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ABSTRACT: Corrosion of reinforcement is a major problem affecting a large number of reinforced concrete 
structures. At present, most reliability-based design studies of reinforced concrete structures do not consider the 
effects of corrosion. In this paper, we present a reliability-based approach to the design of reinforced concrete 
bridge girders that are under corrosion attack. Both reserve and residual reliability constraints are satisfied. The 
approach is based on the American Association of State Highway and Transportation Officials (AASHTO) 
standard specifications for highway bridges and on data of chloride corrosion of steel in concrete. First, the 
effects of corrosion on both moment and shear reliabilities are investigated. Second, a reliability-based design 
approach based on minimization of total material cost including corosion effects is proposed. This approach is 
demonstrated on several design examples. Finally, we suggest and illustrate a reliability-based design approach 
based on minimization of expected lifetime cost including corrosion effects and cost of failure consequences. 

INTRODUCTION 

Most of the design studies in reinforced concrete (RC) lit
erature assume that the durability of RC structures can be 
taken for granted. However, many RC structures are exposed 
during their lifetime to environmental stressors (e.g., corro
sion, expansive aggregate reactions) which attack the concrete 
and/or steel reinforcement (Kilareski 1980; Cady and Weyers 
1994; West and Hime 1985; Takewaka and Matsumoto 1988; 
Mori and Ellingwood 1994a; Lin 1995; Thoft-Christensen 
1995). A typical example is the nation's inventory of RC 
bridges. In recent years, significant distress and deterioration 
have been observed in many of these structures. Most of this 
is the result of reinforcing-steel corrosion due to chloride ion 
contamination of the concrete (Hyman and Hughes 1983). De
icing salt is a major source of chloride ions. In some instances, 
the degree of deterioration exceeds that predicted. Clearly, de
sign should not focus solely on the reliability of the intact 
(undamaged) structure, but must also take into account the 
environmental stressors that reduce the integrity of RC struc
tures. 

In this paper, a design approach based on the early work of 
Frangopol and Hendawi (1994) and Lin and Frangopol (1996) 
is developed, in which a direct satisfaction of both reserve 
(intact) and residual (damaged) reliability constraints are sat
isfied. In this approach the design solution is associated with 
optimum cost in addition to satisfying both intact and damaged 
limit states. 

The general cost-optimization problem is formulated as a 
nonlinear programming problem based on both the reserve re
liability constraints associated with the American Association 
of State Highway and Transportation Officials (AASHTO) 
Standard Specifications for Highway Bridges (1992), and the 
residual reliability constraints resulting from considering en
vironmental stressors due to corrosion. The problem is solved 
by a general reliability-based optimization software resulting 
from the marriage of a Monte Carlo simulation-based relia
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bility evaluation program and a general purpose optimization 
software. Design examples of RC T-girders for highway 
bridges under corrosion illustrate the application of the pro
posed approach. 

CORROSION ATTACK 

Within the past 20 years, the deterioration of RC structures 
due to reinforcement corrosion has become an important prob
lem. According to Kilareski (1980), the majority of the dete
rioration of the nation's RC bridges can be blamed on the 
corrosion of the reinforcing steel due to chloride ion contam
ination of the concrete. Kilareski (1980) describes this corro
sion process as follows: 

Under normal environmental conditions, steel reinforcing 
bars embedded in concrete do not corrode. Usually a thin 
film of iron oxide is present on the surface of the rebar 
when it is encased in the concrete. The high pH environ
ment (approximately 13) associated with the hydration of 
the portland cement is usually sufficient to keep the pro
tective film stable. However, sufficient concentrations of 
chloride ions can lower the pH; and if moisture and oxygen 
are present, the rebar can begin to corrode... The chloride 
ions are provided by the de-icing salts used on the highway 
system in the winter months. After a few winter seasons, 
there are usually enough chloride ions at the level of the 
rebar to break down the passive environment around the 
steel. Once the rebar begins to corrode and build up the red 
rust by-product of corrosion, it is only a matter of time 
before enough force is generated so that a spall or pot hole 
is formed ... 

In this study, corrosion is seen as a two-phase process. The 
first phase spans from the time of construction to the time of 
corrosion initiation, and the second phase follows until unac
ceptable levels of section loss have occurred. Chloride ions 
are the most common degradation agents. A high level of chlo
ride concentration leads to a breakdown of the protective pas
sivation layer surrounding the steel reinforcement. 

