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Abstract – The Bidirectional Reflectance Distribution Function (BRDF) of several plant canopies was extensively sampled by the POLDER air-

borne instrument in the Alpilles-ReSeDA campaign. The 16 flights carried out over the Alpilles test site from January to October 1997 cover all

the plant growth stages. Estimation of biophysical variables was undertaken by inversion of three one-dimensional radiative transfer models,

SAIL, KUUSK and IAPI, coupled with the PROSPECT leaf optical properties model, in order to fully utilize both the directional and the spectral

information of the images. This study mainly focuses on the capability of model inversion to retrieve the leaf area index (LAI) of wheat, maize,

sunflower and alfalfa crops, for which ground validation was available. In order to evaluate the quality of inversions and to map the LAI or the

chlorophyll content C
ab

, the associated estimation errors are determined for these two biophysical variables.

remote sensing / canopy reflectance model / inverse problem / estimation uncertainty

Résumé – Erreurs associées à la caractérisation des couverts végétaux par inversion de trois modèles de réflectance sur des données

POLDER aéroporté. La Fonction de Distribution de Réflectance Bidirectionnelle (BRDF) de plusieurs couverts végétaux a été intensivement

échantillonnée par l’instrument POLDER aéroporté lors de la campagne Alpilles-ReSeDA. Les 16 vols effectués au-dessus du site des Alpilles,

couvrent la période de janvier à octobre 1997 et donc tous les stades de croissance des plantes. Les variables biophysiques ont été estimées par in-

version de trois modèles de transfert radiatif unidimensionnels, SAIL, KUUSK, et IAPI, couplés au modèle de propriétés optiques des feuilles

PROSPECT afin de tirer pleinement parti de l’information spectrale et directionnelle des images. Cette étude porte plus particulièrement sur la

capacité des modèles à restituer l’indice de surface foliaire (LAI) dont la mesure au champ a été réalisée sur différentes parcelles de blé, maïs,

tournesol et luzerne. Afin d’évaluer la qualité des inversions et de cartographier le LAI ou la concentration en chlorophylleC
ab

, les erreurs d’esti-

mation associées ont été déterminées pour ces deux variables biophysiques.

télédétection / modèle de réflectance des couverts végétaux / problème inverse / incertitude d’estimation

1. INTRODUCTION

The estimation of land surface properties with optical

remote sensing data has long been influenced by the use of

empirical or statistical methods, only based on observations

of the spectral contrasts of reflectance. The reliability of

these methods, although they bear upon most operational

applications, is intrinsically limited by the fact that they

poorly account for the anisotropic properties of these sur-

faces. In the mid-80s, the latter were observed to be crucial

for diagnosing plant canopy functioning [16, 28]. Thanks to

an enhanced understanding of the physical processes that
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govern the interactions between light and the canopy

elements, bidirectional canopy reflectance (CR) models

emerged for inversion issues on multidirectional data in the

early 90s [20, 37]. Model inversion, however, requires signif-

icant computational resources which are slow on large data

sets. This problem results both from a complex description of

the radiative field within the canopy, and from the inversion

method itself. Besides the traditional iterative optimization

approach, recent alternative inversion methods (mainly

look-up tables [18, 30, 56, 58] and neural networks [6, 54])

permit inversions to overcome computer limitations. Never-

theless, they have been applied only to 1-D radiative transfer

models so far, because of their fast execution speed and their

restricted number of input variables, relative to full 3-D mod-

els. Moreover, the ill-posed nature of the inverse problem

[11] remains an issue that equally affects all methods as it is

due to (i) measurement errors, (ii) the inadequacy between

the model and reality (i.e. between the variables of the model

and the “real” state variables, and between the simulated and

the measured reflectances). It translates into the non-unicity

of the solution. In other words, different combinations of

variables can produce similar reflectances. Finally, non-lin-

ear interactions between the state variables may also increase

the instability of the solution [1]. The question of reliability is

here considered for different 1-D canopy reflectance models

and iterative optimization techniques.

