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Reliability-Optimal Cooperative Communication
and Computing in Connected Vehicle Systems
Jianshan Zhou, Daxin Tian, Senior Member, IEEE, Yunpeng Wang, Zhengguo Sheng, Xuting Duan,

and Victor C.M. Leung, Fellow, IEEE

Abstract—The emergence of vehicular networking enables distributed cooperative computation among nearby vehicles and

infrastructures to achieve various applications that may need to handle mass data by a short deadline. In this paper, we investigate the

fundamental problems of a cooperative vehicle-infrastructure system (CVIS): how does vehicular communication and networking affect

the benefit gained from cooperative computation in the CVIS and what should a reliability-optimal cooperation be? We develop an

analytical framework of reliability-oriented cooperative computation optimization, considering the dynamics of vehicular communication

and computation. To be specific, we propose stochastic modeling of V2V and V2I communications, incorporating effects of the vehicle

mobility, channel contentions and fading, and theoretically derive the probability of successful data transmission. We also formulate

and solve an execution time minimization model to obtain the success probability of application completion with the constrained

computation capacity and application requirements. By combining these models, we develop constrained optimizations to maximize the

coupled reliability of communication and computation by optimizing the data partitions among different cooperators. Numerical results

confirm that vehicular applications with a short deadline and large processing data size can better benefit from the cooperative

computation rather than non-cooperative solutions.

Index Terms—Cooperative vehicle-infrastructure systems (CVIS), vehicle-to-vehicle communication (V2V), vehicle-to-infrastructure

communication (V2I), vehicular cloud computing, vehicular cooperation.

✦

1 INTRODUCTION

R ECENT advances in distributed data storage, mobile
cloud computing and vehicular communication tech-

nologies have been tightly integrated into vehicles moving
on roads and roadside infrastructures, which are empow-
ering the design and implementation of cooperative vehicle-
infrastructure systems (CVIS). In particular, along with the
evolution of vehicular technologies, vehicles are envisioned
to be furnished with powerful on-board storage, sensing,
computing and communication facilities. They are able to
provide cloud-computing-like services to other nearby con-
nected mobile devices in their communication coverage,
which has spawned a novel mobile edge-cloud computing
paradigm, i.e., vehicular cloud computing [1]. In vehicu-
lar cloud computing, vehicles and roadside infrastructures,
closely coupled via vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communications [2], can form a small-
scale cloudlet in a cooperative manner. In such a system,
a vehicular user not only has an opportunity to access as
well as offload its computation task to the roadside source-
rich infrastructure (e.g., a road-side unit (RSU) or a central
cloud) but also to access and use the underutilized storage
and computing resources provided by one or several nearby
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vehicles. Thus, it can guarantee quality of service (QoS) for
various vehicular applications. Such a computing paradigm
based on V2V and V2I communications can be viewed
as a computing-oriented cooperation between vehicles and
between vehicles and infrastructures.

However, there exist some challenges that need to be
addressed for practical and scalable realization of cooper-
ative computing in vehicular mobility environments. On
one hand, due to high mobility nature of vehicles, vehicular
communication networks are quite different from tradition-
al cellular networks and Wireless Local Area Networks
(WLAN). To be specific, vehicular networks are generally
characterized by transient topology between moving ve-
hicles [3], fast channel fading and impairments resulting
from vehicular mobility and Doppler shift [4], and inten-
sive contending for channel access [5]. Hence, the inherent
transient connectivity in vehicular communications makes
it a challenge to reliably and efficiently exchange tremen-
dous data (e.g., images, audio and video files, and some
other multimedia streams) between vehicles and between
vehicles and infrastructures. Consequently, the computation
performance will be seriously constrained by the bottleneck
of V2V and V2I communications in terms of reliability and
efficiency performance. On the other hand, existing mobile
cloud computing architectures, such as the virtual machine
(VM) based cloudlets [6], the weblet model [7], the clone
cloud model [8], and some other mobile edge computing
paradigms [9], [10], [11], are conventionally designed for
Internet-of-Things (IoT) sensors or mobile users with low
mobility (e.g., smart phones, personal digital assistants and
handled computers), which mainly rely on traditional cellu-
lar and WLAN networks for data transmission. Thus, these
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existing mobile cloud computing or mobile edge comput-
ing technologies may not accommodate the fast-changing
V2V and V2I communication topologies. Moreover, many
existing computation offloading schemes for mobile cloud
computing or mobile edge computing generally focus on
the energy-efficiency optimization with a certain latency
constraint in energy-poor or storage-poor mobile situations
[12], [13]. Nonetheless, from the perspective of application
demands for QoS support, reliability, low-latency and ef-
ficiency, rather than the energy consumption, are mainly
concerned in the design and practical deployment of many
vehicular applications, such as driving decision-making,
road danger recognition, and platoon collision warning,
etc. Indeed, despite the vast literature related to architec-
ture design, offloading optimization and control in mobile
cloud/edge computing [1], [14], [15], it remains an open
question on how to leverage the mobile computing paradig-
m shift from traditional mobile networks (e.g., mobile wire-
less sensor networks, delay-tolerant networking, cellular
networks, etc.) to vehicular networks and how to design
an efficient and reliable computing mechanism for a CVIS,
which jointly allows for vehicular mobility, communication
and computation.