According to West and Hime (1985), corrosion initiation 
occurs with chloride concentrations (at the level of the rebar) 
of about 0.83 kg/cu m (1.4 lb/cu yd), for typical mixes of 
normal weight concrete of about 2,300 kg/cu m (145 Ib/cu ft). 
The presence of large chloride concentrations at the surface of 
the concrete will cause the chloride concentrations at the rebar 
level to increase over time. The corrosion does not occur until 
the accumulation of chloride at the rebar surface exceeds the 
threshold value. 

Studies indicate that chloride penetration (Cady and Weyers 
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FIG. 1. Chloride Penetration In Concrete: (a) Single Year Application; (b) Ten Annual Equally Repeated Applications 

1984; Takewaka and Matsumoto 1988) can be treated as a 
diffusion process and seems to follow Fick's law of diffusion 

(1) 

where Cx =chloride ion concentration at distance x from the 
concrete surface after time t of exposure to chloride sources; 
D. = effective chloride diffusion coefficient of concrete; and t 
= time. Depending on the boundary conditions and amount of 
chloride, several possible solutions to this differential equation 
are possible. 

It was found (Takewaka and Matsumoto 1988) that the ef
fective chloride diffusion coefficient of concrete D. (sq in.ls) 
depends on the water-to-cement ratio, wlc, and the type of 
cement as follows: 

(2) 

In (2) the coefficient denoting the effect of water-to-cement 
ratio, Dw1c (sq in.ls), is given as 

D = 10-6.274-0.076Wlc+O.OOl13(WIc>' 
w'c	 (3) 

where wlc is in percent and the coefficient denoting the effect 
of the cement Dc is 1.2, 1.0, 0.3, and 0.08 for high early 
strength portland cement, ordinary portland cement, blast fur
nace slag cement, and alumina cement, respectively. 

During the winter season, the chloride ions are supplied by 
the deicing salts used on highway systems. After the winter 
season, there are usually enough chloride ions at the level of 
the rebar to induce corrosion. The total deicing salts com
monly used in the winter season are considered applied once 
a year. For this case, the solution of (1) is 

ext =~ exp (-X2) (4) 
, V -rrD.t 4D.t 

where Cx., =chloride concentration at depth x at time t; and 
G =surface chloride content representing the amount of chlo
ride deposited on the concrete surface (lb/cu yd). 

Due to the heterogeneity of the near-surface concrete [which 
has a large number of cracks and voids and is estimated to 
extend to a depth of approximately two-thirds the diameter of 
the coarse aggregate (West and Hime 1985)], the near surface 
absorbs dissolved chlorides more quickly than solid concrete. 
For this reason, the validity of (4) in the near-surface concrete 
and/or after a very short time of application is questionable. 
In this study, (4) is used only to estimate the corrosion initi
ation period; the inaccuracies of this equation do not affect the 
results. 

Eq. (4) is best suited for concrete structures exposed to a 
single application of chloride. Using the method of superpo
sition, (4) is well suited for concrete structures that have been 
exposed to repeated applications of chloride deposits such as 
highway RC bridges. Fig. 1 shows the change in chloride con
centration in both space (i.e., penetration in concrete) and time 
due to a single [Fig. l(a)] and 10 annual equally repeated [Fig. 
l(b)] applications of chloride deposits at the concrete surface. 
In Fig. 1, the values considered for G and D. in (4) are 1.485 
kg/cu m (2.5 lb/cu yd) and 3.26 X 10-8 sq cmls (5.06 X 10-9 

sq in.ls), respectively. As shown in Fig. l(a), after a single 
application (at time t = 0) the chloride concentration decreases 
with time near the concrete surface [say, penetration below 1.8 
cm (0.7 in.)]. Clearly, this decrease is not found in Fig. l(b) 
since the effect of chloride diffusion near the concrete surface 
is counteracted by that of annual equally repeated applications. 
By comparing the actual chloride concentration at the surface 
of reinforcement with the threshold concentration for initiation 
of corrosion [say, 0.83 kg/cu m (1.4 Ib/cu yd)], it is easy to 
find the corrosion initiation time required to depassivate the 
surface of the reinforcement. It should be mentioned that (4) 
may be modified to account for other factors that can influence 
the corrosion initiation time, such as repeated wetting and dry
ing of the concrete at the surface. However, reliable data on 
the effects of these factors are not available. 

