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Various reanalyses have been utilized in numerous climate related researches around the globe, however,
there exists considerable biasedness in these products, especially in precipitation and temperature data.
The ability of these reanalysis products to simulate the precipitation and temperature patterns is observed
to be satisfactory at global scale, while it differs significantly at regional scale, especially over regions of
high spatio-temporal heterogeneity such as India. Therefore, it is essential to evaluate the applicability
and robustness of reanalyses in climate related research. The annual and seasonal variability in spatio-
temporal patterns and trends of precipitation and temperature data, with respect to the IMD gridded
data over 34 yrs, are evaluated for six global reanalyses namely, NCEP/NCAR Reanalysis (NCEP R1),
NCEP-DOE AMIP-2 Reanalysis (NCEP R2), Climate Forecast System Reanalysis (CFSR), ECMWF
Interim Reanalysis (ERA-Interim), Modern Era Retrospective Analysis for Research and Application
Land only model (MERRA-Land) and JMA 55-year Reanalysis (JRA-55). The ability of the reanalyses
was tested based on several factors such as statistical and categorical indices, spells and trends, for
annual and seasonal daily values. Several regional and seasonal differences were observed, particularly
over high rainfall regions such as Western Ghats and northeastern India. MERRA-Land is found to
give the best results for precipitation over India, which is attributed to the updated forcing data using
gauge-based precipitation observations. Similarly, ERA-Interim and JRA-55 exhibit better performance
for temperature than other datasets. All reanalyses failed to correctly reproduce the trends in IMD
data, for both precipitation and temperature. These observations will provide a better perception on the
reliability and applicability of reanalyses for climate and hydrological studies over India.
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1. Introduction

Globally reanalysis datasets have been extensively
used in research and other practical applications,
primarily as a reliable substitute to the observed

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.
ias.ac.in/Journals/Journal of Earth System Science).

climatic datasets. Reanalysis products provide
homogeneous, consistent and reliable long term
data for various atmospheric variables. Some of
the most frequently used global reanalyses are
the datasets released by National Centers for
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Environmental Prediction (NCEP), European
Centre for Medium Weather Forecasts (ECMWF),
National Aeronautics and Space Administration
(NASA) and Japan Meteorological Agency (JMA).
Each dataset uses different observed data, data
assimilation method, modelling techniques, and
spatio-temporal resolution, which cause the
performance of these products to be widely varying
from region to region. Hence, the performance
of different reanalyses in replicating the observed
climate data at various regions is of utmost
interest.

Several attempts have been made by researchers
around the world to find out the most suitable
reanalysis data product for a particular region or
climate type by comparing it with the observed
data. Inter-comparison of first generation reanaly-
ses with the observed rain gauge and climate data
as well as satellite derived datasets have been car-
ried out by many researchers, at global and regional
scales, in order to assess the reliability of two major
hydrologic variables, i.e., precipitation and temper-
ature datasets (Santer et al. 2004; Bosilovich et al.
2008; Lorenz and Kunstmann 2012; Vose et al.
2012; Manzanas et al. 2014; Blacutt et al. 2015),
highlighting the differences in the performance of
the reanalyses for different regions and climate
zones. Later, second generation reanalysis models
such as National Centre for Environmental Predic-
tion Reanalysis-2 (NCEP R2), European Centre
for Medium range Weather Forecast (ECMWF)
40-yr Reanalysis (ERA-40), Japan Meteorologi-
cal Agency (JMA) 25-yr Reanalysis (JRA-25),
ECMWF Interim Reanalysis (ERA-Interim) and
Modern Era Retrospective Analysis for Research
and Application (MERRA) were introduced and
used in numerous studies (Hodges et al. 2011; Lin
et al. 2014; Outten et al. 2013; Chen et al. 2014;
Kang and Ahn 2015). ERA-Interim and MERRA
were able to represent the inter-annual variabil-
ity and climatology of global monsoon precipita-
tion reasonably (Lin et al. 2014), which can be
attributed to the higher resolution of these datasets
as compared to the others. The reanalyses such
as Climate Forecast System Reanalysis (CFSR),
MERRA, ERA-Interim and JRA-25 datasets were
able to perform better in the northern hemi-
sphere, whereas in the southern hemisphere, only
the performances of ERA-Interim and CFSR were
comparable in analyzing the extratropical syn-
optic scale cyclones (Hodges et al. 2011). ERA-
Interim and NCEP reanalysis datasets were found
to be in good agreement with the CMIP-5 model,

results in terms of temperature trends and cooling
pattern over the mid-latitude region (Outten et al.
2013). ERA-Interim and MERRA are reported to
be closely replicating the precipitation and tem-
perature dynamics over the Continental United
States (Dhanya and Villarini 2017). The diur-
nal cycle over East Asia has been analyzed by
Chen et al. (2014) using four reanalysis datasets,
namely JRA-55, ERA-Interim, CFSR and MERRA
and found that the interannual variation in the
diurnal cycle was captured consistently by all
reanalysis products over East Asia, of which JRA-
55 was able to provide good representation of
the rainfall over Tibetan plateau and could capture
the shift of the diurnal phase from the lowlands to
the east. While analyzing the global energy and
water balance using JRA-55, ERA-Interim,
MERRA and CFSR, it was observed that all
reanalyses exhibited energy imbalance at the sur-
face and the top of atmosphere, which may be
attributed to improper estimation of the incoming
and outgoing heat fluxes (Kang and Ahn 2015). In
addition to that, JRA-55 was found to be overes-
timating precipitation in the inter-tropical conver-
gence zone and temperature in the south pacific
convergence zone, compared to other datasets.

