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Abstract

We evaluate the reliability of vibrating systems subject to severely deficient information
about the dynamic loads. We stress non-probabilistic information-gap models of uncertainty,
which are adapted to severe lack of information. When some probabilistic information is avail-
able, we show how it can be incorporated in a hybrid probabilistic/info-gap analysis. We outline
the theory of robust reliability, which replaces probabilistic reliability in those situations where
prior information is insufficient to verify the choice of a probability density. We also illustrate a
hybrid probabilistic/info-gap reliability analysis. Finally, we use the “gambler’s theorem” and
the idea of aversion to risk to provide an overall quantitative assessment of the performance of
a system in an uncertain environment.

1 Modelling the Unknown

“Prediction”, said Niels Bohr, “is always difficult, especially of the future.” But we act all the
time on suppositions extrapolated from incomplete information. From coin-flips to international
conflicts, we predict outcomes based on partial information. When we have extensive experience,
like in ambient vibrations under known and controlled conditions, we can make reliable asser-
tions. But in unique and unfamiliar circumstances we have severely limited prior knowledge, so
we must be much more circumspect.

In analyzing the reliability of critical components and systems with respect to rare and
extraordinary events, about which we know very little, we must avoid unverifiable assumptions
as much as possible. In particular, we must represent the uncertainties as reliably as possible,
without extraneous assumptions. In this paper we discuss a method of reliability analysis which
is developed for this purpose. There is no free lunch, informationally speaking, so an analysis
based on limited prior information will be able to make only modest predictions. However, the
crucial point is that the analysis itself be reliable and not illusory.
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Analysis and prediction under uncertainty depend upon representation of what is known
about the uncertain phenomenon. The choice of a model of uncertainty depends on the type and
quantity of information which is available. Three classes of uncertainty-models are current today.
Probability models describe frequency of recurrence of events, or, equivalently, subjective
degrees of belief of these likelihoods. Information-gap models of uncertainty quantify the
disparity between what is known, and what needs to be known in order to make an optimal
decision. Fuzzy models portray linguistic ambiguities as well as assessments of possibility or
necessity of occurrence.

Most people have flipped enough coins to have considerable confidence that the chance of
‘heads’ on the next flip is exceedingly close to 1/2. Quite reasonably, we extrapolate from the
vast ensemble of past experience. But if I tell you that I have in my pocket a coin confiscated
by the police from an illicit gambling joint, you may balk before betting that this is a ‘fair’ coin
with equal probabilities for ‘heads’ and ‘tails’. For this coin, due to the paucity of information,
you are unable to rationally choose a probability model to describe the frequency of outcomes.

The rational thing to do is to keep away from underground gambling establishments. How-
ever, in many technological situations the uncertainties are so complex, and the resources of
time and money so limited, that we face severe lack of information. In analyzing the dynamics
of critical components in innovative technology intended for new applications in unusual and
uncontrolled environments, we may be unable to test or verify the choice of a probabilistic
model. For example, the vibrations induced in ordinary highway driving can, with diligence, be
measured and modelled accurately with probabilistic models. Off-road vehicles, however, may
be subjected to extreme loads which are quite unpredictable based either on laboratory tests or
ordinary automotive experience. Unless system-specific data on the relevant terrain is available,
it is unrealistic (and probably unsafe) to extrapolate from the experience of ordinary driving. In
situations such as this we use an information-gap model to quantify the disparity between the
firm data in hand, and the missing information which is needed for a reliable decision. In the
next section we will show how info-gap models are constructed and used in vibration analysis.

The transition from a probabilistic to an info-gap model of uncertainty is motivated by a
severe lack of data. But some uncertainties are related to the elasticity of language rather than
to the limitations of firm knowledge. Imagine an expert who listens to the hum of a failing pump,
and says “Ah ha! You hear that rattle followed by the click-click? That means you must tighten
the bearings.” But what is a ‘rattle’, what exactly is a ‘click-click’, and how ‘tight’ is ‘tight’?
Here the uncertainty in the information provided by this expert comes from the wonderfully
useful but frustrating elasticity of language. Even the expert himself, so long as he remains
on the level of verbal advice, will be hard pressed to dispel the uncertainty which pervades his
language. While linguistic information is very important in many technical applications, and
though its uncertainties are subtle and interesting, we will say no more about them in this paper.