This study was conduced as part of the European project

ReSeDA [40]. The Alpilles test site, located south of Avignon

(France), was widely monitored with the POLDER (POLariza-

tion and Directionality of the Earth’s Reflectances) airborne

sensor [13] to provide SVAT (Soil Vegetation Atmosphere

Transfer) and canopy functioning models with the required

vegetation and soil biophysical variables. POLDER was

flown from January to October 1997, covering the whole

vegetative cycle. It allows sampling of the Bidirectional

Reflectance Factor (BRF) of anisotropic surfaces along the

principal plane and around the hot spot direction [7, 9], which

are relevant configurations for estimating canopy structural

variables. The monitoring of vegetation with this instrument

has been previously investigated with empirical or semi-em-

pirical methods [33, 34, 47] as well as by inversion of

CR models with neural networks [53, 57] and iterative

methods [8].

This paper focuses on inversion of three canopy

reflectance (CR) models with iterative inversion techniques.

Their ability to retrieve the major crop biophysical variables

is assessed on wheat, maize, sunflower and alfalfa, during the

vegetative season. In particular, the crop estimates are com-

pared together and with in situ measurements of the leaf area

index (LAI). The data processing considers top of canopy

(TOC) reflectances either at the field level or at the pixel level

in order to study the spatial heterogeneities and to appraise

scaling problems. We emphasize addressing the error deter-

mination of the estimated variables due to the inversion pro-

cedure. This issue, though crucial for characterizing the

quality of remote sensing products used in assimilation pro-

cesses, is the main innovation of this paper because it is often

evaded in the literature.

2. MATERIALS AND METHODS

2.1. Models

To fully exploit the directional and spectral dimensions of

POLDER data with radiative transfer models, three 1-D

bidirectional canopy reflectance models, SAIL [49, 50],

KUUSK [32] and IAPI [21], were coupled with the most re-

cent version of the PROSPECT leaf optical properties model

[26, 27] and renamed PROSAIL, PROKUUSK and

PROSIAPI, respectively. SAIL, KUUSK and IAPI are de-

rived from the radiative transfer equation with different

formalisms. For instance, they differ in how canopy architec-

ture is described. However, they require the same inputs: the

leaf area index LAI, the mean leaf inclination angle q
l
, the hot

spot parameter s
l
, and a soil brightness parameter a

soil
that

controls the reflectance of a given soil. In PROKUUSK, the

parameter representing the leaf distribution eccentricity eln is

fixed at five so that the three models only depend on the mean

leaf inclination angle [27]. A prior comparison has already

demonstrated similar impacts of these biophysical variables

on reflectance for spaceborne POLDER configurations [1],

even though the processing might differ within the models.

The main discrepancies were attributed to the leaf angle

distribution – ellipsoidal in PROSAIL and PROSIAPI, and

elliptical in PROKUUSK – that translated, above all, into dif-

ferent implementations of the G and phase functions. The de-

scription of the hot spot effect was also a discriminating

factor, especially for high backward-view zenith angles [3]

where it is weaker in PROSAIL and PROKUUSK [31] than

in PROSIAPI [52].

PROSPECT requires the leaf structure parameter N, the

chlorophyll a+b content C
ab

(mg·cm
–2

), the equivalent water

thickness C
w

(cm or g·cm
–2

), and the dry matter content C
m

(g·cm
–2

) to simulate leaf reflectance and transmittance spec-

tra.

2.2. POLDER data

The calibration of POLDER is detailed in [35]. Here, we

summarize the experiment. The database consists of

superimposable reflectance images covering areas of 5 km ×
5 km. Each one is an array of 250 by 250 pixels, correspond-

ing to a 20 m grid resolution (Fig. 1a). Radiances were mea-

sured in four spectral bands centered on 443, 550, 670 and

865 nm (each 40 nm wide) and atmospherically corrected

with SMAC (Simplified Method of Atmospheric Correction)

[45] adapted from the 6S model [51]. However, the

waveband at 443 nm is still contaminated by aerosols and was

omitted from this study.

For each of the 16 Days Of Experiment (DOE), several

flight sequences were conducted at about noon over the

Alpilles test site (N43
o
47’, E4

o
45’), at a standard altitude of

3000 m. Each flight is composed of four flight lines roughly

parallel to the sun direction, plus one perpendicular. Using

this scheme, POLDER allowed sampling of pixel radiances

in many viewing geometries, especially around the principal

plane where plant canopies display stronger anisotropy.
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Figure 1b shows the directional sampling over a wheat field

along six flightlines. In this case, the interpolation (by ordi-

nary kriging) of the reflectances at 670 nm produces a sym-

metrical BRDF on both sides of the principal plane (Fig. 1c).