In this paper, our objectives are to address the afore-
mentioned challenges related to vehicular communication
and cooperative computation in CVIS, which involve two
aspects in modeling and optimization. First, we present
stochastic modeling for characterizing performance of V2V
and V2I communications, which takes into account both
the vehicle mobility and vehicular channel characteristics.
Particularly, the stochastic transient V2V connectivity is con-
sidered from the physical-layer perspective and its impact
on V2V connection is incorporated into the cooperative
computation. Then, we integrate the dynamics of V2V and
V2I communications and computation. We propose opti-
mization models to maximize the success probability of
application completion under different cooperative compu-
tation modes. The vehicular user is enabled to optimally
partition, offload and execute application workload between
vehicles and infrastructure with jointly considering V2V and
V2I communication and computation.

The main contributions of our work are as follows:

• We present stochastic modeling for V2V and V2I
communication dynamics. In V2V and V2I com-
munications, the stochastic modeling combines the
vehicle mobility with the effects from physical-layer
contentions and fading. An analytical model for the
performance estimation of a V2V link is developed,
which can be used to evaluate the success probability
of transferring data via the V2V connection within a
deadline. Similarly, we also theoretically derive the
success probability of V2I data transmission. Besides,
an optimal V2I transmission scheduling is proposed
to enhance the performance.

• We develop an optimization model to minimize the
time consumption in a local application execution.
Based on the model, we derive the closed-form op-
timal CPU clock frequencies. By using the optimal
CPU clock frequencies, we obtain the maximum
likelihood of successful completion using the local

execution, given the available computation energy
of a vehicle and the application requirements (i.e.,
the execution deadline and the data volume to be
processed). The success probability of application
completion by the local execution is defined as the
computation reliability.

• Considering different cooperation modes, we formu-
late constrained optimization problems by combin-
ing the reliability modeling of both V2V and V2I
communications and the local execution. The goal
is to maximize the overall reliability of vehicular
cooperative computing by optimizing the data work-
load partitions among V2V and V2I cooperators. The
constrained optimization model developed can lead
to reliability-optimal cooperation solution.

To the best of our knowledge, there exist little litera-
ture in the growing field of mobile cloud or mobile edge
computing that incorporates the impacts of the vehicle
mobility and of the physical-layer characteristics in wire-
less vehicular environments into mobile computation. We
present the first step towards the modeling and optimiza-
tion of reliability-oriented cooperative communication and
computing in wireless vehicular accessing environments,
which is expected to help bringing distributed vehicular
computing power into full play in CVIS and to facilitate a
transformation from traditional centralized cloud-based in-
telligence to distributed cooperative edge-based intelligence
for connected and autonomous vehicles in the future.

The remainder of the paper is organized as follows. In
Section 2, we present a review on related work. Section
3 presents the system model for a CVIS in terms of V2V
and V2I communications and computation. In Section 4, we
propose optimization models for cooperative computation
and analyze different cooperation modes. Simulation results
are supplemented in Section 5. Finally, Section 6 concludes
the paper and gives future directions.

