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A criterion-referenced test can be viewed as
testing either a continuous or a binary variable, and
the scores on a test can be used as measurements of
the variable or to make decisions (e.g., pass or fail).
Recent work on the reliability of criterion-refer-
enced tests has focused on the use of scores from
tests of continuous variables for decision-making
purposes. This work can be categorized according
to type of loss function—threshold, linear, or quad-
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plicitly or implicitly to evaluate the goodness of the
decisions that are made on the basis of the test
scores. The literature in which a threshold loss
function is employed can be further subdivided ac-
cording to whether the goodness of decisions is as-
sessed as the probability of making an erroneous
decision or as a measure of the consistency of deci-
sions over repeated testing occasions. This review
points to the need for simple procedures by which

ratic. It is the loss function that is used either ex- to estimate the probability of decision errors.

It has been more than 70 years since Charles Spearman invented the concept of test reliability. In
the time since then, practitioners of the discipline of educational and psychological measurement
have acquired, perhaps by some Lamarckian process, a distinctive response tendency: Whenever a
new approach to measurement is devised, the response is somehow to investigate its reliability. It is
hardly surprising, therefore, that during the 1970s, when the notion of criterion-referenced measure-
ment (CRM) captured and held the attention of the measurement profession unlike any other idea of
the decade, the literature on the subject of CRM reliability expanded year by year in apparent con-
formity with an exponential function.

After reviewing this literature, however, the authors’ assessment is that much of the literature on
CRM reliability is confused and confusing in at least two interrelated ways: (1) the word reliability is
used to denote several different concepts and (2) the technical requirements that should be met by the
indices designed to describe the consistency of pass-fail decisions are not always clearly distinguished
from the requirements met by traditional indices of reliability. This assessment is elaborated in the
first of the two main sections of this paper, an elaboration that leads, ultimately, to the development
of a framework for organizing the methods presently available for assessing CRM reliability. A review
of these methods is presented in the second major section of this paper.
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Reliability Issues and Criterion-Referenced Tests

The term reliability carries with it a wealth of meanings and implications. In general, it describes
not just one property of a person or object but a collection of attributes generally looked upon as de-
sirable. Different attributes might be important in different circumstances. For example, the particu-
lar set of attributes that would cause a secretary to be described as reliable (speed, accuracy, punc-
tuality) are not necessarily the same set of attributes as those for a jockey or a deep-sea diver. Al-
though reliability is often thought to imply consistency or predictability, this is not always the case.
The secretary who has a consistent error rate of 20% will probably be considered to be distinctively
unreliable, even though predictable. Reliability does not necessarily imply a small variance, either. In
cricket, an opening batsman who scores 50, 80, 45, 250, 165, and 93 runs in six successive matches
will be regarded as exceptionally reliable, whereas the opening batsman who scores no runs at all in
six matches will be seen as totally unreliable. A car that always starts at the first attempt is reliable; a
car that never does is unreliable. In short, the term reliability has been used to describe not just one
attribute, but a range of attributes, with the emphasis shifting with changing circumstances and re-
quirements.

When scientists borrow a term from everyday language and use it as a label for a scientific con-
cept, they must define it with care and precision. It takes on a much narrower meaning in science
than it had in everyday life (consider, e.g., work, power, intensity); but if scientists are to communi-
cate with one another, they must restrict themselves to these narrower definitions or else create con-
fusion and misunderstanding. The advancement of science is dependent on the development of con-
cepts that are useful, clearly defined, and well understood. The label carried by the concept is not as
important as a clear and agreed-upon definition. The label, in fact, may be created for the concept
(e.g., temperature) or may be borrowed from elsewhere and attached to it (e.g., energy). Good science
has always involved the choosing of labels to apply to newly developed concepts, and the advancement
of science has depended much more on the usefulness of the concepts than on the labels chosen to
identify them.

In the science of measurement, certain terms have been borrowed from everyday language and
applied to measurement concepts. Reliability is one of those words. Validity, for better or for worse, is
another. The concept of reliability of measurement is among the better understood and more useful
concepts to have emerged in the science of measurement. Defining reliability as the ratio of true-score
variance to observed-score variance allows the prospect of shared meaning among measurement
specialists. Although they might disagree as to how reliability should be assessed, the agreed defini-
tion allows them to see such disputes for what they are—differing views as to what should be regarded
as true-score variance and what should be attributed to error. The work of Cronbach, Gleser, Nanda,
and Rajaratnam (1972) has helped further to clarify such discussions; the substitution of universe
score for true score allows the conception of different universes of generalization, for each of which
the partitioning of total variance into universe-score variance and error variance is different.

The concept of reliability so developed refers to a property of a set of measurements. It has gen-
erally come to be regarded as describing an important property of those measurements—perhaps best
described as the consistency with which the measurement process can distinguish among individuals
with respect to the property or attribute being measured. Reliability is thus a property of measure-
ments including both norm-referenced measurements as well as criterion-referenced measurements.
If the persons or objects being measured do not differ, or differ very little, on the attribute being mea-
sured, reliability will be zero or very low. Similarly, if they do differ from one another but the mea-
surement process is not precise enough to detect the differences, reliability will be low or zero.
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RELIABILITY OF TEST SCORES AND DECISIONS 519

Until recently, these features of the concept of reliability were understood but rarely thought im-
portant enough to warrant comment. There are few attributes upon which people do not differ sub-
stantially, so the problem of low or zero reliability arising from a low or zero variance among persons
generally did not arise. The science of measurement was directed towards identifying and quantifying
individual differences, and the concept of reliability was a useful one.

Then, in 1969, Popham and Husek published their influential article ‘‘Implications of Criterion-
Referenced Measurement.” In this article, considerable attention was paid to the question of vari-
ability, which “is at the core of the difference between norm-referenced and criterion-referenced
tests” (p. 3). With norm-referenced tests, score variability is important; with criterion-referenced tests,
it is irrelevant. Therefore, it was argued, traditional notions of reliability, dependent as they are on
score variability, are unsuitable for use with criterion-referenced tests, as are the traditional ways of
assessing validity and of performing item analyses. (See Linn, 1979, for a review of arguments on the
importance of score variability in CRM.)

In their paper, Popham and Husek distinguished between criterion-referenced tests that yield es-
sentially dichotomous scores, ‘‘that is, the individual has either mastered the criterion or he hasn’t,”
and those for which ‘‘a range of acceptable performance exists” (p. 7). In the former case, the test can
do nothing but sort the candidates into two categories; the latter case is what has traditionally been
thought of as measurement. The characteristics that would be demanded of these two tests are, na-
turally, quite different.

The assumptions made about the nature of measurement are spelled out all too rarely in writings
on CRM. A welcome exception was provided by Graham and Bergquist (1975), who presented two
different criterion-referenced measurement models and explored the consequences of each. The
models were termed binary and continuous, corresponding to the distinction made by Popham and
Husek (1969) and referred to in the previous paragraph. (Meskauskas, 1976, refers to these as the
state model and the continuum model.)

Under the binary model, the assumption is made that ‘‘certain capabilities enable an individual
to perform an entire class of behaviors [universe of items], and if the capability is not acquired, the in-
dividual cannot perform any of the class of behaviors [items in the universe]”’ (p. 4). For example, a
test of the ability to add pairs of single-digit numbers might well fit this assumption. As Graham and
Bergquist (1975) pointed out, two implications of this model for an infinitely large population com-
prised of persons, some of whom possess and some of whom do not possess the capabilities in ques-
tion, are these: (1) the universe of items is homogeneous in that all the items are of equal difficulty,
and scores on all possible pairs of items are perfectly intercorrelated (except for the attenuating ef-
fects of measurement error); and (2) an examinee’s true score on the universe, and hence on every
sample of items from the universe, is either 0% or 100%. (If the multiple-choice item format is used,
then examinees who do not possess the required capabilities can be expected to score at the level of
chance.) Observed scores on a test composed of items from a universe conforming to the binary model
can, of course, be expected to deviate upwards from 0 and downwards from n, the number of items in
the test, to the extent that errors of measurement occur. Note that the true scores of this binary modet
are not the true scores of classical test theory; for if they were, the associated observed scores would of
necessity be 0 or n. Instead, this is an example of Platonic true scores (Lord & Novick, 1968, sec. 2.9).

Under the continuous model of measurement, it is assumed that differences among test scores
can be meaningful across the full range of the test score scale. According to Graham and Bergquist
(1975), measurement on a continuous scale will arise whenever (1) each item in the universe taps *‘cer-
tain learned capabilities . . . from which only a single behavior can be demonstrated” (p. 6), (2) the
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universe is composed of many such items, and (3) the capabilities required to answer one item cor-
rectly are not perfectly correlated with the capabilities required to answer another item correctly. (The
reason for less than perfect inter-item correlation must be that the capabilities needed to answer dif-
ferent items are, in some way or other, truly different, and not just because of measurement error.)
Ebel’s (1962) vocabulary test, which would be described as domain referenced (in the sense that this
expression is used by Hively, 1974; Hively, Patterson, & Page, 1968; Millman, 1974; and Shoemaker,
1975) conforms to this continuous model.