2 Information-Gap Models of Uncertainty

An information-gap model is a family of nested sets. Each set corresponds to a particular
degree of uncertainty, according to its level of nesting. Each element in a set represents a
possible realization of the uncertain event. Info-gap models, and especially convex-set models
of uncertainty, have been described elsewhere, both technically (Ben-Haim, 1985a, 1996; Ben-
Haim and Elishakoff, 1990; Elishakoff and Zhu, 1994), non-technically (Ben-Haim, 1994a) and
axiomatically (Ben-Haim, 1998).

Consider only one simple technological example: uncertain forces u(t) exerted on a building
during an earthquake. (Later we will consider more examples). The temporal variation of the
force resulting from a nominal or typical seismic excitation is ũ(t) which is a known function.
The actual load u(t) deviates by an unknown amount from the nominal load ũ(t). The set of
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all excitation-functions u(t) whose energy of deviation from ũ(t) is bounded by α2, is one set in
a family of nested sets:

U(α, ũ) =
{
u(t) :

∫ ∞

0
[u(t)− ũ(t)]2 dt ≤ α2

}
, α ≥ 0 (1)

This info-gap model, U(α, ũ), is a family of nested sets for α ≥ 0. This means that U(α, ũ) is a
subset of U(β, ũ) if α ≤ β. Uncertainty is expressed at two levels by this info-gap model. For
fixed α, the set U(α, ũ) represents a degree of uncertain variability of the load function u(t).
The greater the value of α, the greater the variation, so α is called the uncertainty parameter
and expresses the information gap between what is known (ũ(t) in the above example) and what
needs to be known for an ideal solution (the exact function u(t)). The value of α is usually
unknown, which constitutes the second level of uncertainty.

Each set in the family of uncertainty-sets defined in eq.(1) is in fact a convex set. The
convexity of the sets has not been assumed; the convexity simply arises as a by-product of how
the partial information is quantified. Convex info-gap models are commonly encountered, and
are called convex models.

In the info-gap model of eq.(1), each set in the family is defined as the collection of all
functions consistent with the prior information, up to uncertainty α. This is characteristic of
how info-gap models are formulated in general. In this way, the info-gap model is constructed
with very parsimonious use of information.

3 Vibration Analysis With Uncertain Inputs

Sets of functions were used for representing uncertainty in shock and vibration studies long before
the current general formulation of info-gap models emerged. In the late 1960’s Drenick (1968,
1970) studied the design of structures subject to uncertain seismic excitation. Even though the
specific waveform of the ground motion was unknown, Drenick supposed that the total energy of
the ground motion would be bounded, and would be proportional to the integral of the square
of the motion. While the ground displacement, x(t), was unknown, it was constrained by the
total energy, E: ∫ ∞

−∞
x2(t) dt ≤ E (2)

Thus the uncertainty in the ground motion was represented as a set of allowed functions x(t) in
a manner quite similar to the info-gap model of eq.(1).

The only substantial difference between Drenick’s model and eq.(1) is that the latter considers
a family of nested sets, U(α, ũ) for α ≥ 0, while Drenick concentrated on a single member of
that family of sets: α2 = E. This distinction will become significant when we come to consider
the reliability of structures subject to uncertain input.

Shinozuka (1970), working at the same time as Drenick, employed what would now be called
a Fourier-envelope info-gap model. Defining X(ω) as the Fourier transform of the input ground
motion x(t), Shinozuka supposed that the modulus of X(ω) is constrained within a known
envelope Xenv(ω):

|X(ω)| ≤ Xenv(ω) (3)

While the actual input spectrum X(ω) is not known, the uncertain variation is constrained by
the known envelope. This defines a set of possible input spectra, and this set is one in the family
of uncertainty sets constituting the Fourier-envelope info-gap model:

X (α,X) =
{
X(ω) : |X(ω)−X(ω)| ≤ αXenv(ω)

}
, α ≥ 0 (4)
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Substantial and extensive work using set-models of uncertainty was done around the same
time outside the discipline of structural vibrations. Schweppe (1973), Witsenhausen (1968a,b),
Chernousko (1980, 1983) and others used set-models in control theory and state estimation.

