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Reliability of Ratings for Multiple Judges:
Intraclass Correlation and Metric Scales
Robert F. Fagot
University of Oregon

Scale-dependent procedures are presented for
assessing the reliability of ratings for multiple
judges using intraclass correlation. Scale type is
defined in terms of admissible transformations,
and standardizing transformations for ratio and in-
terval scales are presented to solve the problem of
adjusting ratings for "arbitrary scale factors" (unit
and/or origin of the scale). The theory of mean-
ingfulness of numerical statements is introduced
and the coefficient of relational agreement (Stine,
1989b) is defined as the degree of agreement
among judges, with respect to (scale-dependent)
empirically meaningful relationships. Other topics
discussed include the treatment of variability due
to judges in relation to scale type, and the reliabili-
ty of magnitude estimates in psychophysics.
Index terms: coefficient of agreement, intraclass
correlation, meaningfulness, metric scales, reliability
of rating scales.

Intraclass correlation is widely used to esti-
mate the reliability of ratings by multiple judges.
Several important related issues have been inves-

tigated in recent articles (Algina, 1978; Bartko,
1966, 1976; Lahey, Downey, & Saal, 1983; Shrout
& Fleiss, 1979), including the problem of the
choice of the appropriate intraclass correlation
coefficient (ICR)’. Another problem, virtually
ignored in past studies, is the implications of scale

type for intraclass correlation. Although the

necessity is widely recognized of standardizing
scores when target comparisons are made, the is-
sue has not been addressed in the context of in-

traclass correlation. It will be shown that such

standardization is required before computing the

ICR, and further that the standardization proce-
dure is dependent on scale type.

Zegers and ten Berge (1985), and Zegers (1986)
derived a general coefficient of association for
two variables of the same metric scale type. Their

work was extended by Stine (1989b), who derived
coefficients for additional scale types, and more

importantly for present purposes, formalized a
notion of relational agreement based on mean-

ingfulness concepts. In this paper, procedures are

presented for the scale-dependent assessment of
relational agreement (as a special case of relia-

bility) for multiple judges through the use of
intraclass correlation.

Two points should be made about the term

&dquo;reliability&dquo; as used here. First, the focus is on
the assessment of reliability for single ratings (of
each target or ratee) by each judge, even though
the ICR can be used to assess the reliability of
mean ratings, as well (cf. Shrout & Fleiss, 1979),
and reliability estimates for multiple ratings can
be made through procedures in generalizability
theory (Brennan, 1983). Second, not all ICR in-
dices are coefficients of agreement, although var-
ious forms of the ICR are used as indices of the

reliability of ratings by multiple judges.
This paper briefly reviews statistical models

for reliability estimation. Scale type is then de-
fined in terms of admissible transformations, and
the discussion is restricted to the more common-

ly used interval and ratio scales. The concept of

meaningfulness of statements about numerical
scales is discussed, and the coefficient of agree-
ment is defined as the degree of agreement
among judges with respect to (scale-dependent)

’The abbreviation "ICC" has generally been used widely to
denote the intraclass correlation coefficient. Because ICC has

also been used to denote the item characteristic curve, the

abbreviation ICR is used for intraclass correlation coefficient,
with the "R" for reliability.
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empirically meaningful relationships (Stine,
1989b). Properties of a rating matrix are speci-
fied in the case of perfect agreement among
judges, relative to scale type. The problem of

&dquo;adjusting&dquo; ratings for arbitrary scale factors

(unit and/or origin of the scale) is considered,
and appropriate standardizing transformations
relative to scale type are proposed. The ICR com-

puted from standardized ratings is shown to satis-

fy key properties of invariance and sensitivity.
The treatment of variability due to judges in
relation to scale type and the reliability of

magnitude estimates in psychophysics are also
discussed.

Statistical Models for eliability Estimation

Shrout and Fleiss (1979) thoroughly analyzed
different forms of intraclass correlation for

reliability studies. The ICR is based on an anal-
ysis of variance (ANOVA) model. The population
index is typically defined as the ratio of the vari-
ance of interest, divided by the sum of the vari-
ance of interest plus error. Shrout and Fleiss
considered three cases. Case 1 was a 1-way
ANOVA design in which each target was rated by
a different random sample of judges. Case 2 (pro-
posed by Bartko, 1966, and Rajaratnam, 1960)
and Case 3 were two-way ANOVA designs, both
of which assumed that targets were randomly
sampled from some population. Judges were
treated as a random factor for Case 2 and as a

fixed factor for Case 3. The effects due to judges
and to the Judge x Target interaction were

separable for Cases 2 and 3, unlike Case 1. The
linear model was also given for each case, and
it was explained how the estimators were derived,
based on the expected mean squares for each
model. All of the estimators they provided are
biased but consistent.