Typical corrosion rates of steel in various environments 
have been reported in recent years. According to Ting (1989), 
the average corrosion rate v for passive steel in concrete at
tacked by chlorides is about 100 J.Lmlyr (0.004 in.lyr). From 



Mori and Ellingwood's research (1994b), the typical corrosion (0.0025, 0.0035, 0.0045 in.lyr) are used in this study to cover 
rate, v, is a time-invariant random variable described by a log most cases. These rates may suggest a mean (i.e., 89 J..Lmlyr) 
normal distribution with mean, J..Lv' of 50 J..Lmlyr (0.002 in.lyr) and a standard deviation (i.e., 25 J..Lm/yr). 
and coefficient of variation, Vv , of 50%. Because the corrosion 
rate changes with the environment, no accurate data is avail CAPACITY LOSS 
able to predict the real corrosion rate. Based on the average 
corrosion rates reported in Ting (1989) and Mori and Elling The flexural strength of corroded reinforced concrete mem
wood (1994b), three corrosion rates of 64, 89, 114 J..Lmlyr	 bers depends mainly on the total available area of rebars in 

the tension zone. On the other hand, if only stirrups for shear 
reinforcement are used, the shear strength depends on the rer--- Db--+j 
inforcement placed perpendicular to the axis of the member. 

VCORROSION 
INTACT	 For uniform corrosion (see Fig. 2), the total bending reinPROPAGATION 
AREA forcement area as a function of time t is 

A {n7rD~/4 for t :5 T1 (5)
s(t) = n1T[D - 2v(t - T )]2/4 for t > T

b 1 1CORROSIONCORROSION ¢
 
PROPAGATION
PROPAGATION where Db = diameter of a rebar; n = number of bars; T[ = time 

of corrosion initiation; and v =rate of corrosion. Factor 2 in 
(5) takes into account the uniform corrosion propagation pro

CORRODED cess from all sides at the level of rebar (see Fig. 2). Under 
AREA	 uniform corrosion, the cross-sectional area of a stirrup as a 

function of time is 

for t :5 T1 (6)
for t > T1FIG. 2. Uniform Corrosion In a Reinforcing Bar 
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where D, = diameter of a stirrup. Factor 2 takes into account 
the fact that the vertical branches of a stirrup are assumed to 
be corroded simultaneously. 

As corrosion gradually progresses, the remaining capacities 
in both bending and shear decrease. The flexural strength of 
an isolated RC T-beam at time t, Mr(t), may be computed as 

Mr(t) =A,(t)h (d - ~) (7) 

where fy = yield strength of a reinforcing bar; d = effective 
depth; and a = depth of the equivalent rectangular stress block. 
On the other hand, the time-dependent shear strength is 

(8) 

In (8) it is assumed that the shear strength of concrete Vc is 
time-independent. When only shear reinforcement perpendic
ular to the axis of the member is used, the shear strength due 
to stirrups is given as 

V,(t) =AvCt)hd (9) 
s 

where Av(t) is the area of the shear reinforcement within the 
distance s [see (6)], and s = spacing between stirrups. 

TABLE 1. Design Variables (X) and Parameters (y) 

Notation Variable	 Units 
(1) (2)	 (3) 

X, Area of the tension steel reinforcement, A, 6.45 sq cm (I sq in.)
 
X, Width of flange, b 2.54 cm (I in.)
 
X, Thickness of flange, hI 2.54 cm (1 in.)
 
X. Width of web. b. 2.54 cm (I in.)
 
X, Height of web 2.54 cm (l in.)
 
X, Area of the shear reinforcement 6.45 sq cm (1 sq in.)
 
X, Spacing of shear reinforcement in interval 1 2.54 cm (1 in.)
 
X, Spacing of shear reinforcement in interval 2 2.54 cm (1 in.)
 
X. Spacing of shear reinforcement in interval 3 2.54 cm (l in.)
X,. Depth of equivalent rectangular stress block, a 2.54 cm (I in.) 
XII Nominal flexural strength of T beam 16.32 kN/m (I kip/in.) 
X" Reinforcement ratio, p 
X" Balanced reinforcement ratio, p. 
X.. Equivalent flange reinforcement 6.45 sq cm (l sq in.) 
X" Shear strength provided by concrete 4.45 kN (1 kip) 
X16 Shear strength provided by steel in interval 1 4.45 kN (l kip) 
X17 Shear strength provided by steel in interval 2 4.45 kN (I kip) 
X.. Shear strength provided by steel in interval 3 4.45 kN (I kip)
X,. Total number of stirrups required 
X", Maximum shear reinforcement spacing 2.54 cm (l in.) 
X21 Minimum bending reinforcement ratio 
Y, Depth of slab 2.54 cm (1 in.) 
Y, Center-to-center distance between girders 30.5 cm (l ft) 
Y, Girder span length 30.5 cm (l ft) 
Y. Specified yield strength of reinforcement, I, 6.89 MPa (l ksi)
 