Such a symmetry is expected when leaves are randomly ori-

ented in azimuth. The higher reflectances observed around

the hot spot direction are also typical of non-turbid media like

vegetation canopies. Because of geometrical calibration

problems for highly oblique observations, only viewing

angles < 45
o

were retained. Finally, georegistration of each

field was refined using calibrated SPOT images.

2.3. In situ measurements

Field biomass and structure measurements were regularly

performed on wheat (Triticum aestivum), maize (Zea mays),

sunflower (Helianthus annuus) and alfalfa (Medicago

sativa). The green leaf area index (LAI) was measured with a

planimeter. Because LAImeasurements and POLDER flights

were not simultaneous, these data were interpolated with

temporal functions adaptated from [5] and including a growth

and senescence. Table I indicates the flight dates selected ac-

cording to the crop; Table II gives the crop field numbers for

which the biophysical variable estimations were performed.

2.4. Soil BRDF estimates

CR models require the optical properties of the underlying

soil as an input. Since this information was not available in

the Alpilles-ReSeDA database, the soil BRFs were estimated

from POLDER observations and parameterized by the Mod-

ified Rahman Pinty Verstraete (MRPV) model [14, 44], cho-

sen because of its ability to derive full BRDFs from a limited

set of directional reflectance data [55]. Thus, they can be ex-

trapolated to the POLDER observation geometries for the

dates chosen for the analyses.

The MRPV parameters were estimated on early POLDER

flights, assuming homogeneous bare soils. The dates chosen

were based on plant germination: 01/12 for wheat, 01/30 for

alfalfa, and 03/12 for maize and sunflower. Since the contri-

bution of the soil to the canopy reflectance rapidly vanishes

as vegetation expands, we can assume that their anisotropic
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Figure 1. (a) Extraction of red reflectance of wheat field #120 from

the airborne POLDER image of the Alpilles site acquired on 2 May

1997. (b) Directional sampling of the viewing geometry of the target

(125,125), in polar coordinates, along six flightlines. (c) BRDF signa-

ture of the target obtained by ordinary kriging interpolation of the di-

rectional reflectance. The radius represents the view zenith angle (in

degrees), and the polar angle the relative azimuth between sun and

view directions. The star depicts the sun position.

Table I. POLDER flight dates selected for estimating the biophysical variables of each crop. Days of experiment are given in mm/dd of year

1997.

Days of Experiment

Crops 02/27 03/12 03/26 04/10 04/16 05/02 05/22 06/09 06/24 07/08 07/29 09/04 09/18 10/24

Wheat � � � � � � � �

Maize � � � � � � �

Sunflower � � � � � � �

Alfalfa � � � � � � � � � �

Table II. Field numbers used to estimate the vegetation biophysical

variables for wheat, maize, sunflower and alfalfa. In italics are the

plots measured with the planimeter; no in situ measurements were

performed for plots in plain.

Crop Fields #

Wheat 101, 120, 124, 202, 208, 210, 214, 218, 300, 310

Maize 112, 113, 125, 126, 311, 500, 504

Sunflower 102, 107, 121, 205, 217, 304, 501, 503

Alfalfa 203



properties remain constant throughout the vegetative cycle.

Nevertheless, variations in magnitude of the soil reflectance

can be taken into account via the multiplicative parameter

a
soil

which is left free during the inversions.

2.5. Inversion technique

Without any a priori information on the variables to be re-

trieved, the inverse problem typically consists of determining

the optimal set of variables Q*
that minimizes a merit function

c2
defined as the distance between the reflectances measured

at the top of the canopy and those computed by the model.

The choice of c2
for operational use in remote sensing is not

straightforward, as underscored by the diversity of such func-

tions [see 15, 18, 19, 38, 43]. Nevertheless, most result from

the c2
expression in the L

2
-norm, according to the inverse

problem formulation of Tarantola [48].

The merit function in Nilson and Kuusk [38] implicitly

takes into account the evolution of variance of the fit with the

measurements, since it is directly proportional to the TOC

reflectances ρ ÷(Ω
j
, λ

i
). The latter act as a priori information

related to the un-quantified errors of the model and the data.