Shrout and Fleiss (1979) presented the follow-

ing formulas for these intraclass reliability
estimators:

Case 2: Two-way ANOVA model with random
factors of targets and judges

ICR(2,1) =

Case 3: Two-way ANOVA model with random fac-
tor of targets and fixed factor of judges

where

k = number of judges
n = number of targets

BMS = target mean square
JMS = judge mean square
EMS = judge x target interaction mean square.
These forms of the ICR may be viewed as a spe-
cial case of a one-facet generalizability (G) study
(Cronbach, Gleser, Nanda, & Rajaratnam, 1972).
Analyzed as a G study, the ICR is defined in
terms of various variance component parameters.
To compute the ICR coefficient, the variance

components are replaced with their estimators.
The resulting generalizability coefficient for a
one-facet study will agree with the appropriate
mean square estimator given by Shrout and Fleiss

(1979), except in the case of a negative variance
estimate. If the negative variance estimate is set

equal to 0 (the usual procedure), then the gener-
alizability coefficient will differ slightly from the
Shrout and Fleiss estimate.

Scale Type and Admissible Transformations

Scale type is defined here in terms of admis-
sible transformations. For ratio scales, similarity
transformations are the admissible transforma-

tions of the scale <1>:

For interval scales, positive linear (affine) trans-
formations are the admissible transformations of

the scale <1>:

For both equations, 0 is the original represent-
ing function (scale) and <1>’ is the transformed

representing function (Krantz, Luce, Suppes, &
Tversky, 1971, chap. 1). A salient characteristic of
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a ratio scale is the existence of a unique zero

point. Thus, the unit is the only arbitrary scale
factor for judges making ratings on a ratio scale,
and different units are &dquo;admissible&dquo; but differ-

ent zero points are not.
For an interval scale, changes in unit (p) and

zero point (a) are admissible. For example, a

change from temperature measured in degrees
Centigrade (C) to Fahrenheit (F) would be ac-

complished by setting (3 = 9/5 and a = 32,
which results in the well-known formula

F = (9/5)C + 32. Hence, if the judges are mak-

ing ratings on an interval scale, then both the unit
and the zero point may vary among judges.

li~Ieaningfulness and the Coefficient
of Relational Agreement

The concept of meaningfulness (with roots in
Stevens’ theory of scale types; Stevens, 1946) now

plays an important role in modern measurement
theory. A statement about numerical scales is said
to be meaningful if and only if its truth value is
unchanged whenever admissible transformations
are applied to the scales (for discussions of

meaningfulness, see Adams, Fagot, & Robinson,
1965; Narens, 1985; Roberts, 1979; Stine, 1989a;
and Suppes & Zinnes, 1963). For example, a state-
ment about the ratio of the weights of two ob-

jects is meaningful in this sense, because the
numerical ratio is unchanged with changes in unit

(an admissible transform for a ratio scale). Such
a ratio statement would not be meaningful for
interval scales for which the addition of a con-

stant (change of origin) is an admissible trans-
formation.

Consistent with this interpretation of mean-
ingfulness, the coefficient of relational agreement
(sometimes referred to as simply &dquo;coefficient of
agreement&dquo;) assesses the degree of agreement
among judges with respect to empirically mean-
ingful relationships (Stine, 1989b). This is

equivalent to the degree to which the judges’
ratings are admissible transformations of each
other. For example, the coefficient of agreement
assesses the degree to which judges’ ratings are
proportional for ratio scales, and the degree to

which the judges’ ratings are linear for interval
scales.

It follows that in any application there may
be empirically meaningless disagreement among
judges that should not influence the coefficient
of agreement, and empirically meaningful dis-
agreement (systematic bias) that should influence
it. For example, the use of different units and/or

origins (&dquo;arbitrary scale factors&dquo;) by judges for
interval scales is empirically meaningless dis-

agreement ; if this is the only source of disagree-
ment, the judges’ ratings are related by admissible
transformations.