Two additional points about the continuous model should be noted. First, the items of a universe
could conform to this model and yet have the same difficulty indices and inter-item correlation coeffi-
cients. It seems more likely, however, that most universes of interest will be heterogeneous in one or
both of these respects. Second, unlike the binary model, the continuous model provides no basis for
expecting test scores to be distributed in any particular way. How scores are distributed will depend
on the distribution of true capabilities in the population being tested and on the statistical properties
of measurement error.

In the case of the binary model, where the distinction is clearly between mastery and nonmastery,
there should be little difficulty in establishing an appropriate passing score for the test. The score dis-
tribution will be bimodal, and if the test is long enough, there should be a negligible proportion of ex-
aminees in the middie of the score range. It is when there is a test that is better described by the con-
tinuous model, and it is used to classify examinees as masters and nonmasters, that difficulties arise.
Not only is the choice of a passing score made arbitrarily (see Glass, 1978), but this score is likely to be
in the region of the score range that is quite heavily populated, with the result that minor differences
in passing score can have serious effects on the resulting classification. Although the authors recog-
nize that continuous measures often have to be used to make binary decisions (e.g., promotion,
hiring, selection), it is preferred that this be made explicit and that the argument not be couched in
terms of masters and nonmasters. If a measure is best described by the continuous model, its primary
role is to ascertain degrees of skill or competence, not to separate two distinct groups.

Examining score distributions should provide a clear guide to the types of criterion-referenced
tests that are in common use. The expectation is that only a tiny minority could be described by the
binary model, the vast majority being clearly continuous measures. Graham and Bergquist (1975) de-
scribed some carefully constructed tests of unitary skills that yielded bimodal score distributions, but
these appear to be exceptional.

The point is that there are at least two distinct types of criterion-referenced tests and that the de-
sirable properties for one type are different from the desirable properties for the other. A single con-
cept of reliability cannot be expected to suffice for the two of them. In the case of the continuous
model, where a range of acceptable performance exists (and/or a range of unacceptable perfor-
mance), and the purpose of the test is seen as being to ascertain where a person’s performance lies
along that continuum, there may be legitimate inquiry about the precision with which that person’s
position is located. There may also be interest in determining the consistency with which the test can
distinguish among a group of people with respect to their location along that continuum. Reliability,
as traditionally defined, describes how effectively the measurement process can do this. It is a useful
property by which to describe measurements and one that can be investigated by traditional means. It
has not, however, been greatly favored by writers on CRM.

Why not? One would think that whether the focus of the measurement is criterion referenced or
norm referenced, and whether individual scores are compared with one another or with externally de-
rived standards, a measurement process powerful enough to distinguish small differences would be
prized. That this is not always seen to be so reflects the emphasis placed by those who work in the area
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on classification, which is often a result of the measurement process, rather than on the measurement
process itself. Hambleton and Novick (1973), for example, argued that with criterion-referenced tests
“the pertinent question is whether or not the individual examinee has attained some prescribed de-
gree of competence on an instructional performance task. . . . Questions of precise achievement levels
and comparisons among individuals on these levels seem to be largely irrelevant’ (p. 160). This idea
has led to the view that reliability for criterion-referenced tests should mean consistency of decision-
making. Hambleton and Novick went on to declare (1973, p. 166) that *‘in order to evaluate the test, it
would be necessary to know something about the consistency of decision-making across parallel
forms of the criterion-referenced test or across repeated measurements (i.e., reliability).” Implicit in
this is an interesting new definition of reliability, one which has little connection with previous (tech-
nical) usage of the term. This definition was made explicit in a later paper (Swaminathan, Hamble-
ton, & Algina, 1974) in which the authors wrote, ‘‘Specifically we define reliability of a criterion-refer-
enced test as the measure of agreement between the decisions made in repeated test administrations”
(p. 264).

There can be no argument that reliability, as so defined, is an important attribute of a criterion-
referenced test, particularly where the test is used in conjunction with the new instructional models
that involve individualized instruction, self-pacing, and regular checking of progress (see Hambleton,
1974). But it should be recognized that this meaning of reliability refers to a property of the decisions
that are made when the test is used in a particular manner, rather than a property of the measure-
ments provided by the test. In spite of all the work done on the problem of setting cutting scores (see,
e.g., Brennan & Lockwood, 1980; Fhanér, 1974; Huynh, 1976¢c, 1977; Millman, 1973; Wilcox, 1976),
the methods usually employed by educators to do this are arbitrary. (This is evident from the fact that
the mathematical work in choosing a cutoff score along the observed score scale starts with the as-
sumption that a standard has already been defined, either on the true scale or on the scale of a cri-
terion measure; how this standard gets defined is never dealt with satisfactorily.) For a single cri-
terion-referenced test, different sets of decisions should be expected depending on where the cutoff
score is located. Some of these decisions would presumably be better than others; and some would
presumably be more consistent than others, particularly if the measurement process has greater pre-
cision at some points along the scale than at others.

Users of tests, whether norm referenced or criterion referenced, have long recognized that it
makes little sense to claim that a test is valid, but that questions about the validity of particular uses
or interpretations of test scores can and should be asked. Cronbach (1971) put the argument as fol-
lows:

The phrase ‘‘validation of a test” is a source of much misunderstanding. One validates, not a
test, but an “interpretation of data arising from a specified procedure.” A single instrument is
used in many different ways—Smith’s reading test may be used to screen applicants for profes-
sional training, to plan remedial instruction in reading, to measure the effectiveness of an in-
structional program, etc. Since each application is based on a different interpretation, the evi-
dence that justifies one application may have litttle relevance to the next. Because every inter-
pretation has its own degree of validity, one can never reach the simple conclusion that a partic-
ular test “‘is valid.” (p. 447)

Similar considerations have to be made with regard to questions of reliability. In particular, it is
important to distinguish between the measurements made using a test and the decisions made on the
basis of those measurements. A test that yields relatively good measurements (i.e., measurements that
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on the average have a relatively small standard error) would be expected to yield decisions that are, in
some sense, also relatively good (e.g., consistent); but the choice of cutoff score may be such that for a
particular application this same test yields relatively poor decisions. On the other hand, a test that
provides relatively poor measurements would be expected to result in relatively poor decisions; but
again, the choice of cutoff score may be such that the test actually supports decisions that are rela-
tively good.

The view of the authors is that in relation to criterion-referenced tests the term reliability has been
used to describe a range of attributes, some belonging to the measurements yielded by the test, and
others describing the decisions made when the test is used in a particular manner. Both are impor-
tant, although referring to both as reliability encourages confusion and is therefore questionable. In
particular, it seems unwise to use the phrase “test reliability”’ when it is the use of a test to make par-
ticular kinds of decisions that is being referenced. The use of more explicit terminology such as *‘reli-
ability of decisions in domain-referenced testing”’ (Huynh, 1976b) and alternative names such as *“in-
dex of dependability for mastery tests” (Brennan & Kane, 1977a) is thus encouraging. Hambleton,
Swaminathan, Algina, and Coulson (1978) have reinforced this important distinction of differ-
entiating the reliability of domain score estimates from the reliability of mastery classification deci-
sions.

Because of considerations such as these, the two-dimensional framework defined by the following
questions is offered as an aid to the organization of discourse about the reliability of critetrion-refer-
enced tests:

1. Is what is being assessed a property of the measurements yielded by the test, or of the decisions
made on the basis of those measurements?

2. What assumptions are made about the nature of the measurements yielded by the test? In par-
ticular, is what is being measured a variable that, given sufficient accuracy of measurement,
should be dichotomous, or one that should be continuous?

It is the contention of the authors that the issues of interest in a systematic treatment of test reliability
will be different, depending on how these questions are answered. Four situations, which can be de-
picted as in Figure 1, are distinguished. The variable itself may be seen as continuous or binary, and
the intention may be to measure the variable or to take some decision on the basis of the measure-
ments made of the variable. The four situations may be described as follows.

Situation 1. Measurements of a continuous variable are used to make decisions about pupils. It
will be assumed that the decisions are binary (e.g., pass-fail, promote-retain), although some proce-
dures are available for dealing with classification into three or more categories (see, e.g., Huynh,
1978; Swaminathan, Hambleton, & Algina, 1975). In Situation 1, the intended use of test scores is to
make decisions. Questions can be raised about the consistency of those decisions or about the losses
associated with incorrect decisions.