We therefore use the following merit function:

χ
ρ λ ρ λ

ρ λ
2

2

1

3

1

= ⋅
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==
∑∑ w
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j i j i

j iij

n
v [

~
( , ) ( , )]

~
( , )

Ω Θ Ω

Ω
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which complies with a weighted least-square estimation to

determine the set of variables Q from measurements made in

the three POLDER wavebands for n
v

observation geometries

W
j
. The weighting factorsw

j
enhance observations in the prin-

cipal plane where the reflectance is more sensitive to the vari-

ation dynamics of canopy biophysical variables [3, 41]. They

are convenient insofar as the error of the routine used to con-

duct the optimizations, which informs on the quality of the

minimum found for the merit function, puts better confidence

in the results when using w
j
. The latter are expressed as a

function of the view zenith angle q
v

and the relative azimuth

angle φ:

w
y

y
j v

= + = ×cos( )
sin( )

1

2
with θ φ (2)

such that y ∈ [–1;1], and y = 0 in the principal plane.

The minimization algorithm is based on an iterative

quasi-Newton method, which has already been documented

in similar remote sensing problems [22, 24, 42, 46]. We chose

the E04JAF routine – from the NAG (Numerical Algorithms

Group) library because the derivatives of c2
with respect to

the variables are not explicitely required. Furthermore, it al-

lows for constraints on the variables to physically acceptable

values. Iterative methods are suspected to be sensitive to the

initial parameter guess and to local minima of the merit func-

tion; they can therefore lead to doubtful solutions. To reduce

this problem, typical alternatives consist of generating ran-

dom initial conditions [42] or restarting the inversion process

using the estimated set of variables [43]. However, the cost in

terms of computation time limits the processing of the

POLDER data. The issue of solution reliability is

nevertheless considered here with respect to the error estima-

tion on the biophysical variables.

The quality of the estimation is usually appraised with re-

gard to the Root Mean Square Error (RMSE) of the fit, even

though it does not evaluate the reliability of the variables of

interest. We propose an alternative criterion to assess it. For

each variable, a confidence interval can be extracted from the

covariance matrix of the estimates at the minimum of the

merit function, χ2*
using the following approximationVΘ [4,

39]:

V
m n

NΘ = ⋅ ⋅2 2 1

–

* –χ (3)

form data and n estimated variables, N
−1

is the approximated

value of the Hessian matrix at χ2*
. The above expression of

the covariance matrix presupposes that the direct problem

behaves quasi linearly in the neighborhood of the solution,

which is a good assumption for plant canopy radiative trans-

fer models [10] – and that the residues are small, which is ver-

ified when the minimum is indeed reached. N
−1

is computed

with the E04XAF NAG routine. The diagonal ofVΘ contains

the variances of the estimates. Strictly speaking, they are not

variances according to a Gaussian distribution of errors one

would expect, as the merit function is not the maximum like-

lihood function here. Rather, they should be interpreted, for

each variable v
p
, as a quantification of the stability of the min-

imum of χ2 along the direction of v
p
. The other elements ofVΘ

are the correlations between the different estimated variables.

Among all of the variables, C
w

and C
m

have no, or very lit-

tle, influence on the CR in the three selected POLDER

wavebands (550, 670 and 865 nm). Moreover, a recent study

has highlighted some difficulties in retrieving N [27]. Conse-

quently, these three variables remained fixed during the in-

versions: C
m

= 0.01 g·cm
–2

, C
w

= 0.015 cm and N = 1.5 which

corresponds to average values in nature. Bacour et al. [1]

showed that the reflectance was as sensitive to LAI as to q
l
,

therefore the mean leaf inclination angle was left free. Thus,

the vegetation variables estimated simultaneously were: LAI,

C
ab

, q
l
, s
l
and a

soil
. For each one, Table III provides the upper

and lower bounds of their definition interval, as well as the

initial guess starting the inversion procedure.

Inversions on POLDER BRDFs with PROSAIL,

PROKUUSK and PROSIAPI were processed in two steps: (i)

on the reflectances averaged over each field and (ii) on a

per-pixel basis.
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Table III. Constraints on the variables to be retrieved (lower and up-

per bounds) and initial guesses of the inverse process.