Reanalyses have been used by many studies
to highlight specific climatological variations over
Indian subcontinent (Misra et al. 2012; Kar and
Rana 2014). The reanalysis datasets CFSR, ERA-
Interim and MERRA exhibited discrepancies in
bias, trend and spatio-temporal variability in mon-
soon season and were not able to perform con-
sistently for both monsoon season temperature
as well as precipitation (Shah and Mishra 2014),
while reproducing retrospective monsoon season
droughts during the period 1980–2005. The sea-
sonal variability in precipitation over Indian sub-
continent was examined by Rana et al. (2015) using
precipitation data from seven datasets including
gridded observational data, satellite-derived data
and reanalysis products, and noticed that CFSR
and ERA-Interim overestimated the monsoon sea-
son precipitation variability over eastern India
as compared to IMD data. While comparing the
IMD gridded dataset with the various reanaly-
sis products (CFSR, ERA-Interim, MERRA and
JRA-25) and observational datasets (GPCP and
APHRODITE), it was highlighted that among
the reanalysis products, JRA-25 heavily underes-
timated rainfall during the pre-monsoon season,
while ERA-Interim performed better than other
reanalyses (Kishore et al. 2016).
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The literature review clearly shows that existing
studies have evaluated the performance of reanal-
yses products mostly in the context of monsoon
precipitation, but not with regards to tempera-
ture. Moreover, the performance of some of the new
reanalysis products such as ‘JRA-55’ (Ebita et al.
2011), a 55-yr reanalysis by JMA, and MERRA-
Land (Reichle et al. 2011), a revised version of
the MERRA system’s land component, have never
been evaluated over the Indian subcontinent. This
study attempts to fill these gaps by conducting
a comprehensive evaluation of the capability of
the latest reanalysis products to capture the mean
and spatio-temporal variability of precipitation
and temperature observations from India Meteo-
rological Department (IMD). Apart from assess-
ing reliability of reanalyses products, this study
may also help in enhancing our understanding of
climate and its variability over India.

2. Data and methods

2.1 Data

2.1.1 IMD

The gridded precipitation and temperature
datasets from IMD are used as the reference
datasets. These gridded datasets are prepared from
station data using a modified version of the angular
distance weighing algorithm (Shepard 1968). The
gridded daily precipitation data is available at a
resolution of 0.25◦

× 0.25◦ covering India from 66◦

to 100◦E and 6◦ to 39◦N, for a period of 113 yr
from 1901 to 2013 (Pai et al. 2014). This dataset
accurately captures the orographic influence of pre-
cipitation and demarcate the heavy and low rainfall
regions. The IMD gridded daily mean tempera-
ture data is available at 1◦

× 1◦ resolution for a
period of 63 yr from 1951 to 2013 (Srivastava et al.
2009). This dataset is extensively used for analysis
of extremes (e.g., Dash and Kjellstrom 2011; Desh-
pande et al. 2016; Vinnarasi and Dhanya 2016).

2.1.2 NCEP R1 and R2

NCEP, in collaboration with National Centre for
Atmospheric Research (NCAR) released the first
reanalysis product NCEP-NCAR reanalysis 1 (R1)
(Kalnay et al. 1996), using Climate Data Assim-
ilation System (CDAS) with a frozen forecast/
analysis model. The data is available from 1948
onwards at a spatial resolution of 2.5◦ with 28

vertical levels at 6-hourly time step. Later, NCEP
developed the NCEP reanalysis 2 (R2) (Kana-
mitsu et al. 2002), in collaboration with the
United States Department of Energy (US-DOE),
which rectified the known errors in the earlier
reanalysis by incorporating updated forecast model
and data assimilation model. NCEP R2 provides
global data at similar spatial resolution and time
period as the earlier NCEP R1 dataset. The
NCEP reanalysis datasets can be downloaded
from Earth System Research Laboratory (ESRL)
of National Oceanic and Atmospheric Adminis-
tration (NOAA) (https://www.esrl.noaa.gov/psd/
data/gridded/data.ncep.reanalysis.html).

2.1.3 CFSR

The third generation product called Climate
Forecast System Reanalysis (CFSR) was released
by NCEP, which incorporated major advances
such as higher resolution of T382 (∼38 km) with
64 vertical levels reaching up to 0.26 hPa from
surface. CFSR utilizes NCEP coupled forecast sys-
tem model, consisting of a spectral atmospheric
model and a modular ocean model and uses three
dimensional variational (3D-VAR) data assimila-
tion, based on the grid-point statistical interpola-
tion (GSI) scheme (Saha et al. 2010). CFSR data
is available at 6-hourly time step from 1979 to 2010
and CFSv2, an extension of CFSR data is available
from 2011 onwards from NCAR’s Research Data
Archive (https://rda.ucar.edu).