2 RELATED WORK

The last few years have witnessed the integration of cloud-
computing paradigms into the mobile systems, which pro-
motes the development of mobile computing or mobile
edge computing [14]. The key idea behind such computing
paradigms is to migrate the data storage and computing
tasks away from mobile users to remote central servers
or local edge clouds, so as to overcome mobile devices’
weakness in computing, data storage, energy capacities.
Many researchers have been currently engaged in design-
ing innovative architectures to leverage the potential of
cloud computing in mobile scenarios. For instance, [6] has
proposed the technological concept of a cloudlet to make
the best of computing resources in local devices. [7] has
presented an elastic application model that enables parti-
tioning an application into multiple weblets and realizes
dynamic configuration for the weblets. In [8], a clone-cloud
execution mechanism has also been presented to augment
mobile applications running on smartphones. In the context
of IoT, [9] has proposed a hierarchical edge computing archi-
tecture, called EdgeIoT, to overcome the scalability issue in
centralized cloud computing, in which a software defined
network (SDN) cellular core is designed for information
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exchanging between edge nodes and a proxy VM assigned
for each IoT device is running on a edge node. A computing
paradigm, called Edge Mesh, has also been proposed in [10],
in which decision-making tasks and data are enabled to
be distributed to as well as shared among different edge
devices in a network. In addition, [11] compares distributed
edge/cloudlet architectures with traditional cloud architec-
tures, revealing the advantages of distributed edge/cloudlet
computing in terms of system scalability, network traffic
balance and low-latency support.

Offloading decision-making plays a critical role in fully
exploiting the potential of cloud computing, which has
recently attracted many research efforts. Much literature
focuses on the energy-efficiency optimization. [16] has pro-
posed an adaptive mechanism to determine when to offload
the computation from a client to a server while saving the
energy consumption. [17] has applied the cloud offloading
to mobile GPS sensing in terms of energy efficiency. A
dynamic energy-efficient offloading algorithm has also been
designed based on Lyapunov optimization in [18]. Both [19]
and [20] aim to determine an optimal scheduling of CPU
clock frequency for mobile execution and an optimal data
partition for cloud execution with the goal of minimizing
total computing energy cost within an execution duration.
In [21], an energy-efficient cooperative computing paradigm
has been proposed for mobile wireless sensor networks.
In [12], the authors show that offloading computing tasks
involving intensive communications may not benefit mo-
bile users in terms of energy conservation. Multiple user
computation offloading issue has also been studied in [22],
which is based on a 3G/4G macro/small-cellular com-
munication model. Many other energy-optimal offloading
algorithms and architectures can also be found in [13], [15].
Nevertheless, for vehicular application situations, energy
consumption is not a key design factor due to the fact that
a vehicular system usually has a powerful energy supply.
Instead, reliability and efficiency are major concerns in
many computation-intensive and latency-critical vehicular
applications. Additionally, most of computation offloading
architectures presented in the aforementioned literature are
based on cellular networks, the wireless channel dynamics
of which is quite different from that of vehicular networks.

Indeed, the paradigm of mobile cloud or mobile edge
computing has recently been extended to connected vehi-
cles, which promotes the evolution of vehicular cloud com-
puting [1]. In this evolution, vehicles can be viewed as IoT
resources in terms of communication and computing [23].
To leverage the potential of computing resources distributed
over connected vehicles, different vehicular cloud comput-
ing architectures have been investigated, such as the mobile
vehicular cloudlet [24], the cooperative fog computing [25],
the fog vehicular computing [26], and the vehicular fog
computing [27], etc, and many offloading mechanisms have
been proposed as well. [28] has proposed a Markov decision
process (MDP)-based offloading algorithm, in which the
stochastic connectivity between mobile users and cloudlets
is modeled by an independent homogeneous poisson point
process. A heuristic mechanism for dynamic computation
offloading has also been designed with consideration of
on-board CPU cycle and network bandwidth costs, and
applications’ latency in [29]. In [30], a cooperative download

scheme is proposed based on selection of carriers and data
chunks at roadside access points for delay-tolerant vehicular
applications. [31] has developed computation offloading
strategies for mobile edge computing in vehicular networks
in order to reduce the latency and transmission cost. Con-
sidering the effectiveness of V2V and V2I transmissions,
[32] has proposed a dynamic relegation scheme, with which
computation offloading can be adaptively performed by
combining the strategies of direct uploading and predictive
relaying. In [33], the management of computing resources
distributed over connected vehicles has been investigated
and a MDP-based task replication policy is derived.