Variable Range of variation Initial guess

LAI 0.01–5 3

Cab (µg·cm
–2

) 1–100 50

ql (°) 5–85 45

sl 0.00001–1 0.5

asoil 0.5–2 1



3. RESULTS

3.1. Quality of the fit

The ability of the three CR models to reconstruct the mea-

sured reflectances at the field level was evaluated. It was esti-

mated by the RMSE of the fit, averaged over the flight days

(Fig. 2a) and over the fields of each crop (Fig. 2b). One ob-

serves a consistent estimate of the BRF reconstruction for the

three models, PROKUUSK globally producing slightly

higher RMSEs. The same trend is obtained even when eln,

one of the two parameters describing PROKUUSK’s ellipti-

cal leaf angle distribution function, is left free during the in-

versions (results not shown).

Noticeable peculiarities underscore some inadequacies

between the radiative transfer models and the data, probably

because of particular crop histories or bad meteorological

conditions. For instance, low vegetation covers on wheat

fields #101 (strong heterogeneities due to growth problems)

and #214 (late sowing of spring wheat) explain the high

RMSE values in comparison with the other wheat fields. As

clouds were present on most of the POLDER scenes acquired

on 06/24, these data were omitted. Finally, there is no expla-

nation to interpret the RMSE peak of DOE 07/29.

3.2. LAI estimates against in situ measurements

The models’ consistency can also be appraised with regard

to the LAI estimates compared with the interpolated measure-

ments using the planimeter (Fig. 3). The results indicate con-

cern for inversions conducted on reflectances at the field

level (wheat, maize, sunflower and alfalfa of Tab. II).

The leaf area index estimates are consistent with

planimeter values, especially the lowest ones. One notices an

underestimation for values higher than 2.3 when reflectance

becomes less sensitive to the dynamics of this variable [1,

17].

Simplifying assumptions sustaining CR models partly ex-

plain these divergences, as they affect the quality of the esti-

mations (Tab. IV). In particular, row spacing effects and

non-green foliar elements are ignored. The assumption of

azimuthally uniform leaf orientations may be erroneous for

heliotropic plant canopies (sunflower). PROSAIL generally

provides the LAI estimates closest to the measurements, fol-

lowed by PROSIAPI. Model inversions perform better on

sunflower and wheat. Alfalfa is surprisingly the species that

exhibits the strongest discrepancies between estimated and

measured LAI values, whereas it confirms best the turbid me-

dium assumption. This might be attributed to the difficulty of

reliably measuring such small leaf surfaces with a high per-

imeter area, more than to a problem related to the inversion

procedure as seen hereafter.
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Figure 2. Root Mean Square Error of the fit between measured

and reconstructed reflectances after inversion of PROSAIL,

PROKUUSK and PROSIAPI, on wheat, maize, sunflower and al-

falfa, with respect to (a) the field number, (b) the day of experiment.
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The quality of the radiometric data (georegistration and at-

mospheric correction) also conditions the results, as well as

inaccurate planimeter measurements or wrong LAI interpola-

tions for the POLDER flights. It is also likely that the in situ

sampling strategy is inappropriate for describing global leaf

area indices: the ground measurements are indeed very local,

i.e. only partly representative of the field variability, whereas

the inversions assume homogeneous crops.

In the following, these different hypotheses are examined

with an analysis of the estimation error on field and pixel

scales.

3.3. Interpretation of the estimates

3.3.1. Model intercomparison

The performances of the three CR models are compared

for the five variables estimated on the whole fields (Tab. V

and Fig. 4). There is a good consistency between PROSAIL,

PROKUUSK and PROSIAPI for LAI and C
ab

. This is not sur-

prising insofar as these variables strongly affect the

reflectance in the directional and spectral dimensions. The

estimates of the soil brightness parameter are also consistent.

One can notice that a
soil

is usually > 1 for wheat. The radio-

metric measurements made on DOE 01/12 and used for the

soil reflectance parameterization of wheat, correspond, in

fact, to some dampness of the soils due to rainy conditions on

prior days. High a
soil

values therefore express the model ca-

pacity to take into account an increase in soil reflectance lev-

els along with the development of the vegetation and the

meteorological conditions that cause the soil moisture con-

tent to subside.