What characterizes all of these applications is that sets of uncertain vectors or functions
are formulated to represent unknown variation of physical quantities. This work testifies to the
intuitive attractiveness and practical utility of set-models of uncertainty.

Slightly later (Ben-Haim, 1985a,b; Ben-Haim and Shenhav, 1983, 1984; Shenhav and Ben-
Haim, 1984) appeared what was perhaps the first indication that the work of these early pioneers
was in fact a collection of examples of a more general theory of uncertainty, which we know today
as convex modelling or info-gap models of uncertainty. While the early workers had exploited
to great advantage the fact that their uncertainty sets where (almost invariably) convex, the
‘convexity theorem’ (Ben-Haim, 1985a) established a mathematical connection between set-
convexity and uncertainty. That the convexity theorem was developed in yet another field —
optimization of material assay — shows how widespread is the need for alternative theories
of uncertainty. This result was extended and expressed as a limit theorem by Ben-Haim and
Elishakoff (1990).

Since the early 1990’s we find convex-set info-gap models being applied to a wide range of
problems in mechanics, many of which are summarized by Ben-Haim and Elishakoff (1990).
Givoli and Elishakoff (1992) use info-gap models to analyze stress concentrations in plates with
irregularly shaped holes. Lindberg (1992a,b) applies info-gap models in the analysis of dynamic
pulse buckling of thin-walled shells. Among his other conclusions, Lindberg notes the tremendous
saving in time using set-models instead of monte-carlo-based probabilistic models, without loss of
fidelity to available prior information. Natke and Soong (1993) examine structural optimization
by using info-gap models to represent uncertain dynamic loads. Elishakoff and Zhu (1994)
use info-gap models to study acoustically excited structures. Ben-Haim (1994b) uses info-gap
models to study the fatigue life of structures with uncertain inputs. Ben-Haim, Chen and Soong
(1996) use convex info-gap models in the analysis of seismic safety, comparing their results to
probabilistic analysis. Pantelides and Tzan (1996) as well as Tzan and Pantelides (1996a,b)
study the safety and active control of buildings with uncertain ground loadings represented
by info-gap models. Qiu and Gu (1996) study trusses and plates with uncertain structural and
material parameters. Pantelides (1996) studies the stability of an elastic bar on a foundation with
uncertain stiffness using convex models of uncertainty. More recently, the range of application of
set-theoretic info-gap models of uncertainty has grown to include sequential analysis (Ben-Haim,
1998) and inference from uncertain evidence (Ben-Haim, 1997b), as well as project management
under uncertainty (Ben-Haim and Laufer).

In the following section we will discuss the use of info-gap models in a theory of reliability
which employs no probabilistic models and is particularly suited to situations plagued by severe
lack of information. Before that, however, we examine several examples of vibration analysis
with info-gap models of uncertainty.

Example 1 Extremal displacement with uncertain input. Let us consider a simple but charac-
teristic vibration problem with uncertain transient input. Given very limited prior information
about the inputs, we wish to estimate the extremal displacements of the vibrating system.

A typical situation is that we know which frequencies make up the input function, and
we have rough global data about the relative range of variation of the amplitudes of these
frequencies. However, we lack sufficient data to express the relative likelihoods of different
inputs. With such exiguous information we can not reasonably select a probabilistic model for
the dynamic loads. We can, however, employ the Fourier ellipsoid-bound info-gap model to
quantify this fragmentary prior information.