Even thought all of the current studies above confirm
that putting the underutilized computing resources dis-
tributed over connected vehicles can offer significant oppor-
tunity and value for our society, existing architectures and
offloading mechanisms for vehicular cloud computing have
not integrated detailed modeling of vehicular mobility and
V2V/V2I transmission capability and stochastic connectiv-
ity into the computing paradigm. The interaction between
vehicular communication and computing still needs to be
fully modeled in terms of vehicle-infrastructure coopera-
tion, and the coupled impacts arising from communication
and computing should be incorporated into the optimiza-
tion formulation of the overall system, which is the main
focus of our work.

3 SYSTEM MODEL

In this section, we present CVIS and characterize both V2V
and V2I communications and computation.

3.1 System Description

In a CVIS scenario, we consider that each vehicle is well
furnished with certain sensing, data storage and computing
facilities, as well as radio interfaces for V2V and V2I commu-
nications. Thus, they can also be viewed as mobile sensing
and computing nodes. Additionally, we also consider the
presence of a source-rich infrastructure, e.g., a cloudlet or
a central cloud, which can provide much more powerful
computing capacity than any single vehicle. By using V2V
and V2I communications, each vehicle is allowed to transfer
content data (e.g., application files) to a nearby vehicle and
the infrastructure at the same time [34], which establishes a
distributed computing network consisting of both moving
vehicles and infrastructure. Specifically, as illustrated in Fig.
1, a host vehicle can be served by a remote cloudlet, which
may be far away from the vehicle, and/or by a neighboring
vehicle in the V2V communication coverage, which is ready
to share its underutilized computing resources to help per-
forming computation-intensive and latency-critical tasks.

3.2 Application model

A vehicle equipped with wireless communication and with
on-board storage, sensing and computing power is allowed
to process a data-driven application. A vehicular application
is usually a program (a task) that performs a computation
on a certain amount of content data to output a result and
the result is collected by the remote data center for further
analysis, such as on-line on-board diagnosis, data-driven
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Fig. 1. A cooperative vehicle-infrastructure system where a distributed
mobile application can be executed in 7 modes with each corresponding
to a combination of vehicle-based and infrastructure-based executions.

analysis of driving behavior and some other applications
related to pattern recognition and data mining based on
a large volume of vehicular history sensing data. Another
vehicular application example is the trajectory pattern min-
ing. Conventionally, in the field of trajectory pattern mining,
massive raw motion data collected by an on-board Global
Position System (GPS) or by other vehicular sensors can be
either pre-processed on the vehicular device locally (e.g., da-
ta reduction and filtering, adaptive nonlinear noise cancel-
lation, etc.) or simply transferred to the cloud infrastructure
(i.e., data center) for data processing remotely. In the former
case, the vehicular node can compute the refined trajectory
and then uploads the refined result to the data center for
further pattern mining, which can save the communication
resource at the sacrifice of its own computational resource.
On the contrary, in the latter case, the vehicle is allowed to
directly transmit its raw trajectory data to the data center
and the cloud server takes the responsibility to complete all
the computing tasks, which may consume a large amount
of the communication resource. However, in the CVIS, the
vehicular node has an option to offload parts of the com-
putation task to a cooperative vehicular node and roadside
infrastructure nearby, which may potentially provide larger
computing capacity, and thus more computing effectiveness.

According to existing literature [20], [21], we use a
canonical model to capture the essential of a data-driven
application, which abstracts the application into three com-
ponents: A(Din, T ) = (Din, αDin, T∆τ), where (i) Din rep-
resents the total size of the input data in bits for the vehicu-
lar application, which can be partitioned into different sub-
files or data blocks of heterogeneous sizes and offloaded to a
peer vehicle or a cloud infrastructure for parallel processing.
(ii) αDin represents the size of the corresponding output
after processing the Din-bit data. Generally, the output
size depends on the input volume, which is much smaller
than that of the raw input, especially in many big data-
driven applications. Thus, we assume that the scalar factor
α should be 0 < α < 1. The resulting data needs to be
uploaded to the cloud infrastructure. (iii) T∆τ denotes the

Host Vehicle i Cooperative Vehicle j

Cooperative 

Infrastructure

Host Vehicle i operative Veh

Moving Direction

LV2V,ij

LV2I,i

LV2I,j L0

V2V Channel

Fig. 2. Mobility scenario.

completion deadline imposed by the application, in which T
is the maximum number of time slots allowed to execute the
application. ∆τ is the duration of a time slot. Throughout
this paper, we also use k to denote the index of the discrete
time with k ∈ [0, T ].