Y, Specified compressive strength of concrete I; 6.89 MPa (1 ksi)
 
Y, Dead load excluding girder weight 14.59 kN/m (l kip/ft)
 
Y, Maximum live load moment including impact 1.36 kN/m (l kip/ft)
 
Y, Maximum live load shear including impact in 4.45 kN (l kip)
 

interval 1 
Y.	 Maximum live load shear including impact in 4.45 kN (I kip) 

interval 2 
Y,. Maximum live load shear including impact in 4.45 kN (l kip) 

interval 3 
YII Unit weight of concrete 156.84 kN/cu m 

(l kip/cu ft) 
Y"	 Ratio of depth of equivalent rectangular com

pression stress block to distance from fiber 
of max. compressive strain to the neutral 
axis, al 

Note: Intervals I, 2, and 3 are defined in Fig. 3(b). 

The thickness loss in a reinforcing bar is defined as 

(10) 

where Dint =intact initial diameter of reinforcing bar; and Ddam 

= diameter of the damaged reinforcing bar after corrosion at
tack. 

The loss of material due to corrosion causes a reduction in 
both bending and shear capacities of RC beams. Based on (7) 
and (8), and AASHTO (Standard 1992) requirements for the 
design of RC T-bridge girders, the moment and shear capaci
ties can be calculated for both time-independent (intact) and 
time-dependent (damaged under corrosion) limit states. 

Let us consider the RC T-girder shown in Fig. 3(a) and (b). 
The reliability-based structural optimum (RBSO) design of 
this girder requires the definition of the 21 design variables X 
and 12 parameters Y identified in Table I (Lin and Frangopol 
1996). Table 2 shows time-independent (i.e., neglecting cor
rosion effects) optimum solutions for the RC T-girder whose 
independent design variables Xl to X s and X7 to X9 are iden
tified in Fig. 3(a) and (b). The bridge consists of four identical 
girders equally spaced as shown in Fig. 3(c). 

Y

The RBSO formulation takes into account all behavior and 
side constraints specified in the AASHTO (Standard 1992) 
specifications for highway bridges. The solution of this 
AASHTO-RBSO formulation is obtained by using nonlinear 
optimization software ADS (Vanderplaats 1986) and a Monte 
Carlo simulation software MCREL (Lin 1995). The objective 
of the optimization process is to minimize the total cost of 
steel and concrete CT' This cost is sensitive to the ratio of the 
unit cost of steel to concrete CsiCc . The design solutions in 
Table 2 correspond to the following data (Lin 1995): depth of 
slab, Y1 = 17.78 cm (7 in.); center-to-center distance between 
girders, S = Yz =2.44 m (8 ft) [see Fig. 3(c)]; span length L 
=Y3 = 18.30 m (60 ft); mean yield strength of reinforcement, 

4 =h = 413.4 MPa (60 ksi); mean compressive strength of 
concrete, Ys =1; = 27.56 MPa (4 ksi); ratio of the depth of 
the equivalent rectangular compression stress block to the dis
tance between the fiber of maximum compressive strain and 
the neutral axis, Y lZ =al =0.85; mean unit weight of concrete, 
Yll =22.74 IeN/cu m (0.145 kip/cu ft); live loading, standard 
HS-20 trucks; distance from bottom fiber to centroid of bottom 
reinforcement, a = 17.78 cm (7 in.); and concrete cover, C = 
7.62 cm (3 in.). The design meets the AASHTO (Standard 
1992) specifications. The bridge consists of four identical 
equally spaced girders as shown in Fig. 3(c). The mean load
ing data for this bridge are as follows (Lin 1995): Y6 = 13.57 
kN1m (0.93 kips/ft); Y7 = 9,966 kN1m (683.1 kips/ft); Ys = 
138.31 kN (31.08 kips); Y9 = 183.39 kN (41.21 kips); and YIO 
= 228.51 leN (51.35 kips). The coefficients of variation are 
0.15 for Y4 and Ys, 0.20 for Y6 , 0.243 for Y7 to YIO' and 0.1 
for Y ll . Finally, the value of the steel-to-concrete cost ratio, 
CsICc , is assumed to be 50. As shown in Table 2, the optimum 
total cost CT increases with the allowable reliability level of 
limit states considered in the formulation ~~ = Ml = ~!z = 
~!3 = ~1, where ~~ is the allowable reliability level with re
spect to the bending moment, and Mh Mz, and ~!3 are allow
able reliability levels with respect to shear in intervals 1, 2, 
and 3 [see Fig. 3(b)], respectively. 