For simplicity and clarity we will consider a single degree of freedom system with zero initial
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conditions. In the literature one finds many examples of multi-DOF analyses. The displacement
x(t) is described by the following linear differential equation:

mẍ(t) + cẋ(t) + kx(t) = u(t), x(0) = ẋ(0) = 0 (5)

Let T be the duration of the transient, and express the input as the sum of a known part, ũ(t),
and an unknown part expanded in harmonics:

u(t) = ũ(t) +
N∑

n=1

[an sinnπt/T + bn cosnπt/T ] (6)

This is more conveniently expressed in vector notation. Let βT = (a1, . . . , bN ) be the vector
of unknown Fourier coefficients and let γ(t) be the corresponding vector of sine and cosine
functions, so that:

u(t) = ũ(t) + βTγ(t) (7)

If we imagine a 2N -dimensional space whose coordinates are the coefficients β1, . . . , β2N , then
the unknown vectors β cluster in a cloud in this space. Our prior information is sufficient
to roughly characterize the shape of this cloud but not its size. This information about the
uncertain coefficient vector β is represented by the following family of sets, which constitutes
the Fourier ellipsoid-bound info-gap model:

U(α) =
{
β : βTWβ ≤ α2

}
, α ≥ 0 (8)

where W is a real, symmetric, positive definite matrix which specifies the shape of the ellipsoid,
and the uncertainty parameter α determines the size of each ellipsoidal set in the family.

Let x̃(t) represent the displacement in response to the known part of the input, ũ(t). Eq.(5)
can be solved (Inman, 1994) to express the total displacement at time t as:

xu(t) = x̃(t) + βT
[

1

mωd

∫ t

0
γ(τ)e−ξω(t−τ) sinωd(t− τ) dτ

]
︸ ︷︷ ︸

ζ(t)

(9)

= x̃(t) + βT ζ(t) (10)

where ζ(t) is defined in eq.(9), and is a known vector function. The natural frequency is ω =√
k/m, the damping coefficient is ξ = c/2ωm, and the damped natural frequency is ωd =

ω
√
1− ξ2. We have assumed that ξ2 < 1.
It is now a matter of standard optimization theory to find the extremal displacements, subject

to uncertainty in the Fourier coefficient vector β. That is, we must:

Optimize βT ζ(t), Subject to βTWβ ≤ α2 (11)

βT ζ(t) attains its extremal values at the boundary of the constraint because it is a linear function.
The method of Lagrange optimization is directly applicable here, as is explained elsewhere (Ben-
Haim and Elishakoff, 1990). The extremal responses are found to be:

x̂(t) = x̃(t)± α
√
ζT (t)W−1ζ(t) (12)

The coefficient vectors which result in these extremal responses at time t are:

β̂ = ± α√
ζT (t)W−1ζ(t)

W−1ζ(t) (13)

We notice that the extremal response x̂ depends on the uncertainty parameter α whose value
is usually unknown. That is, the value of the extremal response is itself uncertain. This is a
universal characteristic of info-gap analysis, and is central to the concept of robust reliability
developed in section 4.
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Example 2 Maximum squared displacement with uncertain input. In some applications it is
not the displacement which is of interest, but its squared value. For instance, energy dissipation
is related to quadratic functions of the displacement. We repeat the previous example, with the
single modification that the nominal input ũ(t) is zero, implying that x̃ also vanishes. Using
eq.(10), the squared displacement can be expressed:

x2(t) = βT ζ(t)ζT (t)β (14)

whose maximum we must seek subject to the constraint that β belongs to the info-gap model
in eq.(8). Thus, we must:

Maximize βT ζ(t)ζT (t)β, Subject to βTWβ ≤ α2 (15)

This leads to an eigenvalue problem, whose solution is readily found using Lagrange optimization.
Let µ(t) be the maximal eigenvalue of the real symmetric matrix W−1/2ζ(t)ζT (t)W−1/2. One
then finds that the maximum squared displacement is:

maxx2(t) = α2µ(t) (16)

The Fourier coefficient vector β which produces this maximum squared displacement is the
eigenvector of W−1/2ζ(t)ζT (t)W−1/2 corresponding to the maximum eigenvalue µ(t).

Example 3 Hybrid probabilistic/info-gap uncertainty. It often happens that some information
about the uncertain phenomenon is probabilistic and some information is more amenable to
info-gap representation. For example, in seismic excitation and other shock problems, we may
know the probability density of the total energy of the event, while much less is known about
the precise temporal waveform of the load on the structure. We will illustrate the integration of
probabilistic and info-gap modelling with a simple example.