If, on the other hand, the judges’ ratings are
non-linear, this represents meaningful disagree-
ment, which should influence (attenuate) the
coefficient of agreement. Similarly, if judges are
making ratings on a ratio scale, the use of differ-
ent units by the judges is empirically meaning-
less disagreement. However, if the judges’ ratings
differ systematically by an additive constant, this

represents empirically meaningful disagreement
(relative to a ratio scale) and should influence (at-
tenuate) the coefficient of agreement.

Scale Type and Intraclass Correlation

Bartko (1976) criticized the Winer (1971, pp.
289-296) &dquo;adjustment for anchor points&dquo;
method of estimating the ICR, in part because
Winer’s method yields an ICR of unity if the
judges display a &dquo;constant additive bias.&dquo; Bart-
ko illustrated his argument with three sets of data

(Table 1), each set consisting of two ratings of

Table 1

Three Sets of Ratings on a 1 to 10 Scale

Note. Adapted from Bartko, J. J. (1976). Copyright
1979 by the American Psychological Association.
Reprinted by permission.
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each of five targets. The two ratings are identi-
cal for each target of the first set (la); they differ

by the same additive constant for each of the tar-

gets of the second set (lb); and the second rating
is double the first of each target for the third set

(1c).
Bartko interpreted the data as exhibiting per-

fect &dquo;reliability&dquo; for la (identicality), &dquo;constant
additive bias&dquo; for lb, and &dquo;multiplicative bias&dquo;
for lc. However, although data such as lb and
Ic may indicate systematic bias (empirically
meaningful disagreement) in the ratings, such
patterns of ratings also may be due entirely to

&dquo;arbitrary scale factors&dquo; (empirically meaning-
less disagreement). For example, if dataset lb re-
sulted from ratings made on an interval scale with
the two judges selecting their own origin, the rat-
ings would show perfect agreement relative to an
interval scale, and would exhibit no systematic
bias. Similarly, if dataset lc resulted from ratings
made on a ratio scale with the two judges per-
mitted to use their own (arbitrary) unit, the
observed proportionality of the ratings would in-
dicate perfect agreement relative to a ratio scale,
and would show no systematic bias.

These examples illustrate the role of scale type
and meaningfulness in assessing reliability, and
the need to adjust for arbitrary scale factors be-
fore computing the ICR. This adjustment (stan-
dardization) should be carried out by applying
an appropriate transformation of the ratings, de-
pendent on scale type.

Properties of a Judge X Target ting Matrix

The assumption of perfect agreement for in-
terval and ratio scales, which are the most com-

monly used &dquo;metric&dquo; scales, has implications for
the properties of a Judge x Target rating matrix.
Consider the hypothetical data of Table 2, for
three judges (J~, J2, J3) and three targets (7~, T2,
T). For Table 2, the spacing of the ratings on the
assumed interval scale is the same for each judge
(i.e., the judges’ ratings are perfectly linear). In
fact, the ratings were constructed using the well-
known interval scales of temperature: J, is the C

scale, # is the F scale, and J3 is another hypothet-

Table 2

Ratings by Three Judges
of Three Targets on an

Interval Scale With
Perfect Agreement

ical interval temperature scale. The transforma-

tion between scales 3 and 1, for example, is

J3 = (7/5)Jr + 10. Table 2 demonstrates that

perfect agreement for interval scales is achieved
if judges’ ratings are linear (i.e., are admissible
transformations for an interval scale), given that
both unit and origin are free to vary among
judges.

In the ratio scale example of Table 3, the ratio
of ratings for each pair of targets is the same for
all judges, (e.g., the rating for T3 is three times
that of T2 for all judges). These ratings were de-
rived as measures of length using scales with units
of feet (J,), inches (JZ), and meters (J3). The data
illustrate the case of judges making ratings on
a ratio scale, with the arbitrary unit selected by
each judge. In principle, then, perfect agreement
for ratio scales is achieved if the judges’ ratings
are proportional (i.e., are admissible transforma-
tions for a ratio scale), given that the unit is

selected by the judges.