The three theoretical (i.e., computer generated) solutions as-

TABLE 2. Reliability-Based Optimum Solutions Neglecting Corrosion Attack 

Solution 
(1 ) 

J3~ 
(2) 

X, 
(sq em) 

(3) 

X2 

(em) 
(4) 

X3 

(em) 
(5) 

X. 
(em) 
(6) 

X. 
(em) 
(7) 

X. 
(sq em) 

(8) 

X, 
(em) 
(9) 

X. 
(em) 
(10) 

X. 
(em) 
(11 ) 

Optimum total cost 
(12) 

A 
B 
C 

3 
3.5 
4 

73.87 
86.52 
98.84 

69.95 
71.37 
77.83 

18.85 
21.69 
22.43 

32.49 
33.66 
35.51 

145.49 
149.78 
154.38 

0.606 
0.613 
0.594 

19.30 
21.84 
19.30 

18.80 
17.53 
18.80 

16.51 
15.24 
16.51 

578.6 
645.3 
716.1 
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FIG. 4. Optimum Solutions: (a)-(c) Computer Generated SolutIons; (d)-(f) Actual Design Solutions 

sociated with the results indicated in Table 2 are shown in 
Figs. 4(a)-(c) (Lin and Frangopol 1996). For a design that is 
actually going to be implemented, the area of steel resulting 
from the numerical optimization process would have to be 
changed to accommodate standard sizes of reinforcing steel. 
Also the optimized beam dimensions may have to be changed 
to meet standard dimension requirements. To illustrate this 
point, Figs. 4(d), 4(e), and 4(f) show the actual design solu
tions associated with the theoretical solutions presented in 
Figs. 4(a), 4(b), and 4(c), respectively. The notation ~system de
notes the reliability index of the beam with respect to all limit 
states considered. 

In the presence of corrosion, the bending and shear strength 
of the RC T-girders in Table 2 will deteriorate. For this reason, 
a capacity loss analysis in bending and shear of girders A, B, 
and C (see Table 2) has to be performed. In this analysis, the 

ratio of mean damaged capacity, Rdamag.. to the mean intact 
capacity, Rimae" is defined as the residual capacity factor 

(II) 

The results of capacity loss analysis are indicated in Figs. 
5(a), (b), and (c) for the optimum RC T-girders A, B, C (in 
Table 2), respectively. In these analyses, the thickness loss (10) 
represents the difference between the original (intact) diameter 
of the reinforcement and the damaged (corroded) diameter of 
the reinforcement. The results show the variation of the resid
ual capacity factor CR with the thickness loss for bending mo
ment (M), and shear in the intervals 1 (Sl)' 2 (S2), and 3 (S3)' 
Since, as defined in Fig. 3(b), X7 , Xg , and X9 are the distances 
between stirrups in intervals I, 2, and 3, the shear strengths 
provided by steel reinforcement in these intervals at the time 
tare 
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V•. t(t) =A.(t)/yd/X7 ; V•.2(t) =A.(t)/yd/X8 ; V•. 3(t) =A.(t)/ydlX9 trated in Fig. 6. The reliability index, ~, is plotted against the 
(12-14) loss of reinforcement thickness due to corrosion, D lo" [see 

(10)]. As expected from the results provided by the capacity 
As shown in Fig. 5, the bending capacity reduction due to loss analysis, the moment is the controlling limit state (~M < 
corrosion is continuously increasing. Conversely, shear capac ~s, where ~M and ~s are moment and shear reliability indices, 
ity reduction due to corrosion in steel reaches a point where respectively). 
the shear strength is contributed solely by concrete [Ye in (8)]. Consider now an environment where the amount of chloride 
Although the moment capacities for the three beams are quite deposited yearly on concrete surface is the same, G = 1.485 
different, the ratio of the mean damaged to mean intact ca kg/cu m (2.5 Ib/cu yd). The concrete girder is made of ordinary 
pacities appears identical for the moment; it is almost the same portland cement with a water/cement ratio equal to 50%. Then, 
for shear. according to (2) and (3), the coefficient of diffusion, D.. is 3.7 

X 10-7 sq crn/s (5.6 X 10-8 sq in.ls). 
RELIABILITY LOSS The reinforcement cover is assumed to be 6.35 cm (2.5 in.). 