Let the cumulative probability of events whose total energy is no greater than E be a known
function PE(E). Furthermore, for events at energy no greater than E, the uncertainty in the
deviation of the input waveform u(t) from the nominal input ũ(t), is represented by an energy-
bound info-gap model like eq.(1):

U(E, ũ) =

{
u(t) :

∫ ∞

0
[u(t)− ũ(t)]2 dt ≤ κE

}
, E ≥ 0 (17)

where the uncertainty parameter is the total energy E, and κ is a constant which adjusts the
units.

If the vibration is represented as a linear SDOF oscillator, the displacement in response to
input u(t), assuming sub-critical damping, is:

xu(t) =
1

mωd

∫ t

0
u(τ)e−ξω(t−τ) sinωd(t− τ) dτ (18)

where the parameters are defined as in connection with eq.(9).
The nominal input is ũ(t) which results in the nominal displacement xũ(t). Employing the

Schwarz inequality (Ben-Haim and Elishakoff, 1990) one can find the greatest deviation of the
displacement from the nominal value, for any input up to energy E:∣∣xu(t)− xũ(t)

∣∣ ≤ η(t)
√
κE for all u(t) ∈ U(E, ũ) (19)

where we have defined:

η(t) =
1

mωd

√∫ t

0
e−2ξωτ sin2 ωdτ dτ (20)
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Let us suppose that significant damage occurs if the displacement x(t) exceeds a critical
value xcr. That is, failure is defined as:

x(t) > xcr (21)

The classical probabilistic reliability is the probability of no-failure, which is Prob(xu ≤ xcr).
We are not able to derive an exact expression for this probability since part of the uncertainty
— the unknown input waveform u(t) — has eluded a probabilistic representation.

Employing the cumulative probability distribution of the input energy, PE(E), and inequality
(19) based on the info-gap model, we obtain the following bound on the probability that the
displacement does not exceed the critical value:

Prob(xu ≤ xcr) ≥ PE

[
1

κ

(
xcr − xũ

η

)2
]

(22)

We are able to obtain no more than a bound on the probability of avoiding significant damage,
because we have only info-gap information about the temporal load uncertainty. However, we
are able to exploit the partial probabilistic information embodied in the energy distribution
PE(E).

4 Robust Reliability

We now come to the main applicative part of this paper: evaluating the reliability of a vibrating
mechanical system when the the inputs are very poorly known. Since we have, at best, only
partial probabilistic information, we will seek a supplement to classical probabilistic reliability.

To rely on something means to have confidence based on experience. This is a plain English
word, and it has carried this meaning since long before engineers started thinking probabilis-
tically. Reliability rests on two more primitive concepts: performance and uncertainty. Still
speaking lexically and not technically, we can rely on something when, despite uncertainties, its
performance will be acceptable.

We now ask for a quantitative theory which reflects the intuitive idea of reliability. The
current standard theory of reliability is based on probability: the reliability of a system is
measured by the probability of no-failure. This approach is exceedingly useful and has been
developed in recent decades by many able authors.

In this paper we will describe a different formulation. We measure the reliability of a system
by the amount of uncertainty consistent with no-failure. That is, reliability can be quantified as
immunity to uncertainty. A reliable system will perform satisfactorily in the presence of great
uncertainty and is immune to unanticipated variations. Such a system is robust with respect
to uncertainty, and hence the name robust reliability. On the other hand, a system has low
reliability when small fluctuations can lead to failure. Such a system is fragile or vulnerable
to uncertainty. This approach to reliability is described elsewhere in detail (Ben-Haim, 1994c,
1995, 1996, 1997a). We will illustrate the method of robust reliability with several examples.

We will employ three components in our analysis of the robust reliability of mechanical
systems: (1) a model of the mechanics, (2) a model of the uncertainties, and (3) a criterion
of failure. For items (1) and (3) we will use standard mechanical and physical theories. For
item (2) we will use info-gap models of uncertainty, augmented where possible with whatever
probabilistic information is available.