2.1.4 ERA-Interim

ERA-Interim is the latest reanalysis from ECMWF,
which replaced its older version, ERA-40 (Uppala
et al. 2005) and incorporates four dimensional
variational (4-D VAR) data assimilation, varia-
tional bias correction for satellite radiances and
other enhancements in data handling. The hori-
zontal resolution of ERA-Interim is T255 (∼80 km)
with 60 vertical hybrid levels reaching to 0.1 hPa
from surface. ERA-Interim data is available at 6-
hourly time step from 1979 to present (Dee et al.
2011) at the ECMWF portal (http://apps.ecmwf.
int/datasets/data/interim-full-daily).

2.1.5 MERRA-Land

The MERRA reanalysis data (Rienecker et al.
2011) from NASA uses 3D-VAR data assimilation
system. MERRA-Land, however, is a land-surface
only dataset, which is produced by improving

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
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the land component of the MERRA system.
Further details regarding the improvements made
in MERRA-Land can be found in Reichle et al.
(2011). MERRA-Land, having a resolution of 0.5◦

latitude by 0.67◦ longitude with 72 vertical lev-
els reaching 0.01 hPa from surface, is available at
hourly time step since 1980 from NASA’s Goddard
Earth Sciences Data and Information Services Cen-
ter (GES DISC) (https://disc.sci.gsfc.nasa.gov/
mdisc).

2.1.6 JRA-55

JRA-55 is the second reanalysis product from JMA
employing 4D-VAR data assimilation method and
variation bias correction for satellite data, and is
an improved version of Japanese 25 yr reanalysis
(JRA-25) (Onogi 2007). The global horizontal res-
olution of JRA-55 is reduced Gaussian TL319
(∼55 km) with 60 horizontal levels up to 0.1 hPa,
and is available at 6-hourly timestep for a period
of 55 yr starting from 1958 (Ebita et al. 2011) from
NCAR’s Research Data Archive (https://rda.ucar.
edu/datasets/ds628.0).

Considering the period of availability of all
datasets, the analysis period is selected as 1980–
2013, and the extent is from 5◦ to 38◦N latitudes
and 60◦ to 100◦E longitudes. The variables chosen
for comparison are daily precipitation and temper-
ature at 2 m height above ground surface. All the
precipitation and temperature datasets are con-
verted from sub-daily to daily time scales (mm/day
and ◦C units respectively for daily precipitation
and temperature). Reanalyses provide temperature
data at four times a day, corresponding to 0000,
0600, 1200 and 1800 UTC. The daily mean tem-
perature was calculated by averaging the values of
temperature at these four times for each day. The
salient features of the reanalyses used in this study
are shown in table 1.

2.2 Processing of the datasets

Since the datasets have different spatial
resolutions, a common grid of 0.5◦

× 0.5◦ is chosen
in order to facilitate the comparison of precipita-
tion, and the reanalyses are re-gridded to 0.5◦

×0.5◦

resolution. Likewise, for comparison of tempera-
ture data, the reanalyses are re-gridded to 1◦

× 1◦.
The data is further divided into three seasons,
i.e., pre-monsoon [February–May (FMAM)], mon-
soon [June–September (JJAS)] and post-monsoon T
a
b
le

1
.

M
a
in

ch
a
ra

ct
er

is
ti
cs

o
f
d
a
ta

se
ts

u
se

d
in

th
is

st
u
d
y.

C
F
S
R

a
n
d

D
a
ta

se
t

IM
D

C
F
S
v
2

M
E

R
R

A
-L

a
n
d

E
R

A
-I

n
te

ri
m

J
R

A
-5

5
R

1
R

2

S
p
a
ti

a
l
re

so
lu

ti
o
n

0
.2

5
◦

×
0
.2

5
◦

fo
r

p
re

ci
p
it

a
ti

o
n

a
n
d

1
◦

×
1

◦

fo
r

te
m

p
er

a
tu

re

0
.5

◦

×
0
.5

◦

0
.5

◦

×
0
.6

7
◦

1
◦

×
1

◦

0
.5

6
2
5

◦

×
0
.5

6
2
5

◦

2
.5

◦

×
2
.5

◦

2
.5

◦

×
2
.5

◦

T
em

p
o
ra

l
re

so
lu

ti
o
n

D
a
il
y

S
u
b
-d

a
il
y

P
re

ci
p
it

a
ti

o
n

u
n
it

s
m

m
/
d
ay

k
g
/
m

2
k
g
/
m

2
/
s

k
g
/
m

2
m

m
/
d
ay

k
g
/
m

2
/
s

k
g
/
m

2
/
s

T
em

p
er

a
tu

re
u
n
it

s
◦

C
K

el
v
in

O
rg

a
n
iz

a
ti

o
n

IM
D

N
C

E
P

N
A

S
A

E
C

M
W

F
J
M

A
N

C
E

P
N

C
E

P

https://disc.sci.gsfc.nasa.gov/mdisc
https://disc.sci.gsfc.nasa.gov/mdisc
https://rda.ucar.edu/datasets/ds628.0
https://rda.ucar.edu/datasets/ds628.0


J. Earth Syst. Sci. (2018) 127:115 Page 5 of 21 115

Table 2. A 2 × 2 contingency table for precipitation threshold of P mm.

Reference dataset (IMD)

Event detected (yes) Event not detected (no)

IMD>P IMD≤P

Reanalysis dataset (Rana) Event detected (yes) Hits (H) False alarms (F )

Rana > P

Event not detected (no) Miss (M) Correct rejections (T )

Rana ≤ P

[October–January (ONDJ)], considering the fact
that most of the large scale annual variations
of precipitation and temperature can be covered
under these seasonal designations. Only land points
are considered for all the datasets.