The discrepancies are more pronounced with regard to the

other variables. For the mean leaf angle, they render different

descriptions of the canopy structure (in particular different

leaf angle distribution functions between PROSAIL/

PROSIAPI and PROKUUSK) and of multiple scattering. The

retrieved hot spot parameter appears difficult to interpret

physically according to Table V. The discrepancies between

the models are partly due to different representations of the

phenomenon but especially to the fact that its relative

contribution to reflectance is lower than that of the other

biophysical variables [3]; the lack of data around the hot spot

region may also debase its estimation.

Examination of the standard deviation of the estimates al-

lows detection of suspect results (shown by arrows in Fig. 4).

Note that large estimation errors on C
ab

do not necessarily re-

sult in high s
LAI

values.
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Table IV. RMSE between the LAI estimated with PROSAIL,

PROKUUSK and PROSIAPI and the LAI measured with the

planimeter, for wheat, maize, sunflower and alfalfa.

Planimeter

PROSAIL PROKUUSK PROSIAPI

Wheat 0.48 0.50 0.53

Maize 0.88 1.14 0.99

Sunflower 0.27 0.27 0.26

Alfalfa 1.53 1.33 1.75

Table V. Two by two RMSE comparison between the estimated variables by field with different canopy reflectance models.

PROKUUSK PROSIAPI

LAI Cab ql sl asoil LAI Cab ql sl asoil

PROSAIL 0.27 9.78 31.66 0.42 0.21 0.21 9.43 19.53 0.49 0.16

PROKUUSK 0.26 8.10 32.50 0.49 0.21
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Figure 4. PROSAIL against PROKUUSK and PROSIAPI estima-

tions of LAI, C
ab
, and a

soil
, on wheat, maize, sunflower and

alfalfa. The error bars correspond to the standard deviations of the

estimated values computed from the approximation of the covariance

matrix (Eq. (3)).



3.3.2. Uncertainties on the estimated variables

For the inversions on the field scale, we defined the esti-

mation uncertainty of the variable v
p

expressed as:

Er
v

vp

v

p

p= ×
σ

100.
(4)

The small uncertainties (< 15%) for LAI, C
ab

and q
l
(Tab. VI),

show the robustness of the solution found by the inversion al-

gorithms. Once again, they spotlight the significant impact of

these variables on the reflectance. Model inadequacies for

sunflower canopies (heliotropic behavior, the possible pres-

ence of flowers for some days of the experiment) may explain

the less reliable estimations obtained for this species. For

PROSIAPI, the estimation error of the hot spot parameter

conforms with those of the other variables. On the other hand,

this seems to be determined with poor accuracy for

PROKUUSK and PROSAIL where s
l
turns out to be a param-

eter allowing the control of reflectance levels during the in-

version process, rather than a physically interpretable

variable. As vegetation cover masks soil optical properties,

the impact of the soil brightness parameter a
soil

on the stabil-

ity of c2*
is weak as underlined by its low error estimations.

If one considers uncertainty as the only criterion, the most

reliable estimations are found with PROSIAPI (the most

complex model), in particular over alfalfa, the most “turbid”

medium.

3.3.3. Interaction between the variables

during the inversions

The correlation coefficient between the estimates of the

two variables v1 and v2 gives an appraisal of the degree of in-

teraction between the variables during the inversion process.

It informs on the steadiness of the minimum of the merit func-

tion in the (v1, v2) space. Such a coefficient is determined

from the off-diagonal elements of VΘ :

R
V v v

v v

v v

1 2

1 2

1 2

,

( , )
=

×
⋅Θ

σ σ
(5)

Table VII illustrates the mean values of correlation coeffi-

cients for PROSAIL inversions on wheat. The leading role of

C
ab

in the visible spectrum is recognized since correlations

with the structural variables almost equal zero. Even though a

significant interaction between LAI andC
ab

has been reported

in direct mode [1], the solution seems quite stable for small

perturbations ofC
ab

and any of the other free variables around

c2*
. This is not the case for the leaf area index for which esti-

mation stability is strongly correlated to the leaf angle ellip-

soidal distribution parameter, as already observed for

inversions conducted at nadir [56]. This may result from their

contributions to canopy reflectance, having the same magni-

tudes and covering similar spectral and directional spaces [1,

3]. One also observes a strong correlation between the leaf

angle and the soil brightness parameters. The lack of correla-

tion between a
soil

and s
l
may be explained by the fact that the

directional variation of the influence of these two variables is

opposite, especially in the retro solar direction.