Example 4 Reliability of an SDOF system with a potential-energy failure criterion. Consider a
linearly vibrating SDOF system subject to uncertain input. The mechanical model is eq.(5).
The input uncertainty model is the info-gap model U(α, ũ), α ≥ 0, which is made up of
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eqs.(7) and (8). The system fails if the potential energy kx2/2 stored in the system exceeds a
critical value Ecr. The failure criterion can be expressed:

x2(t) >
2Ecr

k
(23)

where k is the stiffness of the SDOF system.
The robust reliability — measured as the degree of the immunity of the system to uncertainty

— is the greatest value of the uncertainty parameter α consistent with no-failure of the system.
Formally we can define the robust reliability α̂ as follows:

α̂ = max

{
α : x2u(t) ≤

2Ecr

k
, for all u(t) ∈ U(α, ũ)

}
(24)

We can “read” this relation as: the robust reliability α̂ is the maximum of the set of α-values
for which the squared displacement x2u(t) in response to input u(t) is no greater than 2Ecr/k for
all functions u(t) in the input uncertainty-set U(α, ũ).

From eq.(16) we know that the greatest squared displacement, for any input up to uncertainty
α, is α2µ(t), where µ is the maximum eigenvalue defined in example 2. The robust reliability
is evaluated by equating the maximum squared displacement to the threshold value 2Ecr/k and
then solving for the uncertainty parameter:

max
u∈U(α,ũ)

x2u =
2Ecr

k
=⇒ α̂ =

√
2Ecr

kµ(t)
(25)

α̂ is the greatest value of the uncertainty parameter consistent with no-failure. If α̂ is large, then
the system is relatively immune to uncertainty, while if α̂ is small, then the system is vulnerable
to uncertain variation of the input and cannot be relied upon to perform its mission.

An important question in any reliability analysis — probabilistic as well as robust reliability
— is the subjective calibration of the reliability index. In the present case: how robust is robust
enough? Or, how large a value of α̂ is ‘large’? This can be addressed in various ways (Ben-
Haim, 1996, ch. 9). A simple and often accessible approach is to ‘calibrate’ the robustness by
some non-dimensional normalization. For instance, suppose that we know a typical length of
oscillation, x̃. Then a typical force of displacement of the system is kx̃. Since α̂ has units of
force (to match the units of the input function u(t)) we can calibrate the robust reliability by
normalizing it with kx̃. That is, α̂/kx̃ is dimensionless, so if α̂/kx̃ ≪ 1, then the system is very
vulnerable to uncertainty in the input, since force fluctuations much less than typical resistence
forces entail failure. On the other hand, α̂/kx̃ ≫ 1 implies substantial robustness because force
fluctuations much larger than the typical stiffness force do not lead to failure.

Example 5 Reliability with hybrid probabilistic/info-gap uncertainty. Consider a damped SDOF
mechanical system subject to separate transient excitations of duration T occurring infrequently
enough so that the system damps down to zero initial conditions after each event. The me-
chanical model for each transient is eq.(5).

Based on prior information, the probability of exactly n transients in a long duration Θ is
described by the Poisson probability distribution:

Pn(Θ) =
e−λΘ(λΘ)n

n!
, n = 0, 1, 2, . . . (26)

where λ is the mean number of transients per unit time. However, the specific temporal variation
of each transient input is uncertain and described by the info-gap model of eqs.(7) and (8) with
ũ = 0. Thus the uncertainty model combines both probabilistic and info-gap models of
uncertainty, Pn(Θ) and U(α).
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The system fails when damage has accumulated in excess of a quantity Ecr. While there
are many models of damage accumulation, we adopt the simplest for purposes of illustration.
Extensions can be found in Ben-Haim (1994b, 1996). We suppose that the increment of damage
in a single transient is proportional to the integral squared displacement:

E = ν

∫ T

0
x2u dt (27)

where ν is a constant. Failure occurs in n transients with damage increments E1, . . . , En if:

n∑
i=1

Ei > Ecr (28)

This is the failure criterion.
As in example 2, one can show that the maximum increment of damage in a single transient

is:

max
u∈U(α)

E = ν max
u∈U(α)

∫ T

0
x2u dt (29)

= να2η (30)

where η is the greatest eigenvalue of the matrix W−1/2
∫ T
0 ζT (t)ζ(t) dtW−1/2 and ζ is defined in

eq.(9).
We have insufficient probabilistic information to calculate the probability of failure: we can

not calculate the probability distribution of max
∫
x2u dt since u is characterized only by an info-

gap model of uncertainty. However, we have partial probabilistic information: the distribution
in time of the transients is Poisson. A hybrid approach is called for, and we will outline one
such analysis (Ben-Haim, 1996, pp.193–194).