Considering annual equally repeated application of chloride 
The RC T-girders (Table 2) previously considered in the deposits at the concrete surface, the chloride concentration lev

capacity loss analysis are examined herein for reliability loss els at the surface of the rebar are 0.27, 0.56, and 0.84 kg/cu 
due to corrosion. The results of the computations are illus- m (0.45, 0.94, and 1.41 Ib/cu yd) after 1, 2, and 3 years fr 1m 
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the first application. Clearly, therefore, the steel corrosion in
itiates after three years of bridge service [i.e., the chloride 
concentration at a depth of 6.35 cm (2.5 in.) is greater than 
the threshold concentration of 0.83 kg/cu m (1.4 lb/cu yd)], 
which means Tr = 3 yr. 

Admittedly, this study considers a worst case scenario of 
corrosion initiation. The chloride is placed on the deck, runs 
down the side of the beam at the same concentration, and starts 
the diffusion toward the tensile steel. While this is a conser
vative assumption, the lack of data on chloride concentration 
loss provides no reasonable alternative. The assumption may 
be justified when considering chloride penetration through the 
unprotected joints. 

To understand the change in reliability with different cor
rosion rates v, the reliability index, ~, is plotted for corrosion 
rates of 0.0064, 0.0089, and 0.0114 crn/yr (0.0025, 0.0035, 

and 0.0045 in./yr), against the time of exposure in years of 
optimum RC T-beam design associated with ~l" = 4 (i.e., beam 
C in Table 2) [see Figs. 7(a), (b), and (c)). Reliability indices 
are shown for maximum beam moment ~M' and maximum 
shear strength in intervals 1, 2, and 3 [see Fig. 3(b)), ~s" 

~S2' and ~S3' respectively. Again, it is observed that the reli
ability index associated with moment is the controlling factor 
during the whole lifetime of the girder. It is interesting to note 
that, after corrosion initiation, the reliability associated with 
moment decreases monotonically with time, whereas shear re
liability decreases during the first 25 - 30 years and then be
comes constant. The constant value is associated with the shear 
reliability provided by concrete alone. For comparison pur
poses, the moment reliability for different corrosion rates is 
plotted in Fig. 8. As expected, a higher corrosion rate leads to 
a greater reduction in the reliability level. 
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RELIABILITY-BASED DESIGN 

To include the corrosion effect in the optimum AASHTO 
time-independent reliability-based design formulation for RC 
T-bridge girders presented in Lin and Frangopol (1996), the 
corrosion rate associated with a given environment must be 
considered. Using time-variant reliability-based concepts, the 
minimum cost time-dependent RBSO formulation of the RC 
T-beam shown in Fig. 3(a) and (b) is mathematically expressed 
as follows: 

Find the components of the design variable vector 

(15) 

to minimize 

3 (CSY3 ) (CSXJ9X6)
CT =4 144 Xl + 1,728 (X3 + X s - IX + 0.5X4) 

+ (~~3) (X2 X 3 + X 4 XS ) (16) 

where CT = total cost; Cs = unit cost of steel per 0.028 cu m 
(l cu ft); Cc = unit cost of concrete per 0.028 cu m (l cu ft); 
IX = distance from the bottom fiber to the centroid of the re
inforcement; and variables Xi and Y3 are defined in Table I 

Subject to the following constraints: 

13t(t) = 13M(t) :2: 13t; 132(t) =13stU> :2: M (17, 18) 

133(t) =13s2(t) :2: 131; 134(t) = 13s,(t) :2: l3t (19, 20) 

8, = Xl2 - O.75XJ3 :5 0 (21) 
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(28,29) 

glOi = -Xi $ 0, (i =1,2, ... , 21) (30) 

where 131 =allowable reliability indices; 13M =reliability index 
with respect to bending; and 13slo 13s2, and 13s3 = reliability 
indices with respect to shear in intervals 1, 2, and 3 [see Fig. 
3(b)], respectively. The limit state functions associated with 
13M, 13slo 13s2' and 13s3 are as follows: 

Xli Y6 Y; (X2 X3 + X4 X S)YlI Y; 0 
gM(t) =12 - Y7 - -8- - 144 X 8 = (31) 

(32) 

(33) 

Y6 Y3 (X2X3 + X4 XS)YlI Y3 
gS3(t) =XIS + XI8 - YIO - '2 - 144 X 2 =0 (34) 