3.3.4. Impact of the spatial resolution

The issue of the spatial resolution addressed here is to de-

termine how some field heterogeneities may worsen the esti-

mation of the biophysical variables and explain part of the

divergences mentioned above. This is illustrated with LAI

andC
ab

, two of the most informative biophysical variables for

canopy physiological health. Inverting PROSAIL and

PROKUUSK on POLDER data acquired with a 20 m spatial

resolution is very informative about the aptitude of the

models to represent the radiation regime within more hetero-

geneous plant canopies. PROSIAPI was discarded at this

point because of the significant computer time requirements.

Figure 5 shows a good correlation between the estimated

variables on the field scale (LAI
f

and C
ab

f
) and the mean

values of the estimates on the pixel scale (LAI
p

andC
ab

p
), the

result being slightly better with PROSAIL. Changes in the

observation scale have been shown to translate into altered

estimates of plant canopy variables [36], since the aggrega-

tions of reflectance and the variables are linear with the
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Table VI. Estimation uncertainties of the biophysical variables fol-

lowing equation (4) averaged by field of each crop.

Wheat Maize Sunflower Alfalalfa

PROSAIL

LAI

Cab

ql
sl

asoil

7.8

12.6

9.8

61.3

5.2

8.4

13.9

11.7

41.5

5.1

14.3

23

19.3

64.1

3.3

11.5

12.5

10.6

35.6

5.1

PROKUUSK

LAI

Cab

ql
sl

asoil

8.1

9.2

16.4

40.6

8.6

10

12

21.5

39.9

14.8

11.2

19.4

16.6

46.2

4.1

10.2

10.1

19.4

29.1

9.1

PROSIAPI

LAI

Cab

ql
sl

asoil

6.9

12.3

10

10.7

3.6

7.1

15.3

10

11.5

3.6

10.2

20.5

12.9

10.9

2

6

9.1

9.2

5.7

3

Table VII. Mean values of the correlation coefficients between the

biophysical variables retrieved by inversion of the PROSAIL model

over wheat fields.

LAI ql sl asoil

Cab 0.07 0.07 0.19 0.06

LAI 0.53 0.26 0.17

ql 0.05 0.50

sl 0



spatial scaling whereas the variable effects are non-linear.

Estimations conducted on a local area therefore produce

larger values for the investigated variables than those mea-

sured on a larger scale: this trend is consistent with the results

obtained for LAI and C
ab

. It is slight, however, limiting the

impact of such scale change. The standard deviation on all the

estimates on the pixel scale are an appraisal of the level of

heterogeneity within the fields. The increase of σ(LAI
p
) with

the LAI depicts an increased spatial variability with plant de-

velopment. The latter is explained by varying plant growth

(this is especially the case for fields #101, 102, 107, 121, 208,

214, 217, 304 and 503) but also by approximate contour ero-

sion: some edge pixels corresponding to morphologically dif-

ferent surfaces which may not have been discarded.

3.3.5. Mapping of the biophysical variables

The mapping of LAI and C
ab

– and the corresponding esti-

mation uncertainties – on wheat field #120 (Fig. 6) results

from PROSAIL inversions on a pixel basis for the DOE

03/26, 02/05 and 09/06. It clearly shows field heterogeneity:

the north-east part of the field exhibits earlier maturity as tes-

tified to by higher LAI values in March. In spite of it, the spa-

tial variations in LAI andC
ab

are relatively uniform, with only

a few pixels exhibiting singular results and are consistent to-

gether.