Table 3

Ratings by Three Judges of
Three Targets on a Ratio Scale

With Perfect Agreement

Standardization

Given that the data of Table 2 exhibit perfect
agreement for an interval scale, what would the
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reliability estimates be using ICR(2,1) and ICR(3,1)
that treat the data as sample ratings? Depend-
ing on the assumed statistical model, the esti-
mates are ICR(2,I) = .55 and ICR(3,1) = .92,
which obviously are less than perfect reliability.
Given that the ratings in Table 2 are measured
on an interval scale with perfect agreement, it is
clear that the attenuated reliability estimates are
due entirely to arbitrary scale factors, the effects
of which must be removed before computing the
ICR. Because the &dquo;judges&dquo; are temperature
scales, the problem can be solved simply by trans-
forming to a single temperature scale, in which
case the ratings for each target would be identi-

cal, and all ICR = + 1. However, a standard
scale is not typically known in psychological
research, and a more general standardization

procedure is required.
Zegers and ten Berge (1985) and Zegers (1986)

derived a family of association coefficients for
metric scales that could be used to estimate relia-

bility (relative to scale type) in the special case
of just two judges. Zegers and ten Berge based
their family of coefficients on a &dquo;standardized
version&dquo; of the variables relative to scale type,
and it is their concept of standardized variables
that is adapted here as a solution to the standard-
ization problem for intraclass correlation. (Zegers
and ten Berge use the terms &dquo;uniformed version,&dquo; 

°

and &dquo;uniforming&dquo; transformation.)
The standardizing transformation must be an

admissible transformation relative to scale type

(i.e., it must satisfy Equation 3 for ratio scales
and Equation 4 for interval scales). Standardiz-

ing transformations satisfying this condition for
interval scales (Z) and ratio scales (P) are

for interval scales, and

where

for ratio scales. The Y;f are the observed ratings

(i = l, 2, ..., k judgesa j = 1, 2, ... , n targets),
and Mi and ,S; are the mean and standard devia-
tion (SD), respectively, for judge i.

Note that for both Equations 5 and 6, the

standardizing transformation is applied separate-
ly to each judge. Equation 5 is the well-known
linear Z transformation (with mean = 0 and
SD = 1), but P appears to have been proposed
first by Zegers and ten Berge (1985) in the con-
text of bivariate correlation. P rescales the vari-

ables to obtain a mean squared value of 1. ~’ is
not unique, but Zegers (1986) has shown that it
maximizes the value of the correlation coefficient

for ratio scales in the bivariate case.

It was pointed out above that the data of Ta-
ble 2 exhibit perfect agreement relative to an in-
terval scale, yet the estimated reliability was less
than 1, due to the attenuating effect of arbitrary
scale factors. However, the appropriate standardi-
zation (Equation 5) on Table 2 results in the trans-
formed ratings of Table 4, which shows that the
transformed ratings are identical for each target,
resulting in ICR(2,I) = ICR(3,1) = -t-1.

Table 4

Standardized Ratings for
Table 2 Data (Table 2 Ratings
Adjusted for Arbitrary Unit
and Origin by Equation 5)

Table 3 illustrates perfect agreement for ratio
scales, based on the proportionality of the

judges’ ratings. The reliability estimates, treat-
ing these data as sample ratings, are ICR(2,I) =
.06 and ICR(3,1) = .11. Applying the appropri-
ate standardizing transformation to the ratings
(Equation 6), Kl = 3.7, K2 = 44.36, and

K3 = 1.13. Dividing the ratings by the appropri-
ate Ka resulted in the transformed ratings in Table
5. Note that the transformed ratings are identi-
cal for each target, as in Table 4, resulting in

ICR(2,I) = ICR (3,1) = $1.
Thus, a precise pattern for judges’ ratings is
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Table 5

Standardized Ratings for
Table 3 Data (Table 3 Ratings
Adjusted for Arbitrary Unit

by Equation 6)

implied by perfect agreement, dependent on scale

type. The judges’ ratings are linear for interval
scales, and the ratings are proportional for ratio
scales. Applying the appropriate standardizing
transformation resulted in transformed ratings
that are identical for each target. Hence the

coefficient of agreement may be defined alter-

natively as the degree to which the standardized
versions are identical.

The identicality of transformed ratings results
in a mean square of 0 for the main effect of

judges, and for the interaction of judges and tar-

gets. Provided that the between-targets mean

square is greater than 0, all ICR estimates are uni-

ty. Standardization avoids underestimating ICR
due to disagreement about empirically meaning-
less relationships in the ratings.