Situation 2. Measurements of a binary variable are used to make decisions, which must be
binary as well. The intended use of the test scores is again to make decisions. As in Situation 1, con-
cern may be with the consistency of the decisions or with an examination of losses. This situation dif-
fers from Situation 1, though, in that correct classifications can be distinguished from misclassifica-
tions, whereas in Situation 1 serious misclassifications (e.g., a failed pupil who had achieved at a level
well above the cutoff score) can also be distinguished from minor misclassifications (e.g., a failed
pupil who had actually surpassed the cutoff score by the barest of possible margins).
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Figure 1
A Framework for Organizing Issues Pertaining to the Reliability
of Criterion-Referenced Tests

Type of variable

Continuous Binary
DeC}51on— 1 2
making
Intended use of
test score Measure-
3 4
ment

Situation 3. The variable being measured is continuous, and the focus of attention is on the
measurements themselves, rather than the making of binary decisions. Reliability can be defined in
terms of consistency over repeated measurements or over equivalent measures. A domain-referenced
test, for which the purpose of measurement is to estimate an examinee’s standing on some well-de-
fined universe of tasks or items, fits this situation. Conventional wisdom would recommend the use of
traditional reliability coefficients in this situation, but they do have at least one serious shortcoming.
Taking a (randomly) parallel forms correlation as an example, it is possible that the two forms could
rank pupils in almost the same way, although yielding score distributions that are different in central
tendency and/or variability. There would then be a high correlation, even though the two forms
yielded scores that differed substantially. For a domain-referenced test, where the aim is to estimate
the proportion of items known in a well-defined universe of tasks, and not just order the examinees
with respect to one another, this hardly seems adequate.

Situation 4. The measurement properties of a binary measure may be documented in a number
of ways. The most desirable property of such a measure is accuracy of classification, and a corollary of
this is consistency of classification. Certainly in practice, and perhaps also in concept, Situation 4 will
be difficult, if not impossible, to distinguish from Situation 2.

A Review of the Literature

For the most part, the conceptualizations and associated procedures that can be found in the
literature on CRM reliability fall into Situation 1 of Figure 1. Consequently, this situation is treated
first and at greatest length in the subsections that follow.! The other situations defined in Figure 1 are
treated only briefly near the end of the paper.

The outline followed in the ensuing description of conceptualizations and procedures for Situa-
tion 1 is this: A conceptual framework for decision-making is constructed and three kinds of loss due
to decision errors are defined; each kind of loss is treated separately, the presentation of related de-
velopments being concentrated on concepts and issues. Readers who wish to delve deeply into tech-
nical details are advised to consult the original sources cited.

'For a different but very useful treatment of the concepts and coefficients the authors have assigned to Situation 1, see Kane
and Brennan (1980).
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A Conceptual Framework for Decision-Making

Situation 1 of Figure 1 is focused on the measurement of continuous variables, the resulting mea-
surements being used to make binary decisions. This decision-making situation can be described as
follows. Suppose that the application of a CRT to a person yields an observed score, say x. In the
CRM literature it is usual to assume that the test is composed of dichotomously scored items, hence
that x is the number of items answered correctly or the proportion of items answered correctly, or for
multiple-choice items a score corrected for the effects of chance success. For the present, however, no
restriction on the derivation and meaning of x need be imposed. If x exceeds or equals a predeter-
mined cutoff score, say c, the person is said to have passed; otherwise, he or she is said to have failed.
The decision, then, involves comparing x with ¢ to decide whether or not the person has passed. (Note
that the word pass is used simply to describe the fact that the person’s test score is above or equal to
the cutoff score.)

The possibility and source of decision error in this situation becomes clear if it is imagined that x
is the realization of a true or latent measurement, say 7, plus a random perturbation, say €. De-
pending on the circumstances, T can be taken to be either a true score in the classical sense or a uni-
verse score in the sense of generalizability theory. If, corresponding to cutoff score ¢ on the observed
score scale, there is cutoff score y on the true score scale, then the ideal or true decision would be to
pass a person if his or her true score T equals or exceeds y; otherwise, the person should be failed. A
comparison of the decision based on the observed score x with that based on the true score T reveals
whether or not a decision error has occurred.

Decision-making, as it has been outlined, is summarized in Figure 2. Incorrect decisions fall into
cells (1,0) and (0,1), the former being false negative decisions and the latter being false positive deci-
sions. The other two cells contain the correct decisions.

The problem is that of somehow describing the goodness of the dichotomous decision situation.
One approach is to work with the information that is either contained in, or can be derived from, the
situation depicted in Figure 2. Note that there is a precedent in the literature on CRM for viewing the
correspondence between decisions based on the observed score and true score variables as decision
validity (see, e.g., Harris, 1974; Millman, 1979). But just as the reliability of a test in classical theory
can be defined as the squared correlation between observed and true scores (Lord & Novick, 1968, p.
61), so too, the goodness of decision-making as reflected by the correspondence between observed-
score and true-score-based decisions can be seen as decision reliability.

Figure 2
The Dichotomous Decision Situation

True Score Variable

T <Y T2y
Observed X 2c (o,1) (1,1)
Score
Variable X <c (0,0) (1,0)
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RELIABILITY OF TEST SCORES AND DECISIONS 525

A second approach to describing the goodness of the dichotomous decision situation is to study
the correspondence between decisions based on the observed scores for two or more parallel tests.
This approach, too, has its analogue in traditional reliability theory, the correlation between observed
scores on parallel tests.

Each of these approaches to describing the goodness of decision-making has stimulated the de-
velopment of a corpus of research and writing; hence, they have been used implicitly in organizing
this review. In addition, however, explicit use has been made of an overriding organizational concept,
that of loss. A function, say L, has been defined that specifies the losses that can accrue whenever
decisions are made. The losses for the four cells of Figure 2 can be specified as in Figure 3 (adapted
from van der Linden & Mellenbergh, 1977).

Three ways of assessing the losses due to decision errors have been employed in the CRM litera-
ture.

1. Threshold loss, in which case all losses associated with a particular decision error are assigned an
equal value. To be more specific, under threshold loss the values of the loss function given in
Figure 2 might be defined as follows: £o,(1)=a, £,6(1)=b, L,,(T)=L00o(1)=0, where a and b are real
numbers.

2. Linear loss, in which case the magnitude of the loss associated with an error of a particular kind
is a function of the distance between y and 7. In this case, there might be Lo,(t)=b,(r—y)ta,,
1, {D)=b1—y)+a,, and £,,(t)=L,1)=0, where b,, b,, a,, and a, are real numbers.

3. Squared-error loss, in which case the loss associated with an error is a function of the square of
the distance between y and .

Given L, y, and either the joint distribution of x and T or, equivalently, the distribution of T and
the conditional distribution of x given T, it is possible to define a risk function, say R, as the expected
loss over the population of examinees. With R so defined (note that y is presumed known) it is pos-
sible to choose ¢ in such a way that risk, i.e., the value of R, is minimized by the decision-making pro-
cedure. Here, however, it is assumed that c is also given; the interest is in describing, in some sense,
the goodness of the decision-making procedure. Methods for doing this, such as they exist, are consi-

dered for each type of loss.

Figure 3
Values of Loss Function L for Dichotomous Decisions

True Score Variables

I <y Iy

Observed X2zc ,(01 (™) £, @
Score

Variable X <c ,(00(1) ,(10(1)
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Threshold Loss: Probability of Decision Error

Suppose ¢, y, and the joint distribution of x and t are known for some population of interest. If
the losses £,,(1)=a and 1,,(1)=b are also known for false positive and false negative decision errors, re-
spectively, then it is possible to compute the expected loss that would be incurred due to decision er-
rors for a sample of any given size drawn at random from the population. Alternatively, the losses due
to different kinds of decision errors can be ignored, in which case a natural and useful way to describe
the goodness of the decision-making procedure is by the probability of committing each type of deci-
sion error or by the overall probability of committing a decision error, regardless of type. These quan-
tities can be obtained by double-integration (where “‘integral’ is interpreted in the Stieltjes sense,
Kenny & Keeping, 1951, p. 24) of the bivariate distribution of x and t over the appropriate portions of
the ranges of these variables (see Figure 2).

An obvious problem with the foregoing proposals is that in practice the bivariate distribution of x
and T is not known. Moreover, the available methods for estimating this distribution are not very
satisfactory, particularly if the sample size is small (Lord & Novick, 1968, p. 527). Nevertheless, in the
literature on CRM reliability, Livingston (1978), Livingston and Wingersky (1979), and Wilcox
(1977a) refer to work by Keats and Lord (1962) and Lord (1965, 1969) that addresses this problem. It
is necessary here to restrict attention to tests composed of dichotomously scored items, in which case
an observed score on the test is simply the number of items answered correctly. Also, the proportion-
correct true score { must be used, not the number-correct true score t. (Note that T = n, where n is
the number of items in the test. Note, also, that the symbol y is everywhere used to represent the true
cutoff score; the context in which it appears indicates whether it is in the scale of T or £.)

Three crucial assumptions are made in the work of Keats and Lord (1962): (1) that the condi-
tional distribution of observed scores x for given true score ¢ is the binomial distribution; (2) that the
regression of ¢ on x is linear; and (3) that the distribution of ¢ is continuous. It can be deduced from
the first two assumptions that the observed scores are distributed as the negative hypergeometric dis-
tribution. The addition of the third assumption leads to the conclusion that the beta distribution (see,
e.g., Kenny & Keeping, 1951, pp. 95-97) is a ‘‘reasonable’” (Keats & Lord, 1962, p. 71) distribution
for . It is interesting to note that when this model applies, the squared correlation between x and ¢
equals Kuder-Richardson coefficient 21 (KR-21) for the reliability of a test.

Wilcox (1977a) has employed this negative hypergeometric model (also known as the beta bi-
nomial model) to derive the equations needed to estimate a, the probability of committing a false-
positive decision error, and f3, the probability of committing a false-negative decision error. In addi-
tion, Wilcox has derived equations for this same purpose that stem from use of a variance stabilizing
inverse sine transformation of proportion-correct scores.