The robust reliability for failure in exactly n transients is the greatest value of the uncertainty
parameter α which is consistent with no-failure. Call this α̂n, which can be evaluated based on
the info-gap model. Since we know the probability of n transients in duration Θ, we can average
α̂n on the number of transients.

Combining eqs.(27)–(30), we evaluate α̂n by equating the maximum cumulative energy to
the threshold value, and then solving for α:

nνα2η = Ecr =⇒ α̂n =

√
Ecr

nνη
(31)

This is the robust reliability for failure in precisely n transient events.
Randomizing α̂n on n, we must exclude the case n = 0 since failure can not occur without the

input of energy. Hence the robust reliability averaged over the Poisson probability distribution
becomes:

α̂ =
1

1− P0(Θ)

∞∑
n=1

α̂nPn(Θ) (32)

=
e−λΘ

1− e−λΘ

√
Ecr

νη

∞∑
n=1

(λΘ)n

n!
√
n

(33)

Eq.(33) reveals how the reliability decreases as the duration of operation, Θ, increases. It shows
the dependence of the reliability on the failure threshold Ecr and on the system properties
through the quantities ν and η.
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5 Risk Aversion and Engineering Decisions

The analysis of reliability serves the engineering decision-maker in various fields such as safety
analysis and certification, design of systems and processes, monitoring and fault diagnosis, and
so on. In this section we introduce the idea of risk aversion, borrowed to some extent from
economic theory, and show how it is used, together with robust reliability, as a decision-support
tool in vibration problems with uncertainty. We will show that the robustness α̂, viewed as a
function of the failure threshold, gives a quantitative global characterization of the system and
its relation to its uncertain environment.

To begin with an example, note that in eq.(25) the robust reliability α̂ increases monotoni-
cally with the failure threshold Ecr. This is true quite generally, and provides the basis of our
discussion.

It is intuitively quite reasonable that the reliability increases with the failure threshold of
the system. We will obtain deeper insight into the theory of robust reliability by seeking to
understand the origin of the universal monotonic relation between reliability and failure thresh-
old. First we need a more general formulation of robust reliability. Let the state of the system
be x(t) and its input be u(t), which are related by the mechanical model, whatever it may
be. The failure criterion states that failure occurs if a ‘decision function’ D(x, u, t) exceeds a
threshold value Dcr:

D(x, u, t) > Dcr (34)

where x obeys the dictates of the mechanical model of the system. This encompasses quite a
broad range of failure criteria, including those we have considered, eqs.(21), (23) and (28). The
uncertainty model is an info-gap model, U(α, ũ), α ≥ 0.

To formulate the robust reliability of the system we first need to define the following set:

A(Dcr) = {α : D(x, u, t) ≤ Dcr, for all u ∈ U(α, ũ)} (35)

A(Dcr) is the set of all values of the uncertainty parameter α for which the decision function
D(x, u, t) does not violate the failure criterion, for all inputs u(t) in the info-gap model U(α, ũ).
The robust reliability is the greatest α in this set:

α̂(Dcr) = maxA(Dcr) (36)

In other words, as we have stated before, the robust reliability is the greatest value of the
uncertainty parameter which is consistent with no-failure of the system. Eq.(24) is a specific
example of this procedure.

Without getting into mathematical technicalities, one can see that, if failure threshold D1 is
less than threshold D2, then A(D1) is a subset of A(D2):

D1 < D2 =⇒ A(D1) ⊆ A(D2) (37)

The explanation: if D(x, u, t) ≤ D1 for all u in U(α, ũ), then clearly D(x, u, t) ≤ D2 for all u in
U(α, ũ) since D1 < D2. Hence any α in A(D1) will also belong to A(D2).