Invariance and Sensitivity

The standardized ICR coefficient satisfies two

important properties: (1) invariance in value

under admissible transformations of the ratings,
and (2) sensitivity to non-admissible transforma-
tions (Zegers & ten Berge, 1985)-that is, the
value of the ICR coefficient will change if a non-
admissible transformation of the ratings is per-
formed. As an example from bivariate cor-

relation, the Pearson r (a member of the family
of coefficients appropriate for interval scales of
Zegers and ten Berge, 1985) is invariant under
linear (affine) transformations, which are the
admissible transformations of an interval scale,
and it is sensitive to non-admissible transforma-

tions such as a log transformation.
To illustrate the properties of invariance and

sensitivity for the ICR, consider Tables 3 and 5,

the former consisting of ratings made on a ratio
scale, and the latter of transformed ratings us-

ing Equation 6. Multiplying the ratings for # in
Table 3 by 2 would be an admissible transforma-
tion (change of unit), and hence the transformed

ratings for JZ in Table 5 would not change (invar-
iance), and the ICR value of unity would be

preserved.
Transforming the ratings for J2 in Table 3 by

# + 2 would be a non-admissible transforma-
tion for a ratio scale, and the ratings of £ would
no longer be proportional to J, and J3. The trans-
formed ratings for 12 in Table 5 would change to
.304, .565, and 1.609 for 7~, T2, and ~, respec-
tively, with a consequent change in ICR to less
than 1, thus satisfying sensitivity.

This example also explains why the Z trans-
formation (Equation 5) would not be appropri-
ate for ratio scales. Z is a non-admissible trans-

formation because it permits an additive con-
stant, whereas the zero point for a ratio scale is
unique. As a result, any transformation satisfy-
ing Equation 4 but not Equation 3 will preserve
the value of the ICR, thereby satisfying invariance
but not sensitivity. Using the Z transformation
for ratio scales will generally overestimate ICR by
removing variability due to a possible systemat-
ic (additive) bias (meaningful disagreement)
reflected in the additive constant.

Rating Scales, Scale Type, and Standardization

The analysis of scale type and standardization
has been made with respect to &dquo;idealized&dquo; rat-

ing scales for which the scale type is known,
whereas the concept of scale type is fuzzy at best
in most applications of rating scales. Neverthe-
less, whenever a numerical rating scale is con-
structed, it is assumed implicitly that the judges
are capable of making direct quantitative ratings
of stimuli relative to some attribute of interest,
and it may be inferred from the instructions to

the judges what the class of admissible trans-
formations is assumed to be. A similar point was
made by Krantz (1972).

The central idea is that although formal the-
ory justifying scale types for numerical rating
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scales (including magnitude estimation in psy-
chophysics) is lacking, it is implicitly assumed
that the judges are making direct quantitative es-
timates, which implies an underlying metric, and
that the use of arbitrary assignments requires ad-

justment of the ratings. However, the scale-

dependent standardization is also determined by
the allocation of arbitrary assignments between
the experimenter and the judges.

For ratio scales, there are two cases to

consider:

I21. If the experimenter for Rl sets the unit of
the ratio scale by assigning the same posi-
tive number for all judges to any one of the

targets, there are no scale factors free to

vary among judges. Therefore, there can be
no meaningless disagreement among

judges. Perfect agreement in this case

would require identical ratings for all

judges, and the agreement coefficient

would assess the degree to which the un-
transformed ratings were identical.

R2. If judges are allowed to set the unit, the
coefficient of agreement assesses the degree
to which the ratings are proportional pri-
or to standardization, and the degree to
which the transformed ratings are identi-
cal after the P transformation (Equation 6)
is applied.

For interval scales, there are four cases to
consider:

11. If both arbitrary assignments are made by
the experimenter, no standardization is

required, and the coefficient of agreement
assesses the degree to which the untrans-
formed ratings are identical.

12. If both assignments are made by the judges,
unit and origin are free to vary among

judges, and the Z transformation adjusts for
the empirically meaningless disagreement of
unit and origin.