In addition, we assume that such an application model,
similar to the MapReduce [35], supports distributed com-
puting (which is indeed common in many mobile-sensing
cloud-computing based situations [21]). That is, it can be
divided into a series of sub-tasks or sub-jobs which can be
executed by using partitions of the input data in a parallel
and independent manner. Hence, the partitions of the input
data need to be distributed by a host vehicular node to other
cooperative nodes. It is noticed that even though there exist
some situations where applications cannot be divided into
parallel smaller computing tasks and need to be executed
on a single node because of dependencies in the input
data, such applications can be processed in batches. Namely,
different batches of the applications can also be distributed
to different computing nodes, so as to gain benefit from a
distributed system.

3.3 Vehicular Mobility Formulation

Without loss of generality, we consider two vehicles con-
nected via V2V communication moving on a straight road-
way, where the host vehicle is indexed by i while the
cooperative vehicle is labeled by j. Let sl, vl, al be the
vehicle l’s longitudinal position, speed and acceleration,
respectively, where l ∈ {i, j}. As in most literature in the
fields of transportation engineering, we consider that the
kinematics parameters are constant in each time interval
[k∆τ, (k + 1)∆τ), since the time-slot duration ∆τ is suffi-
ciently small. Thus, the discretized implementation of the
vehicle mobility can be represented by a general double-
integrator model as follows:

{

sl(k + 1) = s(k) + ∆τvl(k) +
(∆τ)2

2 al(k);

vl(k + 1) = vl(k) + ∆τal(k),
(1)

where l ∈ {i, j}, and k = 0, 1, . . . , T .

As shown in Fig. 2, denote by LV2V,ij the initial inter-
vehicle distance between vehicles i, j, while LV2I,i and
LV2I,j are the initial longitudinal relative distances between
i and the infrastructure and between j and the infras-
tructure, respectively. Besides, the vertical relative distance
between the infrastructure and the roadway is denoted by
L0. Using these notations, we can easily describe the time-
varying headway distance between i and j, Li,j(k), as well
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as the time-varying relative distance between i (or j) and
the infrastructure, Li(k) (or Lj(k)), as follows














Li,j(k + 1) = LV2V,ij +∆si,j(k) + ∆τ∆vi,j(k)

+ (∆τ)2

2 ∆ai,j(k);

Ll(k + 1) =
√

[LV2I,l − sl(k + 1)]
2
+ L2

0; l ∈ {i, j},
(2)

where we let ∆si,j(k) = sj(k) − si(k), ∆vi,j(k) = vj(k) −
vi(k), and ∆ai,j(k) = aj(k)− ai(k).

3.4 Modeling of V2V Communication Reliability

3.4.1 V2V physical-layer transmission

For V2V communication, we consider the employment of
the exclusive Dedicated Short-Range Communication (DSR-
C), which is operated on the frequency band between 5.850
to 5.925 GHz as allocated by U.S. FCC. According to the
DSRC specification, the physical layer of the vehicular wire-
less access follows the IEEE 802.11p standard and adopts the
orthogonal frequency division multiplexing (OFDM) proto-
col as in the IEEE 802.11a physical layer [36]. According
to the field-test measurements in [37] and much existing
literature such as [34], the fast fading in typical V2V chan-
nels can be captured by the Nakagami distribution. Hence,
we denote by m (di,j(k)) the fading parameter, which de-
pends on the relative distance between the transmitter i and
the receiver j, i.e., di,j(k) = |Li,j(k)|, and by ω (di,j(k))
the average received power in the fading envelope, which
can be further estimated by ω (di,j(k)) = E [P (di,j(k))].
P (di,j(k)) is the received signal strength, which is related to
the relative distance di,j(k) and can be well approximated
by using a dual-slope piecewise-linear model [37]