2.3 Evaluation techniques and indices

Several statistical indices are used to analyze the
reanalysis products with respect to the reference
of the IMD data. The bias (reanalysis data-IMD
data) and inter-annual variability in precipitation
and temperature are estimated for all products for
all seasons. The seasonal analysis for precipitation
(temperature) is carried out by calculating the fre-
quency of wet (warm) and dry (cool) days and
spells for all three seasons. In this study, the days
receiving rainfall greater than 2.5 mm/day are con-
sidered as wet days, whereas those receiving lower
than 2.5 mm/day are considered as dry days. Wet
spells are defined as the continuous period of wet
days immediately followed by a dry day. Similarly,
dry spells are defined as the continuous period of
dry days immediately followed by a wet day. In this
study, we have used a threshold of 2.5 mm/day (Pai
and Rajeevan 2007; Dash et al. 2009) for defining
wet day, i.e., day receiving more than 2.5 mm/day
are considered a wet day and a spell length of min-
imum 3 days (maximum spell length may vary for
grids) is considered (Rajeevan et al. 2010; Sushama
et al. 2014; Vinnarasi and Dhanya 2016; Chaud-
hary et al. 2017). A threshold of 2.5 mm/day is
used by most studies considering that rainfall less
than 1 mm/day only contributes to evaporation
(Epifani et al. 2004; Tilya and Mhita 2007). Addi-
tionally, IMD defined rainfall less than 2.5 mm/day
as very little rainfall (Vinnarasi and Dhanya 2016).
Similar approach is followed for temperature anal-
ysis, where reanalyses are assessed on the basis
of an index termed ‘warm days’. In this study,
warm days are defined as the days having mean

temperature above the climatological mean
temperature for the corresponding grid. It is to
be noted that the threshold of warm day will vary
spatio-temporally over India. Different regions will
have different thresholds, which will moreover vary
in seasons as well. Warm spells are continuous
period of warm days, followed by a cool day. The
minimum length of warm spell is considered as
1 day.

The existence of any monotonic increasing or
decreasing trend is checked, using non-parametric
Mann–Kendall test at 10, 5 and 1% significance
levels. Moreover, a non-parametric moving block
bootstrap resampling technique is used in this
study. Along with these indices, a 2×2 contingency
table (shown in table 2) is prepared for all reanal-
yses, with IMD as the observation data. Three
categorical indices, viz., False Alarm Ratio (FAR),
Probability of Detection (POD) and Critical Suc-
cess Index (CSI) based on the contingency table are
calculated for the frequency of wet and dry days for
precipitation datasets and for warm and cold days
for the temperature datasets. Table 3 shows the for-
mulae, range and significance of these categorical
indices. POD signifies the fraction of observations
correctly detected by the model. POD value of 1 (0)
represents that all (none) observed events were cor-
rectly simulated by the model. On the other hand,
FAR represents the fraction of events simulated by
the models, but did not occur in the field. The ideal
value for FAR is 0, which signifies that none of the
observed events were incorrectly simulated by the
reanalyses. CSI combines the features of both FAR
and POD and corresponds to the overall skill of
simulation with respect to the observations. CSI
ranges from 0 to 1, where 0 signifies no skill and
1 represents perfect skill. Further details about the
contingency table and various categorical indices
can be found in Wilks (2011). The ability of various
reanalyses in reproducing the magnitude of rain-
fall and temperature and their pattern over India
is hence evaluated.
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Table 3. Definition of various categorical skill indices.

Score Formula Range Ideal value Significance

Probability of detection (POD) H

H+M
01 1 Fractions of observed events in IMD that

were accurately detected by Rana

False alarm ratio (FAR) F

H+F
01 0 Fractions of detected events in Rana for

which observed event did not occur in IMD

Critical success ratio (CSI) H

H+M+F
0 1 1 Fractions of observed and/or detected

events that were correctly predicted, when

correct rejections have not been considered

Figure 1. Climatological annual cycle and spatial distribution of mean annual precipitation (mm/day) of IMD gridded data
from 1980 to 2013; mean precipitation difference of various datasets with respect to IMD gridded dataset are also shown. It
is observed that MERRA-Land is able to match the mean annual precipitation over most of India.

3. Results and discussion

3.1 Analysis of precipitation characteristics

3.1.1 Characteristics of annual precipitation

The spatial distribution of the mean annual
precipitation in IMD dataset and the precipita-
tion bias in the reanalyses are shown in figure 1.
The highest mean precipitation is observed over
the Western Ghats and the northeastern regions
(8–15 mm/day), whereas the average precipitation