Wilcox (1977a) evaluated the probability estimates that his equations yield in a monte carlo study.
He concluded, ‘‘In general, but not always, increasing {test length] will decrease the value of a. Conse-
quently, we lower the value of w, [the difference between true a and its estimated value &] by in-
creasing [test length] primarily because we obtain more accurate estimates of a« when a is small. In-
creasing [sample size] with [test length] fixed also lowered w, but at a somewhat slower rate’ (p. 304).
As regards the two different procedures that Wilcox devised for estimating the probability of decision
error, the one based on the variance stabilizing transformation ‘‘usually performed as well as [the
other procedure], and frequently it gave substantially better results” (p. 304). Regardless of which
procedure was employed, however, the discrepancy between the estimated and true values of a were
strikingly large relative to the true values of a. This points to the desirability of large samples of sub-
jects and long tests when this procedure is used.
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Further evidence bearing on this general conclusion was provided recently by Huynh (1980). He
has developed formulas for obtaining asymptotic estimates of the standard errors of @ and 8. Huynh
found that the differences between these standard errors and the actual standard errors computed in
a simulation study seem to vary as a function of test reliability. Of the five sets of test characteristics
for which Huynh simulated data, the two sets having a relatively large value of KR-21 were associated
with relatively small differences in standard errors, regardless of sample size. When KR-21 was rela-
tively small, however, the difference between asymptotic and actual standard errors was also relatively
small only when the sample size was large.

The work of Lord (1965, 1969) employs the assumption that the conditional distribution of x given
¢ is the compound binomial distribution (Lord & Novick, 1968, pp. 524-526). This assumption means
that the probability that an examinee answers a question correctly is free to vary from one item to an-
other. In Lord’s work this freedom exacts a price—the need to estimate for each item the relationship
between { and the probability of responding correctly. (Note here ¢, is the mean over the items in the
test of the probability that examinee i/ answers an item correctly.) This relationship cannot be esti-
mated without incurring sampling errors, which, as Lord and Novick (1968, p. 525) have observed, are
likely to be relatively large when cumulated over a number of items. Lord (1965) proposed a solution
of a different sort—the development of a finite series expansion of the compound binomial and use of
only the first few terms of this expansion to approximate the compound binomial distribution. It is
necessary to specify an unknown function of { in the second term of this expansion. Lord has chosen
to do so in such a way that the resulting squared correlation between x and ¢ is equal to Kuder-Rich-
ardson coefficient 20 (KR-20).2

Lord’s work with the compound binomial underlies two developments of interest here. One of
these was by Wilcox (1977a). He employed the two-term approximation to the compound binomial
distribution, while retaining the assumption that the true scores { are distributed as the beta distribu-
tion, to derive other formulae for estimating the error probabilities a and 8. In the monte carlo study
he conducted, Wilcox found that the compound binomial approximation effected very little reduction
in the size of the difference between the estimated and true probabilities of a decision error over what
that difference was when the binomial distribution was used. In the other development, Lord (1969)
devised a method in which the form of the distribution of ¢ is not specified. This is Method 20 (Lord,

*The CRM literature is not particularly clear as to when it is appropriate to assume that the distribution of x for given ¢ is bi-
nomial and when it is appropriate to assume that this distribution is compound binomial. The authors’ present understanding
of this matter stems in part from a reading of Keeping (1962): Given a universe of items, and provided (1) that the proportion of
items in the universe that a particular examinee can answer correctly is fixed during the time the examinee is being tested, (2)
that the items an examinee answers are chosen at random, and (3) either that the number of items in the universe is infinitely
large or that items are sampled with replacement, then the distribution of x for an examinee with a given true score ¢ will be bi-
nomial. Note that this distribution will be binomial whether or not the items are equal in difficulty, where the difficulty of an
item is the proportion of examinees in the population who can answer it correctly. The compound binomial distribution is the
appropriate model when the probability that an examinee answers an item correctly varies from item to item (i.e., from trial to
trial of the binomial process). Note that the probability of a correct response being referenced here is the probability for a par-
ticular examinee and a particular item; for a fixed item the probability in question will vary from examinee to examinee.
Hence, the aforementioned measure of the difficulty of an item does not provide a satisfactory estimate of the probability that a
given examinee will answer the item correctly. Moreover, it is impractical in educational testing to contemplate estimating this
probability by repeatedly administering an item to an examinee. What is required instead is strong theory. Lord (1965, 1969)
found a use for the compound binomial distribution in the context of one-dimensional latent trait theory. If the responses of a
population of examinees to the items in a universe are well modeled by a one-dimensional latent trait theory, then knowledge of
an examinee’s score on the latent trait and knowledge of the item characteristic curve is sufficient to determine the probability
with which the examinee answers the item correctly (Lord & Novick, 1968, chap. 16).
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1969). Other features of Method 20 have been summarized by Livingston and Wingersky (1979) as
follows:

Method 20 is based on the assumptions that (1) the (conditional) distribution of observed scores,
for persons with a given true score, is a compound binomial distribution (approximated by a
four-term Taylor series expansion), and (2) the true score distribution is ““smooth.” Before esti-
mating the true-score distribution, Method 20 divides the observed-score range into intervals.
The model for the true-score distribution contains one parameter for each interval. Method 20
estimates these parameters and uses the resulting estimated true-score distribution to predict
the number of persons in each observed-score interval. It then compares these predictions to the
actual observed-score distribution and computes a chi-square goodness-of-fit. (p. 257)

As noted by Livingston and Wingersky, this procedure can be repeated using more or fewer observed-
score intervals. A preferred solution is then chosen on the basis of the ‘‘smoothness of the estimated
true score distributions and the goodness-of-fit of the predicted observed-score distributions” (p.

Method 20 is not without its limitations:

The test must be unspeeded, and there must be rno correction for guessing. Ideally, every person
should have a chance to answer every item, and the person’s score must be simply the number of
items answered correctly. The only limit on the length of the test is a practical one; the existing
computer program will not accept a test of more than 100 items. Also, a very short test limits the
complexity of the estimated true-score distribution. But even as few as six items will allow for a
bimodal distribution with unequal modes. (Livingston, 1978, p. 3)

In addition, the use of Method 20 is not recommended for sample sizes smaller than 1,000 (Winger-
sky, Lees, Lennon, & Lord, 1969). This requirement limits use of the method to relatively large-scale
test administrations. An example of the application of Method 20 to data arising from the adminis-
tration of a 30-item test to over 3,000 examinees is reported by Livingston and Wingersky.

Two other ways of dealing with the probability of decision error should be noted. One is attrib-
utable to Divgi (1978). He proposed that the probability of misclassification be plotted as a function
of true score {. This curve will have a cusp at cutoff score y; the probabilities associated with the
values of { < y pertain to false positive errors, and the probabilities associated with values of £ 2 y per-
tain to false negative errors. As Divgi noted, ““Such a curve provides a complete description of the er-
ror in decisions based on the test. However, a single number is much more convenient. The natural
candidate, which does not require any arbitrary choice, is the rate at which [the error probability] de-
creases from its maximum value at [y]” (1978, p. 4). Divgi went on to say that ‘‘a higher value of [this
rate index] implies a smaller probability of incorrect classification of any true score, and therefore a
smaller expected loss for any given distribution of true scores in the population” (p. 4).

To employ Divgi's approach, it is necessary to assume the form of the distribution of x for given {.
Divgi has provided an illustration in which Lord’s two-term approximation to the compound bi-
nomial distribution is used. Divgi has shown that his rate index increases directly as the square root of
any increase in test length, and within limits, it increases directly as the variance of item difficulty in-
dices increases. This rate index also varies with the cutoff score y, being smallest, as would be ex-
pected, for cutoff scores in the midrange and largest for cutoff scores at the extremes of the true score
scale.
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A criticism of Divgi’s rate index is that it has no upper bound. Divgi himself suggested a trans-
formation of the index so that it lies in the interval [0,1]. Unfortunately, however, this transformed
quantity has ‘‘no simple interpretation” (Divgi, 1978, p. 5).

Another way of dealing with decision error probabilities has been suggested by Wilcox (1979b).
He proposed the calculation of upper and lower bounds on the probabilities of false positive and false
negative decisions. This can be done making no assumptions whatsoever concerning the form of the
distribution of true scores in the population of examinees. The method outlined by Wilcox requires
only that it be possible to estimate the mean and variance of the distribution of true scores. It is neces-
sary, of course, to assume the form of the conditional distribution of observed scores x given true
score {. For this purpose, Wilcox considered both the binomial distribution and Lord’s approxima-
tion to the compound binomial distribution. Given either of these distributions, Lord (1965) has pro-
vided the required estimates of the mean and the variance of the (unobserved) distribution of true
scores. Wilcox developed the rationale and equations needed to calculate upper and lower bounds for
the probabilities of decision error.

Threshold Loss: Decision Consistency’

Describing the goodness of the decision-making process by the probability of making an error has
not been promoted by many writers on the topic of CRM reliability, despite its conceptual appeal.
This circumstance is due in part, no doubt, to the unavailability of really good small sample methods
for estimating the probabilities of false-positive and false-negative errors.