P (di,j(k)) =


























P (d0)− 10η1 log10

(

di,j(k)
d0

)

+Xσ1 , d0 ≤ di,j(k) ≤ dc;

P (d0)− 10η1 log10

(

dc
d0

)

−

10η2 log10

(

di,j(k)

dc

)

+Xσ2

, di,j(k) > dc,

(3)

where P (d0) is the known reference power received at the
reference distance d0. η1 and η2 are two different path loss
exponents. dc is a critical distance which can be estimated
as dc = 4hihj/λWAVE given the heights of i’s and j’s
antennas, hi, hj , and the wavelength of the electromagnetic
wave at 5.9 GHz, λWAVE. Xσ1 and Xσ2 are two zero-mean
normally random variables with standard deviations σ1 and
σ2, respectively.

Now, let A be the signal envelope received by vehicle
j from vehicle i, which is a random variable following
the Nakagami distribution characterized by m (di,j(k)) and
ω (di,j(k)). We can express the cumulative density function
(CDF) of the received signal strength as

Pr
{

A2 ≤ x
}

=
γ
(

m (di,j(k)) ,
m(di,j(k))
ω(di,j(k))

x
)

Γ (m (di,j(k)))
, (4)

where Γ (m (di,j(k))) is the Gamma function character-
ized bym(di,j(k)), Γ (m (di,j(k))) =

∫∞
0 sm(di,j(k))−1e−sds,

and γ
(

m (di,j(k)) ,
m(di,j(k))
ω(di,j(k))

x
)

is the complementary in-

complete Gamma function, γ
(

m (di,j(k)) ,
m(di,j(k))
ω(di,j(k))

x
)

=

∫

m(di,j(k))
ω(di,j(k))

x

0 sm(di,j(k))−1e−sds.
Based on (4), we can further derive the CDF of the

received signal-to-noise-ratio (SNR) at vehicle j as follows

Pr

{

A2

ψ
≤ x

}

=
γ
(

m (di,j(k)) ,
m(di,j(k))
ω(di,j(k))

ψx
)

Γ (m (di,j(k)))
, (5)

where ψ is the thermal noise strength at j. In the following,
for the sake of simplicity, we use m(k) and ω(k) to represent
m (di,j(k)) and ω (di,j(k)), respectively.

In the DSRC physical layer, four types of modula-
tion modes, i.e., BPSK, QPSK, 16-QAM and 64-QAM, and
three types of forward error correction coding rates, i.e.,
1/2, 2/3 and 3/4, are usually available, which can result
in different transmission rates on the V2V channels. Let
C = {c1, c2, . . . , cM} denote the finite set of alternative
transmission rates, where M is the maximum number of
the transmission rates. Therefore, we adopt an adaptive
modulation scheme to enhance the V2V communication on
the DSRC channel as in [34], [38], in which the implemen-
tation of each transmission rate cl is according to the SNR
at the receiver j. Specifically, the SNR at the receiver can
be divided into M non-overlapping intervals by different
thresholds φl (l = 1, 2, . . . ,M + 1), where φl < φl+1 for
l = 1, 2, . . . ,M , φ1 = 0 and φM+1 = +∞. If the SNR at the
receiver satisfies φl < A2/ψ ≤ φl+1, then the transmission
rate cl is implemented in the DSRC physical layer. With (5),
we derive the probability of implementing the transmission
rate cl as follows:

p (C = cl;m (k) , ω (k)) = Pr

{

φl <
A2

ψ
≤ φl+1

}

=
γ
(

m (k) , m(k)
ω(k) ψφl+1

)

− γ
(

m (k) , m(k)
ω(k) ψφl

)

Γ (m (k))
.

(6)

3.4.2 V2V channel contention

To model the V2V channel contention, we assume that
the number of vehicles in the neighborhood of vehicle i
contending to access the V2V channel, N , follows a Poisson
distribution

p (N = n) =
(Rρ)n

n!
exp(−Rρ), (7)

where ρ denotes the vehicle density and R is vehicle i’s
carrier sensing range. It is worth pointing out that the
Poisson distribution of vehicular nodes has been validated
based on the measurements in [39] and also widely adopted
in current literature such as [28].