over rest of India is less than 6 mm/day.
Significant regional discrepancies can be observed
in the reanalyses, especially over regions receiv-
ing high rainfall such as the Western Ghats and
northeast, which are known to experience intense
convection as well as orographic lifting (Pattanaik
and Rajeevan 2010). NCEP R1, R2 and CFSR
overestimate the precipitation over the southern
parts of India, whereas ERA-Interim overestimates
the precipitation over the foothills of Himalayas
and northeast, while it underestimates over western
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India. JRA-55 tends to overestimate precipitation
over the northern India, which may be due to
spin-down problem in the JRA-55 reanalysis sys-
tem, leading to excessive rainfall after the start
of forecasts (Kobayashi et al. 2015). However,
MERRA-Land exhibits similar rainfall distribu-
tion in comparison with IMD throughout India,
with the exception of Western Ghats, northern-
most and northeastern India, where it tends to
underestimate, which can be attributed to the
correction of data using coarse resolution GPCP
precipitation (Reichle et al. 2011). Underestima-
tion of precipitation in regions receiving high
rainfall may be observed in MERRA-Land, which
may be due to the difference between the GPCP
and IMD precipitation values (Shah and Mishra
2014). The climatological annual cycle for IMD
data and other reanalyses are also shown in fig-
ure 1. NCEP R1 and R2 overestimate precipitation
substantially throughout the year, especially dur-
ing monsoon. CFSR and JRA-55 also seems to
overestimate precipitation; however, their peaks
lie in range with that of IMD. ERA-Interim,
on the other hand, underestimates precipitation
during monsoon and overestimates it during the
other seasons. It is noted that the onset of mon-
soon in IMD dataset matches only with MERRA-
Land, with close match at other periods. However,
the peak monsoon rainfall is underestimated by

MERRA-Land. The climatological annual cycle
reveals the disparity between the observed IMD
data and reanalyses at distinct seasons. Hence,
for further analyses, the dataset is further sub-
divided into pre-monsoon, monsoon and post-
monsoon, as mentioned in section 2.3, to get a
clear picture of the distribution of precipitation in
different seasons.

3.1.2 Daily precipitation analysis: Statistical
indices

The statistical relation between IMD dataset and
other reanalyses has been analyzed using density
scatter plots as shown in figure 2. The correspond-
ing linear equation, correlation coefficient and root
mean square error is also shown along with the
scatter plot. All reanalyses show high spread and
RMSE values, with the highest value observed
in NCEP R2 dataset, while the lowest in ERA-
Interim.

3.1.3 Daily precipitation analysis: Categorical
indices

The precipitation characteristics of the IMD
dataset and the reanalyses are further assessed
using categorical indices, namely FAR, POD and
CSI. These indices are computed for the occurrence

Figure 2. Density scatter plots of daily precipitation values between IMD and other reanalysis products for the period
1980–2013. The black dashed line is the 1:1 reference line and solid line is the best fit line between IMD and reanalysis data.
The number of counts in the colour bar is denoted per 5 mm bin.
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of dry and wet days, and spatial plots for the same
are shown in figure 3. In case of dry days, almost all
grids show low FAR, while POD and CSI decreases
from west to east. All reanalyses show low perfor-
mance over the northeastern regions. JRA-55 and
NCEP datasets exhibit lower POD and CSI over
most of India, while MERRA-Land shows better
values than all other reanalyses. In case of wet days,
most of the grids show low FAR and high POD and
CSI, except for northernmost regions. The cate-
gorical indices are computed for all the datasets
with varying threshold values (0.1–100 mm/day)
for wet days (not shown here). The value of FAR
increases, while POD decreases consistently with
increasing threshold values, suggesting that the
ability of the reanalyses in detecting wet days
decreases as threshold increases. CFSR shows high-
est POD, while NCEP R1 shows the highest FAR
for wet days among the reanalyses. (Refer sup-
plementary figure S17 for variation of FAR and
POD in wet days with increasing thresholds for all
reanalyses.)

3.1.4 Seasonal characteristics

The statistical relation between the reanalyses and
observed daily precipitation for various seasons in
terms of root mean square error, correlation coeffi-
cient and standard deviation is summarized using
Taylor diagram (Taylor 2001), as shown in fig-
ure 4. The diagram indicates that the reanalyses
reproduce the spatial rainfall patterns in reference
dataset with a correlation of greater than 0.8, 0.6
and 0.8 in case of FMAM, JJAS and ONDJ sea-
sons, respectively. For all seasons, MERRA-Land

correlates well with IMD precipitation data as
compared to other reanalyses. First generation
datasets like NCEP R1 and R2 exhibit least corre-
lation with the reference data, which may be due
to the data assimilation system used in R1 and R2
(Saha et al. 2010).

Spell analysis. The central Indian regions remain
comparatively dry during FMAM and ONDJ, with
mild rainfall received by the north and northeast
regions. During JJAS, India receives majority of
its rainfall as a result of the incoming southwest
monsoon winds. Heavy rainfall is experienced in
the Western Ghats and northeast India, which
can be attributed to the location and topogra-
phy. The seasonal variation in the frequency of
wet and dry days and spell are shown in fig-
ure 5, in the form of boxplots. The IMD data
shows that the frequency of wet days is high-
est in the northeast during FMAM and JJAS.
However, during ONDJ, south India experiences
highest number of wet days. All reanalyses mostly
overestimate the frequency of wet days, especially
during monsoon. NCEP R1 and R2 heavily over-
estimate the number of wet days, while CFSR,
ERA-Interim and JRA-55 overestimate over entire
eastern half of India. MERRA-Land shows better
results than other reanalyses, but still overesti-
mates wet days over large patches. (See supple-
mentary figures S1, S3, S5 and S7 for spatial plots
of frequency of wet/dry days and spells for all
reanalyses).