An approach that does stem reasonably directly from psychometric tradition is suggested by the
concept of decision consistency. This phrase refers to the proportion of the examinees who are clas-
sified the same way with respect to cutoff score c on two tests that are administered independently, yet
designed to measure the same characteristic. Figure 4 depicts this situation. Consistency, as just de-
fined, is the sum of the proportions p, and p,, in Figure 4.

The approach to evaluating a decision-making process that is suggested by the notion of decision
consistency embraces several virtues: First, it can be implemented on relatively small samples of per-
sons, e.g., samples the size of a school class, although it must be remembered that when the sample
size is small, the estimated proportions have sampling errors that are correspondingly large. Second,
this approach does not require the adoption of any particular method for deriving test scores from
item responses. Third, there is flexibility in the fact that replicate measurements can be obtained in
several different ways—by readministering the same test, by administering two test forms that are
parallel in the classical sense (Lord & Novick, 1968, pp. 47-50) or by administering two test forms
that are parallel in the sense that they were formed by random sampling from the same universe.
Given the existence of a universe, it is even possible to imagine the situation in which each person is
administered a different pair of tests, these having been formed by sampling at random from the uni-
verse. Conceptions of true score and error will differ, of course, depending on the method used to
generate replicate measurements.

Aside from the fact that decision consistency fails to provide important information, namely the
probability of making a wrong decision, it has another defect. The coefficient of decision consistency
will usually be substantial even when the results on one test are independent of the results on the
other test. If a standard statistical treatment of contingency tables (see, e.g., Keeping, 1962, §11.18) is

*See Subkoviak (1980) for a review focused solely on decision-consistency approaches.
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Figure 4
Joint Decision Probabilities for Two Tests
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followed and if the scores on Test 1 are statistically independent of scores on Test 2, then the propor-
tion of times that x will be greater than or equal to ¢ on both tests is equal to the product of the corres-
ponding proportions of times x is greater than or equal to ¢ on each test separately. A similar argu-
ment defines the expected proportion of times x will be less than ¢ on both tests. This consideration
led Swaminathan et al. (1974) to propose the use of coefficient kappa (x) as a measure of decision con-
sistency. The formal definition of x for the bivariate decision situation depicted in Figure 4 is as fol-
lows:

(po-pc)/(l—pc) [1]
where
Pop = P11 * Pyo [2]
and
P. = Py.P.g * P;.P. [3]

In effect, x defines the proportion of times two tests yield consistent decisions beyond the level of con-
sistency that can be expected when scores on the two tests are independent.

The relationship between p, and x is not a simple one. It depends on the shape of the distributions
of scores on Tests 1 and 2, whether they are unimodal and symmetric or not; on the magnitude of the
correlation between scores on the two tests; and on the location of the cutting score c. In view of this,
Millman (1979) recommended that both indices be computed and reported, especially in view of the
fact that the additional work involved is negligible.

The statistic x has been the subject of much study (e.g., Brennan & Prediger, 1977; Cohen, 1960;
1968; Everitt, 1968; Fleiss, Cohen, & Everitt, 1969; Hubert, 1977; Kraemer, 1979). One of the inter-
esting facts about x is that if the marginal proportions for Tests 1 and 2 are the same (see Figure 4), x
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is equal in value to ¢, the Pearson product-moment correlation coefficient between dichotomous
scores on the tests (Cohen, 1960). (Dichotomous scores can be achieved by converting the scale of x to
the binary scale w through the following transformation: Set w = 1 when x 2 ¢; otherwise, setw = 0.)
Even when the marginal distributions of Tests 1 and 2 are not identical, Reid and Roberts (1978)
found that x and ¢ correspond very closely under simulated test conditions and recommended the use
of 4. Their recommendation should not be accepted uncritically, however, because the interpretations
of x and ¢ are very different.

Brennan and Prediger (1977) and Livingston and Wingersky (1979) questioned the use of x as a
measure of decision consistency. At issue is the fact that if a sampling theory were desired for x, that
theory would have to be based on only those samples from the population of examinees that provide
test results of a very restricted kind; the marginal proportions of the contingency table constructed for
each sample would have to be exactly the same as the marginal proportions of the contingency table
that were observed and used in the calculation of x. This is because, under the assumption that the re-
sults for the two tests are independent, the expected proportions of the sample falling in the cells of
the contingency table are estimated using the observed marginal proportions as estimates of the mar-
ginal proportions in the population (Keeping, 1962, p. 316). Brennan and Prediger (1977, pp. 6, 7) at-
gued from this fact to the conclusion that p. provides a ‘‘reasonable’”” measure of the extent of agree-
ment that can be expected when the scores on two tests are statistically independent only when the
marginal proportions of the contingency table are fixed in advance. Livingston and Wingersky (1979,
p. 250) drew much the same conclusion. Of course, to fix the marginal proportions in advance would
be anathema to those users of CRM who set cutoff score ¢ before administering the test and then let
the results determine the proportions of examinees who fall above and below c.

There seems to be no basis in the statistical treatment of contingency tables with which the
authors are familiar, however, for concluding that the marginal proportions must be fixed prior to the
administration of the tests. In the statistical treatment referred to, the marginal proportions are ac-
cepted as observed, without prior restriction; but the sampling distribution of x is restricted to a
limited set of examinee samples, namely, those that give contingency tables having the same marginal
proportions as were observed. Whether or not a sampling theory for x is needed depends on whether
or not one wants to test the significance of, or construct a confidence interval for, x. In any case, x
provides a measure of decision consistency in the same way that a Pearson product-moment correla-
tion coefficient provides a measure of association, whether or not the available sampling theory for
the correlation coefficient is used.

A more serious problem with x has also been noted by Brennan and Prediger (1977, p. 7). If the
marginal proportions for Tests 1 and 2 are not identical, then, as Cohen (1960) has shown, the maxi-
mum value of x is less than 1, just as the maximum value of ¢ under the same circumstances is less
than 1. For this situation, Brennan and Prediger (1977) noted the possibility of using the statistic
x/max(x), where max(x) is the maximum value of x that is possible for a given contingency table in
which the marginal proportions for Test 1 differ from those for Test 2.

Finally, with reference to x, note another suggestion from Brennan and Prediger (1977, p. 10). For
examinees being categorized into two mutually exclusive categories on the basis of test results, Bren-
nan and Prediger have suggested the use of ‘2" as the expected marginal proportions for each cate-
gory. It has been suggested that these proportions apply if the assignment of examinees to categories
is made at random and, moreover, that these proportions remove the necessity, when formulating a
sampling theory for contingency tables, of restricting that theory to samples that yield tables having
the same marginal proportions as the observed table. Following this suggestion to its conclusion, if
the assignments made by one test are independent of the assignments made by the other, then the
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probability that both tests will assign an examinee to the same category (i.e., the probability either
that x 2 ¢ on both tests or that x < ¢ on both tests) will be (/2x¥2) + (42XV2) = V2. A measure of decision
consistency can then be defined (Brennan & Prediger, 1977, p. 10) as x, = (p,—"2)/(1—*4). This mea-
sure of agreement was also suggested by Livingston and Wingersky (1979, p. 250), who show that it is
formally identical to the G index of Holley and Guilford (1964). Prospective users should note that x,
will differ from x, except, of course, when the observed marginal proportions of the contingency table
are equal to V4, in which case the two coefficients are identical.

An obvious difficulty with the decision consistency approach is that results from two test adminis-
trations are required. This difficulty has sparked the development of methods whereby p, and x can
be estimated from the results of a single test administration.

Huynh (1976b) has described a method that can be viewed as stemming from the negative hyper-
geometric or beta-binomial model described by Keats and Lord (1962), although Huynh derived the
method using a Bayesian approach. The three main assumptions stated by Keats and Lord, presented
earlier, lead to another deduction: that ‘‘the bivariate distribution of randomly parallel tests is the bi-
variate hypergeometric distribution” (1962, p. 71). Using this deduction, Huynh’s proposal can be
summarized as follows:

1. Use the available distribution of observed scores to compute the required parameters of the two-
parameter beta distribution of true scores;

2. Assume that these same parameters would characterize the beta distribution of true scores for a
randomly parallel test were it available;

3. Apply the formulas provided by Keats and Lord (1962, pp. 62, 66) or by Huynh (1976b, pp. 254,
255) to compute the theoretical relative frequencies of the marginal and joint distributions of
scores on the available test and its hypothetical, randomly parallel counterpart; and

4. Aggregate the appropriate ones of these relative frequencies to obtain the proportions required to
compute p, and x (see Figure 4).

Huynh (1979) shows how to compute the standard errors of these quantities.