The behavior and size constraints specified in the AASHTO 
(Standard 1992) for the design of RC T-girders are considered 
in (21)-(34). It is important to notice that randomness in loads 
and resistances is explicitly considered in the above formula
tion. In fact, this formulation represents a time-variant exten
sion of the optimum AASHTO reliability-based design for
mulation for intact RC girders presented in Lin and Frangopol 
(1996). For solving the RBSO formulation, the general pur
pose optimization software ADS (Vanderplaats 1986) was 
linked to the Monte Carlo simulation software MCREL (Lin 
1995). MCREL is a Monte Carlo simulation-based general 
purpose reliability evaluation program developed at the Uni
versity of Colorado and used to estimate both component and 

system reliability. Both the MCREL code and the ADS
MCREL interface code are documented in Lin (1995). 

NUMERICAL EXAMPLE 

The RC T-beam example characterized by the reliability
based optimum solutions presented in Table 2 is considered 
again here, but in a time-dependent context due to the presence 
of corrosion. Therefore, several design variables (e.g., Xlo X 6 , 

Xd are now time-dependent. Using the previously presented 
time-dependent RBSO formulation, (15)-(34), Fig. 9 shows 
the results for three different corrosion rates. Allowable reli
ability level (131 =13*) effects on the optimum total cost, CT(t), 
are shown in Fig. 9 for different corrosion rates, v, and ex
posure times, t. The optimum design solutions at time t = 0 
are the intact solutions (not affected by corrosion). As ex
pected, the optimum total cost increases with time of exposure, 
corrosion rate, and target reliability level. As shown in Fig. 
10, the effect of corrosion rate on the optimum total cost re
quired to maintain the same level of reliability (13* = 3) in
creases with exposure time. Fig. 11 shows the effects of ex
posure time on the optimum design variables XI to X s [see 
Fig. 3(a)] for a given target reliability and corrosion rate. As 
expected, in order to maintain the same level of reliability over 
time in the presence of corrosion, the areas of tension steel 
reinforcement, X lo and the web height, X5 , have to increase at 
a higher rate than the flange width, X 2 , flange thickness, X 3 , 

and web width, X4 • The optimum RC T cross sections required 
to maintain the level of reliability 131 = 13* = 3 in an environ
ment characterized by a corrosion rate of v = 0.0089 cm/yr 
(0.0035 in.lyr) are shown in Fig. 12 for four different exposure 
times. Clearly, for maintaining the same level of reliability, 
both steel and concrete areas have to increase with time of 
exposure to corrosion. 

OPTIMUM DESIGN BASED ON LIFETIME COST 

Minimum material cost CT may not be the most essential 
parameter characterizing the utility of a structure. If failure 
consequences are taken into account, a more general criterion 
for finding the optimal design derives from cost-benefit anal
ysis. In this case, optimal design produces the minimum total 
expected cost (Frangopol and Moses 1994). The total expected 
cost considered here consists of two parts: the initial expected 
cost, CT(t), and the expected cost of failure during lifetime 
service, CF,I/fe> which includes loss of the structure, loss of 
human life, and cost of injuries. A major obstacle in using this 
approach is the high uncertainty in the monetary value asso
ciated with fatalities and injuries resulting from structural fail
ures. However, the sensitivity of the optimum lifetime cost to 
the expected cost of failure CF,Ii/e> including fatalities and in
juries, provides useful information to decision makers on the 
range of optimal lifetime reliability indices. 

Structural optimization will be achieved within a framework 
of potential consequences of structural failure. Thus, it is nec
essary to introduce the lifetime failure probability PJN• in the 
objective function to be minimized as follows: 

min CT./If. = CT(t) + CF./if. = CT(t) + CJ X Pf,I/f. (35) 

where CT,I/f' = total expected lifetime cost of the structure; 
CT(t) = initial expected cost of the structure; CJ = cost asso
ciated with failure; and t = exposure time to corrosion. Herein, 
the lifetime is considered 75 years and, therefore, the initial 
expected cost is CT (75). The probability of failure of the struc
ture, PJ,/If, is approximated considering all limit states as a se
ries system as 

(36) 
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where <1>[ ] =cumulative probability of a standard normal var
iable. 

In general, the cost of failure, Ct , is largely determined by 
social factors. For different areas, cities, and countries, the cost 
of failure of the structure will be different. A number of ap
proaches to evaluate Ct have been proposed (see references 
cited in Frangopol and Moses 1994). The reader is referred to 
Lin (1995) for a detailed description of lifetime costs including 
also maintenance, inspection, and repair costs. 