I3. If the experimenter sets the same origin for
all judges by assigning 0 to one of the tar-
gets, perfect agreement requires that the rat-

ings for each pair of judges be related by
a similcarity transformation (proportion-

ality), and hence the P transformation

(Equation 6) is the appropriate transforma-
tion. Note that even though judges are mak-
ing ratings on an interval scale, Z is not the

appropriate transformation. This is because
once the zero point of the scale is fixed by
the experimenter, judges must make ratings
relative to the common zero point; thus,
only the proportionality of the judges’ rat-
ings is now required for perfect agreement.
If the judges’ ratings are perfectly propor-
tional relative to the fixed origin, both Z and
P transformations would result in an ICR of

unity. However, the Z transformation would
lead to an inflated estimate of ICR in the

presence of additive bias (meaningful dis-

agreement), which would be treated as em-

pirically meaningless disagreement. The P
transformation would correctly treat the ad-
ditive bias as empirically meaningful dis-
agreement that would be allowed to

influence (attenuate) the ICR.
Note that the assignment of 0 need not

imply &dquo;no amount of&dquo; the attribute being
rated for an interval scale. Therefore, the

theory can be applied to bipolar scales for
which 0 may be assigned to &dquo;neutral,&dquo; and
both positive and negative ratings are ad-
missible.

14. If the experimenter assigns a positive num-
ber to one of the targets, this does not fix

the unit of the scale. If it did, only the ori-

gin could vary among judges, and the rat-

ings of two judges could differ only by an
additive constant in the case of perfect
agreement, which obviously is not possible
because one target is assigned the same
number for all judges. Perhaps this is more

readily apparent when it is considered that
the origin is a point on the scale, but the unit
is a distance. Thus the assignment of a posi-
tive number to a target has no measurement-

theoretic significance in terms of restrictions

placed on the class of admissible trans-

formations-as does the assignment of 0,
which fixes the origin and restricts the
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class of admissible transformations to sim-

ilarity transformations. Although the as-
signment of the origin for an interval scale
is separable from the assignment of the unit,
the converse is not true: The unit may be

assigned by the experimenter only conjoint-
ly with the origin (i.e., requiring two as-

signments).
The allocation of arbitrary assignments also

has implications for Case 1 in Shrout and Fleiss

(1979), in which each judge rates only one target
in a one-way ANOVA design, ruling out the pos-
sibility of standardization of ratings for these de-
signs. If judges use different units or origins, a
one-way design is therefore not defensible for the
estimation of reliability using intraclass correla-
tion, because the reliability coefficient would be
attenuated by empirically meaningless disagree-
ment. However, a simple solution is for the ex-

perimenter to make the same arbitrary assign-
ments for all judges (e.g., unit and origin for
interval scales), which avoids the problem of stan-
dardization of ratings, and renders Case 1 ap-

propriate for estimating rater reliability using
intraclass correlation. In this case, of course, per-
fect reliability would require that the judges’ un-
transformed ratings be identical within each

target (within mean square = 0).

Variability ue to Judges

Shrout and Fleiss (1979) discuss whether the
effect due to judges may be ignored in the relia-

bility index. In their analysis, the treatment of

judge variability is based on statistical assump-
tions : If judges are a fixed factor (their Case 3),
then ICR(3,1) is the appropriate index and the ef-
fect of judges is ignored. If judges are a random
factor, then ICR(2,I) is the appropriate index and
the effect of judges influences reliability.

The effect of judges is apparent from exami-
nation of the estimators (Equations 1 and 2). JMS

(mean square for judges) appears in the formula
for ICR(2,1), but not in the formula for ICR(3,1).
For ICR(3,1), however, it is only the main effect
of judges-an additive effect-that is not allowed
to influence reliability. A possible multiplicative

effect may influence the reliability index through
the judge x target interaction (EMS), which ap-
pears in the formulas for both estimators. One

example is dataset lb in Table 1, in which the rat-
ings differ by a constant and EMS = 0, so that

ICR(3,I) = + l. A main effect of judges is

present (ins > 0) and is an influence for Case
2, with m~t(2,1) _ .24. For dataset lc, for which
the ratings are proportional (indicating perfect
reliability for ratings made on a ratio scale), the
proportionality is captured by the interaction

(EMS > 0), and both estimators are less than 1.