A second method of estimating decision consistency from the results of a single test administra-
tion has been proposed by Subkoviak (1976). The fundamental assumption underlying this method is
that for a specified person, the distribution of observed scores on each of two randomly parallel tests
is binomial and therefore a function only of test length and the person’s true (proportion correct)
score for the universe of items from which the test items were sampled. If a person’s observed scores
on different randomly parallel tests are independent, then the probability that an observed score for
this person will exceed cutoff ¢ is the same for all tests of length n. Given both c and the estimated
true score for person i, say ¢, and assuming that the conditional distribution of x for given ¢; is the bi-
nomial distribution, the estimated probability that this person’s observed score equals or exceeds c is

n

nji> x 2 \n-x

> = -

p; (x>c) ) [XJci (1-z,) [4]
X=c

The probability that this person’s observed scores on two randomly parallel tests are either both less

than ¢ or both greater than or equal to c, under the assumption that the observed scores on the two
tests are independent except, of course, for their mutual dependence on ¢, is

pOi = pi(XZC)Z + [l'Pi(XZC)]Z [5]
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Averaging p,; over i yields, for the group of persons being studied, an estimate of p,, the index of deci-
sion consistency. As noted by Subkoviak (1976, p. 268), it would be feasible, possibly even desirable,
to modify the foregoing model by substituting Lord’s approximation to the compound binomial dis-
tribution for the binomial distribution itself.

In applying Subkoviak’s approach, one problem that must be resolved is that of estimating the
true score {.. Subkoviak suggests several possibilities, of which three are noted here.

1. The proportion of test items answered correctly. This is the maximum likelihood estimate of {,,
and according to Subkoviak, it “should lead to reasonably accurate results if [the number of
items in the test is greater than] 40, particularly if the mastery level of most students is well above
or below [a true score equal to] .50’ (1976, p. 269).

2. The linear regression estimate of true score, i.e., {; = g../(x./n) + (1—g.. Jc/n, where ¢.» is the esti-
mated coefficient of reliability, x,/n is the proportion-correct score of person i, and X/n is the
mean proportion-correct score. As Subkoviak emphasizes, it is reasonable to employ this regres-
sion only when the distribution of observed scores is negative hypergeometric and the conditional
distribution of x for given ¢ can be presumed to be the binomial distribution, in which case the re-
gression (reliability) coefficient is KR-21 (Keats & Lord, 1962).

3. The non-linear regression estimate due to Lord (1959). Unfortunately, this regression is “‘not
uniquely determined by the observed score distribution” (Lord & Novick, 1968, p. 514), and the
method requires large samples, but it does not rest on any distributional assumption other than
that the conditional distribution of x for given ¢ is binomial.

A third method for estimating decision consistency from the results for a single test has been
proposed by Marshall and his collaborators (Marshall, 1976; Marshall & Haertel, 1975; Marshall &
Serlin, 1979). The index that has been proposed is ‘‘the mean (over persons) proportion (over all pos-
sible test splits) of consistent mastery [i.e., pass-fail] decisions on a hypothetical double-length test”
(Marshall & Serlin, 1979, p. 3). Several ways have been suggested for modeling the distribution of
scores on the double-length test (Marshall & Serlin, 1979), including the negative hypergeometric or
beta binomial model, Lord’s compound binomial model, and the binomial model with linear regres-
sion estimates of true scores that was employed by Subkoviak.

Some attention has been paid in the recent literature on CRM reliability to studying the char-
acteristics of different single-trial procedures for estimating decision consistency (Algina & Noe,
1978; Subkoviak, 1978). Interest extends to Subkoviak’s procedure because its use with small (class-
sized) samples can be easily justified (Hambleton et al., 1978, p. 22). Algina and Noe (1978) focused
their study on Subkoviak's procedure. Simulating tests that might be described as homo-
genous—*‘the average within-examinee variance of the [item true scores] was small” (Algina & Noe,
1978, p. 105)—and keeping responses to different items by the same examinee independent, these in-
vestigators compared the proportion-correct estimate with the linear regression estimate of true
scores. The results suggest that the true proportion of consistent classifications can be estimated most
accurately using the linear regression estimate of true scores. In addition, Algina and Noe concluded
that under the conditions studied, there is substantial bias in the estimated proportions of consistent
classifications only when the cutoff score is near the mean score and the classical reliability coefficient
(i.e., 0..-) exceeds .48.

Subkoviak (1978) compared three of the single trial procedures using real data, the responses of
1,546 students (the population) to S0 items (the universe) drawn from the verbal sections of a Scholas-
tic Aptitude Test. The cutoff score and length of test were varied; class-sized samples of students were
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drawn. Not much difference was found among the estimated proportions of consistent classifications
that were obtained using the different procedures. All procedures gave biased estimates under some
conditions and all had small sampling variances as compared with the sampling variance of the esti-
mates obtained by administering two tests to the examinees. (This latter result should be expected be-
cause the single test procedures model scores for a second test, and these modeled scores are likely to
conform more closely to scores on the available real test than would the scores on a second real test.)
Subkoviak recommended use of Huynh's procedure for the reason that “it is mathematically sound,
requires only one testing, and produces reasonably accurate estimates, which appear to be slightly
conservative for short tests” (1978, p. 115).

This conclusion, however, should be treated cautiously. Wilcox (1979a) has summarized the nega-
tive features of the beta-binomial model on which Huynh'’s procedure rests:

1. Estimates of the parameters of the beta distribution of true scores can sometimes yield unaccep-
table negative values of the probability density;

2. The parameter estimates can be very different from their true values even when sample size is
relatively large;

3. The beta-binomial model permits the distribution of true scores either to have only one mode or
to be U-shaped; and

4. The assumption that the conditional distribution of x for a given £ is binomial “must be viewed as
an oversimplification of the ‘true’ situation when an item sampling model applies. More specifi-
cally [as noted by Lord and Novick (1968, p. 524) and as acknowledged by Huynh (1976¢)], the bi-
nomial conditional distribution is justified when the observed scores of different examinees are
distributed independently of one another; however, this independence does not exist in the usual
case where all examinees take the same random sample of n items’’ (Wilcox, 1979a, p. 246).

The discussion of one-trial estimates of decision consistency is concluded on the following note of
warning: These methods all require strong assumptions. Whichever assumptions are made, the re-
sulting estimates of decision consistency are only approximations to the estimates that would result
were two tests used instead. The one-trial estimates are likely to be biased, and they almost certainly
will have sampling variances that are unrealistically small compared with the sampling variances of
the two-trial indices they approximate.

Linear Loss

As in the consideration of threshold loss, let knowledge of ¢, y, and the joint distribution of x and
¢ be assumed. Suppose, too, that the loss due to a decision error is specified as a linear function of the
difference between the true score ¢ and the true cutoff score y; e.g.,

Lo1(8) = b (E-v) + a;
KlO(C) = bO(C_Y) + ao
(11(2) = Lyp(2) = 0 [6]

where aq, 4., bo, and b, are real numbers. The expected value could then be computed of the loss that
would be incurred under these conditions for a randomly constituted sample of any given size drawn
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from the population. This expected value, also called the Bayes risk or the risk (van der Linden &
Mellenbergh, 1978), would not be directly interpretable, being a function of sample size and the num-
bers a,, a,, bo, and b,, as well as the choice of ¢, y, and the form of the functional relationship between
x and (.

Attempts to define a standardized index of risk, or its complement, can be found in the CRM
literature for linear loss functions (and, as will be seen shortly, for squared-error loss functions).
These attempts are peculiar in a way that motivates this digression. Gains due to correct deci-
sions—in the complement, losses due to incorrect decisions—are not set to zero as Equation 6 sug-
gests they should be. If it is supposed, therefore, that incorrect decisions contribute a negative quan-
tity to the complement of a standardized index of risk, then correct decisions contribute a positive
quantity to this index, with the size of the contributions, both positive and negative, being determined
in the case of linear loss by the extent to which an examinee’s true score departs from the true cutoff
score. An index obtained in this way reflects the relative extent to which the positive contributions of
correct decisions outweigh the negative contributions of incorrect decisions. It is debatable, perhaps,
whether or not indices of this sort, because they do not conform to expectations for what a stan-
dardized index of risk or its complement should be, should be treated as exemplars of work on Situa-
tion 1 of Figure 1. They should, however, because these indices are sensitive to variation in the loca-
tion of the cutoff score c. In other words, these indices have been designed for use in situations where
pass/fail decisions will be made, and they are sensitive to changes in the rule for making these deci-
sions.

Two attempts to define standardized indices were encountered in the literature on CRM. Livings-
ton and Wingersky (1979) have described an index of decision-making efficiency, symbolized here as

Lpme:

Expectation[(z-y).Sign(x-c)]

Inve =

Expectation[(z-v) .Sign(z-v)] [7]

In computing this index, all decisions are considered—correct as well as incorrect—and false-positive
errors are seen as just as serious as false-negative errors. (Livingston and Wingersky offer a variant of
Equation 7 for use when the two kinds of decision errors are weighted differently.) The requisite in-
formation for computing I was obtained in an application described by Livingston and Wingersky
through use of the previously noted Method 20 attributable to Lord (1969). Recall that Method 20
serves to estimate the joint distribution of x and ¢. It is clear from Equation 7 that losses in efficiency
due to decision errors—these occur when the sign of (x—c) differs from that of ({(—y)—are a function of
the (linear) difference between  and y.