All reanalysis data products satisfactorily
reproduce the major features of precipitation
distribution for the pre-monsoon (FMAM) and

Figure 4. Taylor plot of the seasonal precipitation.
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post-monsoon (ONDJ) seasons over India.
However, significant regional discrepancies can be
observed in all reanalysis products, especially along
high rainfall regions such as foothills of Himalayas,
northeastern India and the Western Ghats.
MERRA-Land is found to be roughly in agreement
with IMD data. The variation in precipitation in
the monsoon (JJAS) season has not been captured
properly by any of the reanalyses. ERA-Interim
overestimates the monsoon rainfall in the West-
ern Ghats and the eastern half of the country.

Bosilovich et al. (2008) associated the wet bias to
the overestimation of moisture content and pre-
cipitable water in the ERA-Interim observation
system.

The frequency of wet spells over India shows
similar pattern as the wet days, with most of
central India experiencing more wet spells dur-
ing JJAS. All reanalyses mostly underestimate
the frequency of wet spells over India, especially
in the central and eastern coastal regions dur-
ing monsoon. NCEP datasets, in particular, highly

Figure 6. Seasonal trends in the frequency of (A) wet days, (B) wet spell, (C) dry days and (D) dry spell for all
reanalyses.
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underestimate wet spells during monsoon, followed
by ERA-Interim and JRA-55, while MERRA-Land
overestimates frequency of wet spell over entire
southern peninsula and underestimate over por-
tions of eastern India. During FMAM, the reanaly-
ses mostly overestimate the frequency of wet spells,
while NCEP R1 and CFSR underestimate over
most of the regions.
Trend analysis. The non-parametric Mann–
Kendall test was used to find the trend in the fre-
quency of wet days and spells in the IMD data

and reanalyses from 1980–2013. During FMAM, a
positive (negative) trend in the frequency of wet
days and spells is observed in the southern (north-
ern) region, while over 70% of India showed no
trend in IMD data. During JJAS, a positive trend
in the frequency of wet days (wet spells) is observed
over 14% (25%) of the grids, while a negative trend
was observed over 10% (1%) of the grids. However,
both wet days and spells are found to follow a
negative trend in ONDJ, over the central part
of India. Figure 6 shows the seasonal trend in

Figure 7. Spatial distribution of long term mean annual temperature (◦C) of IMD gridded data from 1980 to 2013; long
term mean temperature difference of various datasets with respect to IMD gridded dataset are also shown. Figures show that
ERA-Interim and JRA-55 seem to provide better results than CFSR and MERRA for long term mean annual temperature.
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the frequency of wet and dry days and spells in
the reanalyses in the form of bar charts. None of
the reanalyses were able to correctly match the
trend pattern of wet days and spell. Especially,
JRA-55 dataset completely failed to replicate the
trend in precipitation patterns. During FMAM,
all reanalyses show a positive trend in frequency
of wet spells over southern peninsula, CFSR and
JRA-55 showed a negative trend (see supplemen-
tary figures S2, S4, S6 and S8 for spatial plots
of trend in wet and dry days and spell for all
reanalyses). The inability of the reanalysis prod-
ucts in representing trends could be due to the
change in observation systems, introduced dur-
ing the advancements in satellite technology. For
instance, the introduction of advanced microwave
sounding unit A (AMSU-A) in 1998, may be the
reason for spurious trend in MERRA (Robertson
et al. 2011). However, the performance of MERRA-
Land in reproducing the general characteristics of
precipitation over India have been found to be
better than other reanalyses in this study. This
is possibly because of the usage of gauge based
GPCP v2.1 pentad timescale precipitation data to
correct the original MERRA precipitation forcing
in the MERRA-Land-only component. Significant
changes were also introduced in the catchment
model parameters in the MERRA-Land model,

thereby eliminating the previously known
deficiencies in MERRA reanalysis (Reichle 2011).

3.2 Analysis of temperature characteristics

3.2.1 Mean annual temperature

The spatial distribution of the mean annual
temperature over India for IMD data and reanaly-
ses is shown in figure 7. Highest mean temperature
is observed over the southern coast and north-
western arid region, while lowest mean tempera-
ture occurs over northernmost India. All products
exhibit a similar pattern of temperature distribu-
tion over India. In general, all reanalyses under-
estimate the temperature over the northeastern
and southern India, and overestimate over north-
western arid regions. NCEP R1 and R2 highly
underestimate the temperature over most of India.
While ERA-Interim and JRA-55 capture tempera-
ture variability over India to a greater extent, they
underestimate the temperature over the foothills of
Himalayas and overestimate over northwestern arid
regions. CFSR and MERRA-Land overestimate
temperature over northwestern India and
underestimate over the eastern half. Shah and
Mishra (2014) reported that most reanalyses
exhibit cold bias in the northwestern part of

Figure 8. Density scatter plots of daily temperature values between IMD and other reanalyses for the period 1980–2013.
The black dashed line is the 1:1 reference line and solid line is the best fit line between IMD and reanalysis data. The colour
bar shows counts per 0.5 mm bin.
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the country. They attributed it to the quality of
observational data used as well as to bias in
monsoonal precipitation. Coarser resolution of the
reanalyses may contribute to the spatial variabil-
ity in temperature bias (Soares et al. 2012). Since
temperature and precipitation are closely coupled
together during the monsoon season, the precipi-
tation bias in the reanalyses may cause bias in the
temperature (Shah and Mishra 2014). According to
Wang and Zeng (2013), another factor that signif-
icantly affects the temperature is the atmospheric
boundary layer turbulence and the land surface
scheme followed by the reanalyses. ERA-Interim
and JRA-55 match the temperature distribution
over most of India, and give better results than
other reanalyses.