As a start at understanding what this means, let’s state this result succintly and give it a
name:

Gambler’s theorem: The robust reliability increases monotonically with the failure thresh-
old.

The gambler’s theorem can be interpreted in various ways in different contexts. We will
examine it in connection with design decisions. Let us return to eq.(25) in example 4. In fig. 1 we
plot the robustness versus the failure threshold for two different designs, for instance, provided by
designers who have chosen different natural frequencies. The robustness axis is labelled ‘immune’
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Figure 1: Robustness versus failure threshold for two different designs.

for large values of α̂ since large robustness implies large immunity to uncertainty. Likewise, the
α̂ axis is labelled ‘vulnerable’ for small values of α̂. Consider now the failure-threshold axis.
When the designer chooses his system to fail at a low threshold, he is adopting an approach
which might be viewed, in the extreme, as ‘rash’ or ‘cavalier’, motivated perhaps by the desire
for an inexpensive product. At the other extreme, where Ecr is very large, the designer may
choose expensive solutions providing high failure thresholds. With this point of view in mind
we have labelled the failure-threshold axis ‘rash’ or ‘cheap’ for small values of Ecr and ‘wary’ or
‘costly’ for large Ecr.

With this interpretation of the axes in fig. 1, we can interpret the monotonic increase of
the robustness curve as expressing the trade-off between cost and vulnerability-to-uncertainty:
as cost rises, vulnerability decreases. Conversely, the gambler’s theorem states the trade-off
between economy and immunity-to-uncertainty: as the designer “cuts corners and costs”, he
increases his vulnerability to uncertainty.

Furthermore, the robustness curve quantitatively characterizes the designer in terms of how
he “gambles” in this trade-off. Comparing the two designs in the figure we see that designer #2
shows greater fondness for risk and uncertainty than designer #1. Consider the arrows running
to the right and downward from the robustness value α. At the level α of ambient uncertainty,
designer #1 is more cautious and requires a more costly system than designer #2, as evidenced
by the fact that E1 > E2. In this sense, designer #1 is more averse to risk than designer #2.
Likewise, consider the arrows rising from the failure-threshold E. For a system intended to fail
at this threshold, designer #2 can tolerate greater ambient uncertainty than designer #1, since
α2 > α1. Again, designer #2 has greater proclivity for ambient uncertainty than designer #1.

Whatever linguistic interpretation one chooses for the robustness curve, and it must be
stressed that the interpretation of the last few paragraphs is by no means the only plausible one,
the fact remains that robustness increases monotonically with failure threshold. The gambler’s
theorem expresses a trade-off between vulnerabilty-to-uncertainty and resistence-to-failure: vul-
nerability increases as resistence falls. Robustness curves such as those in fig. 1 serve as an
assessment of global sensitivity to uncertainty.
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6 Summary

We have addressed the challenge of using imperfect information about dynamic loads in eval-
uating the reliability of a vibrating system. Uncertain inputs can be characterized in different
ways, using probability theory, or information-gap models of uncertainty, or fuzzy logic. These
methods are conceptually distinct and each is particularly suited to a different type and quantity
of prior information.

We have stressed info-gap models of uncertainty, which are adapted to severe lack of infor-
mation. In situations where rare events are of critical concern and information is at a premium,
info-gap models allow the analyst to make rational and systematic assessments without intro-
ducing unverifiable extrapolations beyond his data. When some probabilistic information is
available, we have shown how it can be incorporated in a hybrid probabilistic/info-gap analysis.

We have outlined the theory of robust reliability, which replaces probabilistic reliability
in those situations where prior information is insufficient to verify the choice of a probability
density. Here also we have illustrated a hybrid probabilistic/info-gap reliability analysis.

Finally, we used the idea of aversion to risk to provide an overall assessment of the per-
formance of a system in an uncertain environment. The “gambler’s theorem” shows that the
robustness α̂, viewed as a function of the failure threshold Ecr, quantifies the trade-off between
inherent system properties and environmental uncertainty.
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