Fig. 13 shows the total expected lifetime (i.e., 75 years) 
cost, Cr. Ii/eo as a function of the lifetime reliability index, 
f3'i/.,for a corrosion rate of v of 0.0064 cm/yr (0.0025 in.lyr). 
In order to study the sensitivity of the optimum lifetime cost 
to the expected cost associated with failure, Figs. 13(a) and 
13(b) are associated with a failure cost Cf of lO,OOOCe and 
30,OOOCe , respectively, where Ce = unit cost of concrete. 

These figures refer to the RC T-beams whose optimal initial 
(material) costs are shown in Fig. 9(a) for different exposure 
times and allowable reliability levels. In fact, the total ma
terial costs Cr (75) in Figs. 13(a) and 13(b) at lifetime relia
bility levels 1.0, 2.0, 3.0, and 4.0 are given in Fig. 9(a) at 75 
years of exposure to corrosion. The total initial (material) 
costCr(75) increases and the expected cost of failure CF.1i/. 
decreases with the increase in the lifetime reliability index. 
Consequently, there is a balance point at which the total ex
pected lifetime cost Cr.li/. is minimized. As shown in Fig. 13, 
the optimum lifetime design depends on the failure costs. 
Figs. 13(a) and 13(b) show optimal lifetime reliability indices 
of about 2.5 and 3.0 for failure costs of 1O,000Ce and 
30,OODCe , respectively. Consequently, as the failure conse
quences are higher (i.e., failure cost increases), there is a need 
to design for a higher lifetime reliability level. 
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CONCLUSIONS 

A reliability-based design approach of RC bridge girders 
under corrosion has been proposed. The fonnulation is broad 
and includes both intact (undamaged) constraints (under nor
mal environmental conditions) specified in the AASHTO 
(Standard 1992) specifications for highway bridges and resid
ual (damaged) constraints due to chloride corrosion of steel in 
concrete. 

Unlike conventional RC design, which is based on satisfy
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ing code constraints only, the proposed reliability-based ap
proach uses the material cost or the expected lifetime cost as 
the objective to be minimized. Consequently, the proposed ap
proach, based on both time-dependent reliability and optimi
zation, is more rational than the conventional design approach 
in searching for the best solution. 

The reliability of RC members exposed to chloride ion con
tamination of concrete deteriorates over time. The loss in re
liability can be blamed on the corrosion of the reinforcing 
steel. The proposed approach has accounted for this effect. 
From the numerical examples, it was found that under the 
same corrosion rate, the loss in moment reliability is generally 
larger than the loss in shear reliability. 

Maintaining the reliability of RC girders under corrosion 
during their service life at or above an established target re
liability level can be achieved by using the proposed design 
approach. The numerical examples showed that corrosion 
rates, exposure times, and target reliability levels affect both 

http:�.�..__�..�
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the total material cost and the total expected lifetime cost of 
the optimum solution. Also, it was shown that as the failure 
consequences are higher (i.e., failure cost increases) there is a 
need to design for an increased lifetime target reliability level. 

Additional data on corrosion initiation and corrosion prop
agation rates in steel embedded in concrete, and failure costs 
of RC structures are necessary to reduce the degree of uncer
tainty associated with the proposed design approach. Also, 
data on cost and reliability of protection, inspection, and repair 
methods of RC structures exposed to aggressive environments 
are required for further development of a lifetime management 
strategy. 

Further studies of the lifetime optimization process of RC 
girders under corrosion attack are needed. Topics for continued 
investigation include the consideration of: (1) modeling un
certainty in the diffusion and corrosion processes and in the 
evaluation of moment and shear capacities; (2) concrete cover 
as a design variable (increasing concrete cover may be a cheap 
and effective way to increase reliability in the presence of 
corrosion); (3) different and possibly nonuniform corrosion 
rates for the interior and exterior rebars; (4) cracking in the 
girders associated with mechanical processes such as freeze
thaw, tension cracks, etc., which allow quicker penetration of 
deicing salts to the level of rebars; (5) time-dependent effects 
on concrete shear strength and on yield strength of steel due 
to fatigue from the low level cyclic loading; and (6) repeated 
wetting and drying of the concrete at the surface in the dif
fusion process. Finally, reliability-based recommendations 
have to be developed to supplement existing American Con
crete Institute and AASHTO provisions for handling corrosion 
to reinforcement of bridge structures. 
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