Additionally, we assume that the IEEE 802.11 distributed
coordination function (DCF) scheme is used for the DSRC
MAC scheduling and the RTS and CTS schemes are used
for the hidden terminal transmission eliminating. Thus,
given the contention window of the exponential backoff
in each competitive vehicle, W , we can get the average
transmission probability of vehicles, b, by using the mean
approximation: b = 1/(0.5W + 1). Since there exist N
vehicles in i’s neighborhood, the probability that the V2V
channel is idle can be expressed as pidle = (1−b)N , while the
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probability of successful transmission among the vehicles
is psuc = C1

Nb(1 − b)N−1. Consequently, the probability of
transmission colliding is pcol = 1 − pidle − psuc. Therefore,
we can derive the throughput from i to j as follows

Ω(C,N) =
b(1− b)N−1Z

pidleTslot + pcolTcol + psuc
[

TMAC + Z

C

] , (8)

where Z is the average packet size of each vehicle on the
V2V channel. Tslot is the unit duration of a time slot in
the DCF backoff procedure. Tcol is the average time of a
collided transmission, which can be further expressed as
Tcol = TRTS + TDIFS + Tslot given the time interval of the
DCF interframe space (DIFS), TDIFS, and the time interval
reserved for transmission of the RTS message, TRTS. TMAC

can also be expressed as TMAC = TRTS + TDIFS + 3TSIFS +
TCTS + TACK + 4Tslot, where TSIFS, TCTS, TACK are the
pre-specified time intervals reserved for the short interframe
space (SIFS) as well as transmissions of the CTS and ACK
messages. C denotes the average transmission rate among
the N vehicles, which can be obtained with (6)

C =
1

N
C +

N − 1

N

∫ R

0

∑M
l=1 clp(C = cl;m(r), ω(r))

R
dr,

(9)
where m(r) is the V2V channel fading parameter and ω(r)
is the average received signal strength, when the distance
between a transmitter-receiver pair is r.

3.4.3 V2V transmission performance

Based on equations (9), we are able to evaluate the perfor-
mance of the V2V transmission between vehicle i and j.
Let Ti,j (Ti,j ≥ 0) be the allowable deadline (the maximum
number of time slots ∆τ ) for the V2V connection between
i and j. Then, noting that the relative transmission distance
between i and j, di,j(k), can be updated by using the
discretized vehicle dynamics (1) and (2), we can derive the
data amount that can transferred from i to j during the time
interval [0, Ti,j∆τ ] by

θ(Ti,j) =

Ti,j
∑

k=1

Ω(C,N)∆τ. (10)

From equation (10), C and N are two independent ran-
dom variables, so that θ(Ti,j) is also a random variable. The
calculation of (10) indeed involves random processes, which
is intractable. Thus, we turn to analyze the mathematical
expectation and the variance of θ(Ti,j) from a probabilistic
perspective. The linearity of the expected value leads to the
following lemma

Lemma 1. Given m(k) and ω(k) based on di,j(k) = |Li,j(k)|
where Li,j(k) is determined by (1) and (2) for k = 1, 2, . . . , Ti,j ,
the expected volume of data that can be transmitted from i to j
within the time period of Ti,j is

E [θ(Ti,j)] =

Ti,j
∑

k=1

E [Ω(C,N)]∆τ, (11)

in which E [Ω(C,N)] can be determined by

E [Ω(C,N)]

=
Nmax
∑

n=1

M
∑

l=1

Ω(C,N)p (C = cl;m(k), ω(k)) p(N = n),
(12)
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Fig. 3. The average data volume transmitted over a V2V link and the
upper bound of the corresponding variance within different deadlines
Ti,j .
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Fig. 4. The average data volume over a V2V link and the upper bound of
the corresponding variance under different vehicle densities ρ and initial
inter-vehicle distance ∆si,j(0).

where Nmax is the possible maximum number of vehicles existing
in the application scenario.

Based on Lemma 1, we derive an upper bound for the
variance of θ(Ti,j), V [θ(Ti,j)], by using inequality analysis
as follows. The proof is available in the online supplemental
material.