3.2.2 Daily temperature analysis: Statistical
indices

The general agreement between IMD and reanal-
yses data can be visualized as density scatter plot
shown in figure 8. The linear equation, correlation
coefficient and root mean square error are also dis-
played along with the scatter plots. All reanalyses
show nearly similar spread and correlation. NCEP
R1, NCEP R2, CFSR, ERA-Interim, MERRA-
Land and JRA-55 exhibited RMSE values of 6.8,
6.6, 6.7, 5.9, 6.6 and 6.1◦C, respectively. Among the
datasets, ERA-Interim and JRA-55 show relatively
lower RMSE.

3.2.3 Daily temperature analysis: Categorical
indices

Further analysis for detection of warm and cool
days is carried out with the help of categorical
indices and the spatial plots for the same are shown
in figure 9. The POD (FAR) of frequency of warm
days is observed to be high (low) for all reanalyses
over entire India, except some portions of southern
peninsula. All reanalyses show similar values for
these indices, except MERRA-Land which shows
higher FAR values for warm days. This may be
attributed to the existing bias in MERRA tempera-
ture data, as seen in figure 7. The POD of frequency
of cool days is high over north India, but decreases
gradually towards central and south India, with
the lowest values over the Western Ghats. Reanal-
yses predict the frequency of warm days correctly,
but are inferior in predicting cool days, particu-
larly over regions of high precipitation. This can
be further verified by CSI values, where the CSI for
detection of cool days is lower over the peninsular
region and northeast and higher over north India.
The variation in categorical indices with increasing
threshold values from 15 to 50◦C is also observed
(not shown here, see supplementary figure S18).
The ability of the reanalysis products to correctly
simulate the temperature patterns decreases with
increasing temperature thresholds, as the values
of FAR (POD) keeps increasing (decreasing) with
increasing threshold values.

Figure 10. Taylor plot of the seasonal temperature.
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3.2.4 Seasonal analysis

The seasonal variation in temperature, in terms of
correlation, standard deviation and RMSE, is sum-
marized in Taylor diagram as shown in figure 10.
The performance of the reanalyses is consider-
ably better during FMAM and ONDJ, where the
correlation is above 0.95. Among reanalyses, ERA-
Interim and JRA-55 show good correlation with
IMD data throughout all seasons. The seasonal

performance of reanalyses is further tested on the
basis of factors such as number of warm and cool
days and spells.

Spell analysis. India experiences high
temperature during the summer season, which
occurs around March to May, followed by rela-
tively lower temperatures in monsoon. The central
and southern India receive the highest number
of warm days during FMAM, whereas the north-
eastern regions receive least number of warm days

Figure 12. Seasonal trend in the frequency of (A) warm days, (B) warm spells, (C) cool days and (D) cold spells for all
reanalyses.
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during this period, along with the Western Ghats
and the Himalayan regions. During ONDJ, most
of India receives less number of warm days with
the onset of winter (see the supplementary fig-
ures S9, S11, S13 and S15 for spatial plots of the
cool and warm days and spell over India). All
reanalyses underestimate the frequency of warm
days over foothills of Himalayas and northeastern
India throughout all seasons. However, reanalyses
overestimate warm days during all seasons over
the Western Ghats. NCEP datasets, CFSR and
MERRA-Land largely underestimate warm days
over India during ONDJ, while ERA-Interim and
JRA-55 exhibit closer match with IMD. Boxplots
showing the seasonal variation in the frequency
of warm and cool days and spells are shown
in figure 11. All reanalyses mostly underestimate
the frequency of warm days during FMAM and
JJAS, and overestimate during ONDJ, particularly
MERRA-Land. Similarly, all reanalyses underesti-
mate the frequency of warm and cold spells over
India for all seasons. India experiences higher num-
ber of warm spells during FMAM. The frequency of
warm spells is least during ONDJ, where only a few
warm spells are experienced over south India. All
reanalyses underestimate the frequency of warm
spells during FMAM and ONDJ, while overesti-
mating over Western Ghats. During monsoon, R1,
R2 and CFSR highly overestimate the warm spells
over central and northeastern India. MERRA-Land
overestimates over central India, while underesti-
mate over foothills of Himalayas. Overall, ERA-
Interim seems to be the best match, followed by
JRA-55. However, first generation NCEP datasets
appear to be the least matching. Similar results
were obtained for the frequency of cold spells
during the seasons.

Trend analysis. Seasonal variation in the trend
in frequency of warm and cool days and spells is
shown in figure 12. It is observed that all reanaly-
ses exhibit positive trend in the frequency of warm
days and negative trend in the frequency of cool
days. Mann–Kendall trend analysis revealed that
91% of the grids display a positive trend in the
frequency of warm days during FMAM (refer to
supplementary figure S14). However, during mon-
soon season, a positive trend is observed only over
parts of Gujarat and northeastern regions (14% of
the grids), while 80% of grids displayed no signif-
icant trend. Similarly, during ONDJ, about 86%
grids show no trend, while a negative trend is
observed over central India (12% of the grids) (see

supplementary figures S10, S12, S14 and S16 for
spatial distribution of trend for cool and warm days
and spells). Reanalyses could only partially be able
to capture the trend patterns shown in IMD data
during FMAM. For instance, the positive trend
in frequency of warm days is only observed over
northern half of India in the reanalyses. However,
the reanalyses failed to match the trend pattern
during JJAS and ONDJ. None of the products
managed to accurately match the trend pattern
during seasons. For warm spells, about 60% grids
showed no trend during FMAM, in the observed
data. However, 29% grids showed negative trend,
mostly over central India. Similarly, a negative
trend is observed during JJAS and ONDJ over
northeast India (19 and 12% grids, respectively),
while no significant trend was observed over most
of India. None of the reanalysis datasets is able to
match the trend pattern in warm spell frequency
during the seasons.

