1) (20, 4, 1) (30, 10, 2)

Uniform 0.18 1.8 × 10−2 3.0 × 10−3

Normal 0.19 2.1 × 10−2 2.1 × 10−3

Inverse LN 0.19 1.7 × 10−2 1.4 × 10−3

Table 18: The probability of failure bounds obtained by combining the boot-
strapping procedure with the distances measured in the validation and accredita-
tion experiments, for various marginal probabilities and the partially correlated
model.

In Fig. 17 we show the cumulative distribution of the prediction quantity
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computed by the calibrated model and by the bootstrapped one (which accounts
also for the variability of the compliance model parameters) for the normal
marginal distribution and partial correlation. In addition we show the bounds
based on the distances in the validation and accreditation. In Fig. 18 we show
analogous results for the perfectly uncorrelated model.
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Figure 17: The cumulative distribution of the predicted quantity of interest
obtained by the calibrated model (blue), the bootstrapped model (green) and
the bounds. Partially correlated model with Normal marginal distribution.

From Figures 17 and 18 we see that for the case of the smallest number
of experimental data the bootstrapping is essential. For the higher number of
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Figure 18: The cumulative distribution of the predicted quantity of interest by
the calibrated (blue) and the bootstrapped model ( green ) for the perfectly
uncorrelated model.
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experiments the influence of the “modeling error”, quantified by distances mea-
sured in the validation and accreditation, is larger than the variability related
to the number of experiments, estimated by bootstrapping.

Comparing Figs. 17 and 18 we see that the use of the bounds is essential
for the confidence in the perfectly uncorrelated model which is less reliable than
the partially correlated model.

17 Conclusions

We have shown the general process of the prediction based on the calibration,
validation and accreditation. We have seen the role of the number of experi-
mental data. If the number is small then the accuracy of the prediction can be
very unreliable and the decision has to take it properly into consideration.

The validation analysis for the academic frame problem was based on the
Bayesian probability. This approach may be costly in general, yet there are
ways to perform the Bayesian update approximately, thus reducing the com-
putational cost. Other techniques such as sensitivity analysis or worst-case
scenario approach could be used as well.

In our problem we neglected the errors in the experiments. These of course
have to be addressed in any analysis too. Many approaches to the problem
of validation under uncertainties exist. In our academic problem the exact
solution i.e. the probability of the failure is not available. It seems to be very
important to develop various approaches and test them on problems where the
exact solution is known (the manufactured problems). In the general case, as
for instance the airplane design, the situation is much more complex and many
theoretical and implementational issues are open. The problem of the adaptive
modeling which leads to the best results with minimal cost is also essential.
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