Measurement-Theoretic Issues in Itelation to

Judge Variability

The main effect of judges could reflect either
empirically meaningful (additive) disagreement
or differences among judges due to the use of
different origins of the scale (empirically
meaningless disagreement). If ratings were made
on a ratio scale, however, origin differences

among judges would not be admissible, and the
use of ICR(3,I) on the (untransformed) ratings
would erroneously ignore the effect of empirically
meaningful (additive) disagreement on reliabili-
ty. Conversely, if ratings were made on an inter-
val scale, origin differences would be admissible,
and the main (additive) effect of judges would
be correctly ignored in the reliability index using
Iclt(3,1). However, the multiplicative effect of

judges, as estimated by the judge x target inter-
action, may be due to admissible differences in
unit. Although ICR(3,I) can be used to adjust for
arbitrary zero points, its use with untransformed
interval scale ratings would treat unit differences
as empirically meaningful disagreement that

would erroneously influence (attenuate) the relia-

bility index.
Consider datasets lb and lc in Table 1. If the

judges made their ratings on a ratio scale, and
were free to select their own unit, for both

datasets there would be no basis for inferring (as
Bartko did) that dataset lc showed &dquo;multiplica-
tive bias,&dquo; because the proportionality of the rat-

ings could be accounted for by the use of dif-
ferent units by the two judges. The ratings of

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



9

dataset lb, though, showed a constant difference
in ratings for all targets that cannot be account-
ed for by the arbitrary unit of the ratio scale, and
thus could be interpreted as exhibiting &dquo;additive
bias,&dquo; although IC~t(3,1) _ + 1 for the untrans-
formed ratings.

If the Z transformation (inappropriate for as-
sumed ratio scale) were used to obtain an esti-
mate of ICR for set lb, an estimate of unity
would be obtained, regardless of which ICR for-
mula was used. This is because the additive

&dquo;bias&dquo; was implicitly treated as an admissible
transformation of the scale; therefore, the varia-

bility due to this source was removed and not al-
lowed to influence (attenuate) the reliability
estimate. If, on the other hand, the P transfor-
mation (Equation 6) were used, variability due
to the additive bias would be allowed to influence

reliability, and the estimates would be

ICR(2,1) = .78 and ICR(3,1) = .76.

If the ratings for dataset lb were made on an
interval scale, Bartko’s (1976) interpretation of
additive bias is not justifiable, because the con-
stant difference in ratings may be accounted for

by arbitrary zero points. In this case, the Z trans-
formation would correctly remove variability due
to the constant difference in ratings (an admissi-
ble transformation between judges for an inter-
val scale), and all ICR estimates would be unity
for the transformed ratings.

Finally, if the ratings for dataset lc were made
on an interval scale, Bartko’s (1976) interpreta-
tion of multiplicative bias is not justifiable, be-
cause the proportionality of the ratings (as in the
case of the ratio scale) may be accounted for by
admissible differences in unit. The Z transforma-

tion would correctly remove variability due to the

proportionality of the ratings, and all ICR esti-
mates based on Z would be unity. However, com-

puted on the untransformed ratings, ICR(3,1) =
.80, this result is attenuated because admissible
differences in unit were allowed to influence relia-

bility.
The treatment of judge variability is also relat-

ed to the question of whether ICR(2,I) and

ICR(3,l) are coefficients of relational agreement.

Three factors are at issue: (1) ICR(3,1) treats the

judge factor as a fixed factor and ignores varia-

bility due to judges; (2) ICR(2,I) treats the judge
factor as a random factor and allows variability
due to judges to influence reliability, so by vir-
tue of the statistical models, these two forms of
ICR treat the main effect of judges differently;
and (3) this differential treatment interacts with

meaningfulness issues and standardization, be-
cause the judge main effect confounds two pos-
sible sources of variability that are not always
separable-meaningful (additive) disagreement
and meaningless origin differences among judges.
These considerations result in the following con-
clusions :

1. For both ratio and interval scales, ICR(3,I) is
not a coefficient of relational agreement. By
removing the main effect of judges (through
statistical assumptions), ICR(3,1) does not al-
low meaningful (additive) disagreement to in-
fluence the coefficient. Shrout and Fleiss

(1979) interpret ICR(3,1) as a measure of con-

sistency, although they do not consider issues
of meaningfulness.

2. ICR(2,I) is a coefficient of relational agree-
ment for ratio scales, because standardiza-
tion (using P) does not remove the main
effect of judges, which allows meaningful
(additive) disagreement to influence the

coefficient.