4. Conclusions

The objective of this study was to compare
different reanalyses over India in terms of their per-
formance in capturing the mean as well as spatio-
temporal variability in precipitation and temper-
ature over India. Six reanalyses: National Centre
for Environmental Prediction (NCEP) Reanaly-
sis 1, NCEP-DOE AMIP-2 reanalysis, Climate
Forecast System Reanalysis (CFSR), the Euro-
pean Centre for Medium-Range Weather Forecasts
(ECMWF), Interim reanalysis (ERA-Interim), the
Modern-Era Retrospective analysis for Research
and Applications Land model (MERRA-Land) and
the Japan Meteorological Agency (JMA) 55-yr
reanalysis (JRA-55) were used in this study with
regard to the seasonal (FMAM, JJAS and ONDJ)
precipitation and temperature variability over the
period of 34 yrs from 1980 to 2013. The perfor-
mances of these reanalyses were compared with the
India Meteorological Department (IMD) gridded
rainfall and temperature data over India. Several
statistical and categorical indices were used to
examine and establish the reliability of the reanal-
yses in reproducing precipitation and temperature
patterns over India. The major findings of this
study are summarized below:

(1) All the reanalyses performed reasonably well
in capturing the major characteristics of sea-
sonal precipitation and temperature variation.
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However, over geographically complex regions
having scarce data, significant regional and
seasonal differences exist between the reanal-
yses and the reference data.

(2) While, all reanalyses show good correlation
for precipitation and temperature during
monsoon season, overall assessment based on
the seasonal analysis of spells and trend over
India highlights the inefficiency of any par-
ticular reanalysis in satisfactorily capturing
both precipitation and temperature charac-
teristics over India. For example, MERRA-
Land showed better skill for precipitation
estimates than other reanalyses, but lacked si-
milar performance for temperature estimates.

(3) Seasonal analysis for precipitation variabil-
ity showed that all reanalyses overestimate
precipitation over most of India, especially
during JJAS. NCEP datasets, ERA-Interim
and JRA-55 overestimate precipitation, while
MERRA-Land gives better result, although
it underestimates precipitation over northern-
most and some regions of northeast India.
During FMAM and ONDJ, all reanalyses
overestimate precipitation, especially over
southern peninsular regions.

(4) Highest overestimation is seen in the
JRA-55 and NCEP datasets. The correlation
for precipitation during FMAM is found to
be around 0.8 for all datasets, whereas, it is
found to be around 0.93 for ONDJ. NCEP R1
and R2, being the earliest released datasets,
performed least among reanalyses.

(5) A significant amount of improvement over
R1 and R2 can be seen in CFSR, which
may be attributed to the advanced model
physics and data assimilation methods. How-
ever, the performance of CFSR over India is
still inferior.

(6) Large disparities in precipitation trend
patterns in IMD data and reanalyses were
highlighted in the Mann–Kendall analysis,
revealing the inability of the reanalyses in
capturing trend patterns.

(7) MERRA-Land is found to give best results for
precipitation for all seasons. This is possibly
due to correction of original MERRA pre-
cipitation forcing in the MERRA-Land-only
component using gauge based GPCP v2.1
pentad timescale precipitation data.

(8) In case of temperature variation, all datasets
seem to underestimate temperatures over the
foothills of Himalayas. Additionally, CFSR

and MERRA-Land seem to overestimate
(underestimate) the high (low) temperatures
over the northwestern (southeastern) regions
of India.

(9) Seasonal temperature variation shows
overestimation (underestimation) in the
FMAM (ONDJ) in all datasets especially over
the northwestern (southern) regions of India.

(10) ERA-Interim and JRA-55 manage to capture
the variation in temperature quite well over
most of India. Both ERA-Interim and JRA-
55 utilize 4D-VAR data assimilation scheme,
which is the most advanced method among
reanalyses.

(11) The overall seasonal correlation for tempera-
ture for all datasets is found to be quite high,
but based on all statistical indices, it can be
concluded that ERA-Interim and JRA-55 give
better results for temperature as compared to
NCEP datasets and MERRA-Land.

(12) None of the reanalyses were able to capture
the trend pattern in IMD for temperature.

Based on our study, MERRA-Land showed the best
results for precipitation, whereas ERA-Interim and
JRA-55 performed better in case of temperature
over India. The results of this study might be useful
to the researchers, who want to use these reanaly-
ses for spatio-temporal analysis and climate change
studies. While the results of this study highlight
the strengths as well as limitations of the reanaly-
sis products over India, further effort in developing
new innovative methodologies and in-depth anal-
ysis of the performance of reanalyses would be
required to better assess the robustness, accuracy
and applicability of these datasets.
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