Another standardized index has been suggested by van der Linden and Mellenbergh (1978). This
index, whose lineage can be traced to Huynh (1976a), as defined as follows:

§ =1 - (R-R)/(R -R) [8]

where
R is the expected risk for the decision-making situation as it has been observed,
R, is the risk for the situation in which observed scores are a monotonically increasing function
of true scores, and
R. is the risk for the situation in which observed scores are independent of true scores.

As defined, J increases as risk decreases. Moreover, if R lies in the interval from R, to R, inclu-
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sive—this is not necessarily true (van der Linden & Mellenbergh, 1978, p. 212; see also Wilcox,
1978)—d will fall in the interval from O to 1 inclusive: “‘a value of O signifies that the test is worthless,
and a value of 1 signifies that the test is perfect for the decision situation’ (van der Linden & Mellen-
burgh, 1978, p. 121).

Suppose, now, that the following linear loss function is used to evaluate R:

bO(C-Y) *a, for x<c

bl(t‘;-y) *a for x=c [9]

L(z) =

[Note that the correct decisions make a nonzero contribution to L(¢)]. Suppose, too, that the linear re-
gression of ¢ on x is used to estimate the unknown value of ¢ for given x. Then, the standardized index
¢ assumes the value g,., where g..- is the reliability coefficient. In this development, .. is the same re-
liability coefficient as the one used to obtain the linear regression estimate of ¢.

Squared-Error Loss

Three lines of development in the CRM literature employ a squared-error loss function to mea-
sure the seriousness of decision errors. Each of these developments is similar in that the losses due to
correct decisions are not set to zero.

One line of development is due to van der Linden and Mellenbergh (1978). They define the loss
function

L(z,x) = [£(x)-c]? [10]

where f(x) is an estimate of { based on the observed score x. It can be shown (van der Linden & Mel-
lenbergh, 1978, pp. 122-123) that when f{x) is the linear regression estimate of ¢ given x, the risk is

R = ccz(l-pxx,) [11]

where o0,? is the variance of true scores {. The standardized index d is the reliability coefficient g..,
provided that when ¢ and x are independent, the variance of { is greater than zero. (In classical test
theory o, is zero when ¢ and x are independent, in which case d is undefined. This was not noted by
van der Linden & Mellenbergh, 1978.)

Wilcox (1978) has identified several problems with this line of development. The linear regression
used to estimate ¢ includes p,,., which is not known and must be estimated. The risk function be-
comes complicated when an estimate of g,. is substituted for g,.. itself, and the function ‘‘cannot be
evaluated theoretically” (p. 611). In this case d, too, cannot be evaluated.

A second line of development involving squared-error loss was initiated by Livingston (1972). His
by now familiar treatment of CRM reliability is an adaptation of the derivations leading to the coeffi-
cient of reliability in classical test theory. In essence, Livingston substituted cutoff score ¢ for the
means y, and ., in the expressions for the observed and true score variances of classical test theory.
This leads to the coefficient

k?(x,t) = D2(1)/D?(x) [12]
where
D?(x) = 0 * + (u -¢)? [13]

X
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and

D2(1) = pxx,oxz + (ux—c)z [14]

Livingston's index has many interesting properties. Normally, it is greater than g..., the excep-
tions being when y, = ¢, and @.,. = 1. It does not shrink to zero or become undefined through lack of
score variance as long as c is sufficiently removed from p.. And, of course, when u, = c, it becomes
identical with g,,.

Upon superficial examination, many of these results might seem paradoxical when compared
with the results of classical test theory. They are not, and if they seem so, it is only because of false ex-
pectations engendered by familiarity with classical results. As Livingston has explained,

The point is simply that the farther any person’s obtained score is from the criterion [cutoff]
score, the more confident we can be in saying that his true score is on the same side of the cri-
terion score. Then if two groups of scores have equal variance and equal reliability in the norm-
referenced sense, the group of scores whose mean is farther from the criterion score must have
the greater criterion-referenced reliability. (1972, p. 18)

Since the publication of Livingston’s (1972) seminal article, the formulation it contains has been
extended by Lovett (1977, 1978), who has provided two alternative derivations of Livingston’s coeffi-
cient. One of these is from the perspective of the analysis of variance of item scores, and the other is
based on the assumption that the distribution of dichotomous item scores for a given true score (i.e.,
for a given examinee) is binomial. Although these derivations yield results that appear to be equi-
valent to Livingston’s, it must be remembered that Livingston used only the assumptions of classical
test theory; these are not necessarily valid for dichotomously scored items. (See, for example, Lord &
Novick, 1968, chap. 23.) At the very least, for Lovett’s (1977, 1978) and Livingston’s (1972) derivations
to yield similar interpretations, the items that Lovett considers must be strictly equal in difficulty for
each examinee. ,

The ideas of Livingston (1972) have been elaborated in the third line of development from the per-
spective of squared-error loss by Brennan (1977, 1978, 1980), Brennan and Kane (1977a, 1977b), and
Kane and Brennan (1980). This elaboration is founded on generalizability theory (Brennan & Kane,
1979; Cronbach et al., 1972) in the same way that Livingston’s (1972) proposal is founded on classical
test theory. The principal consequence of this substitution of one theory for the other is a conception
of measurement error that Brennan and Kane, among others, think is highly appropriate for domain-
referenced measurement, whenever this kind of measurement is achieved.

The nature of this conception of measurement error can be easily grasped if it is recalled that for
a domain-referenced test the existence of an infinite pool or universe of items and an infinite popula-
tion of examinees is imagined. Let ¢; be the proportion of items in the universe that examinee / can
answer correctly, n; be the proportion of examinees in the population who can answer itemj correctly,
(¢m),; be the effect due to the interaction of examinee ¢ with item j, and ¢, be the residual error. Then
the (dichotomous) observed score, say x,;, of randomly selected examinee i on randomly selected itemj
can be modeled as follows:

= .= .- + {gm).. + €., 15
I R R RGO [15]

where u is the expected value over examinees and items of x,;. Under the required assumptions of
analysis of variance (see, e.g., Lord & Novick, 1968, pp. 162-166), the variance of x,; over items and
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examinees can be expressed as follows:
o%(x) = 0%(g) + o%(m) + o®(cm,e) [16]

where
0*({) is the variance, over the population of examinees, of {;;
o%(n) is the variance, over the population of items, of n;; and
o*(én,e)is the variance, over the population of examinees and the universe of items, of (¢n),
and g,
(These interaction and residual effects are inextricably confounded if each examinee responds only
once to each item.)
Consider now the usual definition of measurement error as the difference between observed score
x,; and true score ¢,. From Equation 1S5 this error, say A, is as follows:

Aij = (ﬂj—u) + (cw)ij + Eij [17]

in which case the variance over items and examinees of A;; is
62(a) = o%(m) + o?(zm,e) [18]

This is the error variance recommended by Brennan and Kane (1977a, 1977b), by Cronbach et al.
(1972), and much earlier by Lord (1955), for judging an examinee’s observed score in relation to a pre-
determined cutoff score y. There can be no quarrel with this recommendation when different ran-
domly selected examinees or groups of examinees take different randomly selected sets of items from
the universe.

Suppose, however, that all students take the same test. If the purpose of this test is to estimate the
universe (or domain) scores of the examinees, then reference must be made to Lord and Novick (1968,
pp. 187-191) for a means of describing, within the framework of generalizability theory, the quality of
the measurements provided by the test for this purpose. Alternatively, if interest does not extend to
the examinees’ probable performances on any of the other distinct tests that could be formed, by
whatever means, from the universe, then the appropriate error of measurement would appear to be
what Cronbach et al. (1972) call d. It is defined as follows:

_ - - 19
(xij Ei) (nJ u) [19]
and has variance

g2 (8) = o2(zm,e) [20]

This is the error variance that Lord and Novick (1968, p. 167) refer to as the ‘‘generous estimate of the
specific error variance’ for the test. (The ‘‘specific error variance” for a test is the variance of errors in
the classical test model.) For a full discussion of these different conceptions of measurement error, see
Lord and Novick (1968), Cronbach et al. (1972), Brennan and Kane (1977a, 1977b), and Brennan
(1978, 1980).

Using the error of measurement A, Brennan and Kane (1977a) have defined an index of de-
pendability for CRM, symbolized here as ID(y). This index is analogous to Livingston’s (1972) k*(x,1);
it can be specified as follows:
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0%(g) + (u-v)? :
ID(Y) = ; [21]
o%(2) + (-v)? + = 0% (8)

(Note that ID(y) is an index for proportion-correct scores.) A means of estimating ID(y) is provided by
Brennan and Kane (1977a, pp. 280-282).