3. For interval scales, the Z transformation cor-

rectly removes variability due to origin differ-

ences, but also removes (if present)
meaningful additive disagreement, because
both are confounded in the main effect of

judges. If ICR(2,1) is to be interpreted as a
coefficient of relational agreement for inter-

val scales, it is necessary to separate these two
sources of disagreement. This may be done

by using interval scale Case Il (both assign-
ments made by the experimenter), or 13 (ori-
gin only fixed by the experimenter). In both

cases, the main effect of judges will be al-
lowed to influence the coefficient, and the
resultant variability of judges will be due
only to additive disagreement (because the
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same origin is used by all judges). Thus
ICR(2,1) is a coefficient of relational agree-
ment for Cases Il and 13.

With respect to the choice between ICR(2,1)
and ICR(3,1) as an index of reliability, Bartko

(1976) preferred to limit the meaning of rater
reliability to &dquo;agreement,&dquo; but Algina (1978) ob-

jected to this limitation, pointing out that gener-
alizability theory (Cronbach et al., 1972) includes
the case of fixed raters. Shrout and Fleiss (1979,
Decision 2, pp. 424-425) discussed issues relat-

ing to a choice between these two indices, and

gave examples of reliability studies in response
to Bartko (1976) for which ICR(3,I) would be the

appropriate index. Typically, ICR(3,1) results in

higher values than ICR(2,1), because ICR(3,I) ig-
nores meaningful additive disagreement among
judges. For example, ICR(2,1) = .29 and ICR

(3,1) = .71 for data from Shrout and Fleiss

(1979, Table 4, p. 424), indicating substantial
meaningful disagreement among judges that is

being ignored through the use of ICR(3,1). It

should be noted that Algina, Bartko, and Shrout
and Fleiss do not discuss &dquo;agreement&dquo; explicit-
ly in terms of meaningfulness concepts, but the
coefficient of relational agreement may be viewed

as one formalization of &dquo;rater reliability as agree-
ment&dquo; in the context of meaningfulness theory.

Reliability of Magnitude Estimates

To demonstrate the effect on reliability of ig-
noring arbitrary scale factors, the standardization

procedure was used to estimate the reliability in-
dex for psychophysical data from Fagot and

Pokorny (1989). Twelve raters made magnitude
estimations of loudness and heaviness for nine

log-spaced stimuli. No standard was provided by
the experimenter, which allowed raters to select
their own units on the assumed ratio scale. The

raters made five estimates of each stimulus, but

only the last response was used in the reliability
study.

The basic data consisted of a 12 x 9 [judge
(rater) x target (physical stimulus)] matrix of

ratings. Because judges were allowed to select
their own unit on an underlying ratio scale, the

P transformation (Equation 6) was applied to the
ratings.

Table 6 shows the reliability estimates for loud-
ness and heaviness, for ratings (R) and trans-
formed ratings (P) for each of the ICR

estimators. The reliability indices are very low for
the ratings (.20 and .33 for loudness, .06 and .14
for heaviness), but the estimates (ranging from
.85 to .89) show impressive elevation when ad-

justment was made for the arbitrary unit, with
no practical difference between ICR(2,1) and

ICR(3,1). This example illustrates the very power-
ful influence of empirically meaningless disagree-
ment on the reliability index.

Table 6

Reliability Estimates for Magnitude
Estimates of Loudness and Heaviness

(R = Ratings; P = Transformed Ratings,
Adjusted for Arbitrary Unit)

Directions for Future Research

One goal of future research, suggested by the
fact that ~c~(3,1) is not a coefficient of relational

agreement, could be to develop models for which

meaningfulness criteria and the goals of the relia-

bility study are compatible. This would certain-

ly include research on meaningfulness, because
there are other possible definitions of meaning-
ful relations (see Narens, 1985, chap. 2.14; Stine,
1989a, 1989b), leading to possibly different defi-
nitions of relational agreement. An analysis of
the mutual implications of meaningfulness criter-
ia and generalizability theory (Brennan, 1983)
would also be of interest.

Another useful direction for future research

is the development of indices other than ICR for

assessing reliability for multiple judges. As previ-
ously mentioned, Stine (1989b) developed proce-
dures for assessing interobserver relational

agreement for two judges for various metric
scales, based on a family of association coeffi-
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cients developed by Zegers and ten Berge (1985).
One possibility is the generalization of these
results to the case of multiple judges as an alter-
native to the ICR.
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