For early dates, i.e., typically in March and May, the esti-

mation uncertainties of the leaf area index and the chloro-

phyll content are generally below 15%. Conversely, they

often exceed 40% during leaf senescence, for instance in June
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Figure 5. Comparison between field- and pixel-level estimations of

(a) LAI and (b) C
ab
, determined with PROSAIL and PROKUUSK, on

wheat, maize, sunflower and alfalfa. The error bars on the

x-axis correspond to the empirical error estimation of the correspond-

ing variable (after Eq. (3)); on the y-axis, they correspond to the stan-

dard deviation of all the estimates for a given field (s( )LAI
p

and

s( )C
ab

p
).
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Figure 6. Mapping of (a) LAI and (b) C
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estimated with PROSAIL,

and the corresponding estimation uncertainties (after Eq. (4)), over

wheat field #120 (03/26, 05/02 and 06/09).
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when leaves are yellowing, bringing into focus the limits of

the model and its inversion on such extreme cases. This trans-

lates into C
ab

estimated values frozen at the upper and lower

bounds of the definition interval. Similarly, the problematic

determination of the contouring pixels shows itself at the bot-

tom edge, where LAI estimates correspond to a sparse vegeta-

tion from March to June, that very likely coincides with the

lane between fields #120, #134 (wheat) and #132 (tomato).

A correlation between these two variables is noteworthy:

low LAI estimates correspond to high C
ab

values and

vice versa. It is rather tricky to decide whether this situation

fits reality or whether it is an artifact resulting from a com-

pensation effect between the variables. The latter is inherent

of the radiative transfer in the canopy, since light absorption

in the visible is similarly affected by an increase in the leaf

chlorophyll content (considering a fixed LAI) and by an in-

crease in the leaf surfaces (considering a fixed C
ab

). The

C
ab
-LAI interaction probably expresses itself in inverse mode

on the joint estimated values of the variables, even though it

does not affect the stability of the minimum of the merit func-

tion found by the optimization algorithm (low R
LAI,Cab

). Such

compensations have been reported in the literature for leaf

area index and other canopy variables [23]. Some authors

consequently prefer to estimate the canopy contents rather

than leaf contents [12, 25, 54], whatever the inversion

method. These ambiguities might be bypassed by inverting

the models on reflectances at chosen view and spectral con-

figurations where the interactions between the canopy vari-

ables are minimum. This should be possible for LAI and C
ab

because they impact canopy radiance in separate directions

and wavelengths [2, 3]. Moreover, such optimal configura-

tions should allow better fits between the model vs. reality

and carry more information on the biophysical variables. De-

termination of these configurations is an issue [29] being ad-

dressed by space agencies (CNES, ESA, NASA) in order to

improve the quality of remote sensing products and to define

new instruments.

4. CONCLUSION

The Alpilles-ReSeDA campaign has produced a consider-

able amount of POLDER bidirectional and spectral

reflectance data. Three CR models, PROSAIL, PROKUUSK

and PROSIAPI were iteratively inverted to retrieve the bio-

physical properties of wheat, maize, sunflower and alfalfa

crops during their vegetative growth. An inversion technique

based on the quasi-Newton algorithm was used to simulta-

neously estimate the chlorophyll a+b content C
ab

, the leaf

area index LAI, the mean leaf inclination angle q
l
, the hot spot

parameter s
l
and a multiplicative soil parameter a

soil
. The is-

sue of the estimation reliability of these variables was ad-

dressed by determining the corresponding a posteriori

uncertainty. The three models were shown (i) to reconstruct

the BRDFs at any wavelength with similar accuracies and

(ii) to accurately estimate the LAI compared to planimeter

measurements. Inversions nevertheless tend to underestimate

this variable after 2.3. The discrepancies between estimates

and measurements mainly result from a weaker sensitivity of

the reflectance to the LAI dynamics, but also from field

heterogeneities that are poorly represented by the in situ mea-

surements. The study reported difficulties interpreting some

structural parameters such as q
l
and s

l
, as underscored by the

contradictory values estimated by the different models and by

the strong estimation uncertainties. Therefore, these should

be considered as control parameters that help to fit the

reflectance measurements during the inversions. The interac-

tions between the canopy variables also affected the estima-

tion reliability, but we could not quantify their impact. On

one hand, the minimum of the merit function appeared stable

with respect to the joint estimation of C
ab

and other variables

(low correlation coefficients); but on the other hand, compen-

sation effects between LAI and C
ab

emerged from the spatial

analyses of these variables on a pixel basis, even though the

uncertainties were low. These results indicate that the ambi-

guities between variables are more intrinsic to the model

structure than to the inversion. Finally, the special attention

focused on determining the uncertainty of the estimates

aimed to provide end-users with an objective quality criterion

to evaluate remote sensing products.
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