Some of the characteristics of ID(y) are worthy of note. It has the form of a reliability or generaliz-
ability coefficient except, of course, for the presence of the term (u—y)* in the numerator and de-
nominator. The presence of this term means that, like k*(x,7), ID(y) can be relatively large even when
the true score variance 0*({) is 0 or nearly so. Also, ID(y) is at its smallest when y = u. In this case,
there is the special index,

ID(u=y) = 02(2)/[62(2) + = o2(8)] [22]

which Brennan and Kane (1977b) refer to as a “‘general purpose index of dependability” (p. 617). In
practice, of course, u is not known. It is possible, however, for y to be set equal to the sample mean
proportion-correct score (i.e., ¥ = 23x,/nN, where N is the size of the examinee sample and » is
the size of the item sample). Brennan’ (1977) has shown that in this case, ID(y) is equal to coefficient
KR-21, a result that would be expected on the basis of Lord’s (1955) work. Brennan has also shown
that ID(u=y) 2 KR-21. This supports the recommendation of Brennan and Kane (1977b) to compute
ID(u=y) as a general-purpose index of dependability whenever possible. Of course, KR-21 is easily
computed, so if it can be assumed that X is not very different from y, then KR-21 would be preferred
on practical grounds.

The Remaining Situations

Situation 2 of Figure 1 is defined by a binary variable that is measured for the purpose of deci-
sion-making. In the earlier discussion of binary variables, the point was made that repeated attempts
to measure a binary variable, as when students respond to n dichotomously scored test questions and
receive for their efforts a score equal to the number of questions answered correctly, invariably result
in scores that range from 0 to n, even though the belief for this situation is that all scores should be
either 0 or n. This might suggest that all of the proposals for CRM efficiency that were considered for
Situation 1 can also be employed for Situation 2. Close inspection of this suggestion, however, shows
it to be false. Under the binary model, the distribution of relative true scores { will possess nonzero
density at only two points, { = 0 and { = 1. (Note again that these are Platonic true scores, not the true
scores of classical test theory, Lord & Novick, 1968, chap. 2.)

All approaches for assessing decision efficiency in which it is assumed that the distribution of true
scores is smooth and continuous—this is true of approaches based on the beta-binomial model and
Lord’s Method 20—cannot apply to Situation 2. Also inapplicable are those approaches in which it is
assumed that the conditional distribution of observed scores for a given true score is either the bi-
nomial or the compound-binomial distribution; this assumption is invalidated by the appearance of
observed scores different from 0 and n. Only one of the approaches discussed for Situation 1 is clearly
applicable to Situation 2: the decision consistency approach of Swaminathan et al. (1974).

There are two other approaches. One of these is Harris’ (1974) squared point-biserial coefficient of
correlation between the observed test scores and the corresponding dichotomous decision scores. The
second development is by Macready and Dayton (1977). In their approach, examinees are assumed to
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fall into one of two groups—masters, all of whom have Platonic true scores of 1, and nonmasters, all
of whom have Platonic true scores of 0. The examinees are also assumed to respond to a set of n
dichotomously scorable items; but instead of summing the scores on these items to produce an ob-
served score on the scale from 0 to n, Macready and Dayton attend to the vector of n dichotomous
item scores that can be formed for each examinee. The probability of occurrence of a given score vec-
tor is specified as the sum of the probabilities of two mutually exclusive events: (1) that the examinee
was a master who answered items incorrectly because of forgetting, and (2) that the evaminee was a
nonmaster who answered items correctly by guessing. (In this formulation, the probability that a mas-
ter answers an item cotrectly and the probability that a nonmaster answers an item incorrectly are, re-
spectively, the complements of the forgetting and guessing probabilities.)

Macready and Dayton considered two different ways of modeling the probabilities associated
with these two events. In one model the probability that a master forgets the answer to an item is left
free to vary from item to item. Similarly free to vary is the probability that a nonmaster guesses the
cotrect answer to an item. In the second model, the probability that a master forgets the answer to an
item is constrained to be the same for all items. A similar constraint is placed on the probabilities that
nonmasters correctly guess answers to items. The first of these models requires the estimation of 2n+1
parameters—two probabilities for each of n items plus the probability that an examinee in the group
tested is a master. The second model requires the estimation of only three parameters—the prob-
ability that masters forget, the probability that nonmasters guess correctly, and the probability that
an examinee is a master.

The approach of Macready and Dayton should be attractive to all who take seriously the proposi-
tion that test variables can be binary. The following reasons apply:

1. Macready and Dayton show how to fit the two models to data using an iterative Newton-Raphson
procedure and have prepared computer programs to accomplish this.

2. Using a statistic that appears to be distributed as chi-square, the adequacy of the {it of one or the
other models to data can be assessed in absolute terms, and the adequacy of the fit of the two
models can be compared.

3. Once a model has been fit to data, an examinee can be assigned to the mastery or the nonmastery
group, depending on whether the probability of his or her score vector under the assumption that
he/she is a master is greater or smaller than the probability of his/her score vector under the as-
sumption that he/she is a nonmaster. (This assignment can be refined by taking the costs of in-
correct decisions into account, if they are known.)

4. The probability of classification errors can be computed as a measure of the goodness of the deci-
sion rule.

5. It is possible to determine the minimum number of items needed to bring the proportion of mis-
classified examinees down to, or below, a level deemed acceptable.

Although Macready and Dayton considered only two ways of modeling the forgetting and
guessing probabilities that are associated with each item, alternative models are possible. Indeed,
Macready and Dayton themselves suggested several alternatives, but these were rejected on the ground
that they ‘‘are not seen as having as much general applicability to criterion-referenced testing as [the
models that were considered]” (p. 104). This conclusion undoubtedly merits examination by others in-
terested in Situation 2.

Situation 3 of Figure 1 is defined by a continuous variable; moreover, a test of this variable is used
for measurement purposes. Almost all of the CRM reliability literature reviewed does not bear on
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Situation 3. (For an exception, see Kane & Brennan, 1980, who discuss the use of the coefficient

=y) when domain-referenced test scores are not compared to a cutoff score.) The circumstance
should not be viewed as a problem, however, because the vast literature on reliability theory and on
generalizability theory can be referenced whenever a test serves the purpose of measurement defined
by Situation 3.

Situation 4 of Figure 1 encompasses binary variables intended to serve the purpose of measure-
ment. Dichotomously scored items can, perhaps, be viewed as tests for this situation. If so, interested
readers should see Wilcox (1977b, 1977¢).

Conclusions and Recommendations

Several conclusions are supported by the results of this review. The first is that most authors who
have written recently on the topic of CRM reliability have addressed the problem of describing the
goodness of pass/fail decisions based on test scores. Of primary interest has been the use of tests to
decide whether or not a student should progress to the next unit of work in the subject being tested.
This conclusion suggests the need to develop language that clearly conveys the message that it is a
quality of the decisions based on test scores that is being described, not test reliability as it is tradi-
tionally understood. The requisite language has not been coined in this paper, but a classification of
approaches to assessing the quality of decisions has been offered, a classification that may spur
others to develop the needed terminology.

A second conclusion is that when a threshold loss function is employed, the goodness of decision-
making is most meaningfully described as one probability or two—the probability of making an er-
roneous decision or, alternatively, the probability of making a false-positive decision error and the
probability of making a false-negative decision error. What is needed, if possible, are methods that
provide satisfactory estimates of these probabilities for class-sized groups of students.

A third conclusion is related to the second: Most of the proposals encountered for evaluating the
goodness of decisions involve relatively strong theory and require difficult computations. There are no
procedures now available that the classroom teacher can be expected to use routinely. Even the pro-
posal from Swaminathan et al. (1974), which is simple in conception, will be resisted by classroom
teachers because it requires the administration of two tests. If it is important for classroom teachers
to be concerned about the goodness of decisions based on tests—because the quality of decisions
based on short classroom tests will often be abysmally low—and if teachers are to make their judg-
ments in meaningful terms (e.g., as the probability of a decision error), then procedures must be de-
veloped that are simple to use and that provide reasonably accurate results. Therein lies no small
challenge.

A final conclusion follows only indirectly from the results of the review. There is an increasingly
common use of CRM for which the procedures described above are, for the most part, not helpful.
Both in curriculum evaluation and in surveys of educational achievement, the focus of interest is not
on the individual student and the decisions being made about that student. Instead, the focus is on
group characteristics—the proportion of a group responding correctly to a particular item or demon-
strating mastery (however defined) on a subset of items. A good example is provided by the Australian
Studies in School Performance, in which the authors wrote:

It is important to emphasize that the tests were not constructed as normative tests for the pur-
poses of grading and comparing students, but as criterion-referenced tests for assessing the
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achievement of mastery by students in the basic skills of reading, writing and number work. The
tests were designed to find out what students could do and the skills they had mastered.

As a consequence of employing tests of this type, the distribution of scores on these tests were
markedly skewed and the use of traditional test statistics was considered to be largely inappro-

priate. ...

In reporting the results on individual items in this study, the research workers have presented
the proportions who answered each item correctly and have invited readers to examine the item
and the extent to which students achieved success on the underlying task. However, in reporting
the results on the tests and subtests employed in the study, they have presented the proportions
who have achieved mastery on each test or sub-test and the associated tasks. (Keeves, Matthews,

& Bourke, 1978, p. 11)

For uses like this one, the focus is on the adequacy of group description rather than of individual

decisions. Just as it is well known that the standard error of a group mean is considerably less than the
error in the individual scores that contribute to it, so is it clear that the adequacy of a test for group
description is somewhat greater than the adequacy of the same test when used for the description of
individuals. One of the most important future lines of development will be in this direction. Better
ways of describing the adequacy of tests when they are used for the purposes described above are

needed.
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