Theorem 1. V [θ(Ti,j)] ≤ Vsup [θ(Ti,j)] always holds, where

Vsup [θ(Ti,j)] = Ti,j∆τ

Ti,j
∑

k=1

E
[

Ω2(C,N)
]

∆τ−(E [θ(Ti,j)])
2
.

(13)

To show how the application deadline Ti,j , the vehicle
density on the road ρ and the initial space headway ∆si,j(0)
affect the V2V data transmission, we carry out numerical
evaluations by combining the models of vehicle mobility,
the V2V physical-layer and the channel contending. The
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TABLE 1
V2V fading parameter and data rate settings

∆si,j(k) [m] 5.5 13.9 35.5 90.5 230.7 588.0 +∞

m(k) 4.07 2.44 3.08 1.52 0.74 0.84 0.5

φl [dB] 5 6 8 11 15 20 25
cl [Mbps] 3 4.5 6 9 12 18 24

TABLE 2
DSRC-based V2V communication configuration

Z [Bytes] 1000
W 32
R [m] 300
TSLOT [µs] 13
TSIFS, TDIFS [µs] 32
TACK, TCTS [µs] 37
TRTS [µs] 53
ψ [dBm] -96
hi, hj [m] 1
η1, η2 2.1, 3.8
d0 [m] 100
Gt, Gr, αloss 1
Pt [dBm] 23

channel fading parameter m(k) is associated with the inter-
vehicle distance, and the physical-layer data rate c (i.e., the
selection of the modulation scheme) is adapted according to
the SNR condition. The settings on m(k) and c are detailed
in Table 1 according to [37], [40]. The reference power at
d0 is evaluated by using the well-known two-ray ground-

reflection model P (d0) = PtGtGr
(hihj)

2

(d4
0αloss)

with the gains at

the transmitter and the receiver Gt = Gr and the system
path loss factor αloss. The DSRC-based vehicular communi-
cation configurations are given in Table 2 according to the
existing studies [37], [41], [42].

Fig. 3 shows the average data volume transmitted from
vehicle i to vehicle j, E [θ(Ti,j)], and the upper bound of the
corresponding variance, Vsup [θ(Ti,j)], given different dead-
lines Ti,j , where the mobility-related parameters are initial-
ized as ∆τ = 1ms, vi(0) = 30 km/h, vj(0) = 90 km/h,
si(0) = sj(0) = 0m, and LV2V,ij = 150m. In the simu-
lation, the accelerations of both the vehicles are constantly
zero, i.e., indicating that i and j are moving at a constant
speed. As can be seen from Fig. 3, the expected data volume
that can be successfully transferred via the V2V link is
monotonically increasing with specifying a larger deadline.
Nonetheless, the variance of the transmitted data volume
also increases in such a situation, which implies that the
uncertainty in actually completing the data transmission
over the V2V link is enhanced. This is due to the vehicle
mobility, i.e., the vehicles’ motion increasing the outage
possibility of the V2V connection within a relatively large
period. In Fig. 4 where we specify the application deadline
as Ti,j = 500ms while varying the vehicle density and the
initial inter-vehicle distance, it can be observed that a higher
vehicle density or/and a larger initial space headway can
reduce the data transmission over the V2V link. The main
reason is that the channel contending is intensified with
increasing the vehicle density and the channel fading also
becomes more serious with increasing the transmission dis-
tance, which, as a consequence, degrades V2V performance.

Now, using both Lemma 1 and Theorem 1, we character-

ize the stochastic V2V communication performance. LetDi,j

denote the amount of content data that needs to be trans-
ferred from vehicle i to vehicle j within the time window
Ti,j , as the input data size of the application partitioned and
offloaded to j. We define the V2V communication reliability
as the success probability of transmitting Di,j data bits via
i-to-j connection meanwhile satisfying the given deadline
Ti,j . Mathematically, the V2V communication reliability can
be formulated by Prob {θ(Ti,j) > Di,j}. However, it is d-
ifficult or even impossible to obtain the actual probability
distribution of θ(Ti,j) in reality. Here, we further use a utility
function to characterize the unknown Prob {θ(Ti,j) > Di,j}
by resorting to the CDF of the normal distribution. The
normal distribution is widely applied in many fields related
to stochastic processes because of the central limit theorem.
Specifically, we formulate the utility function

pV2V(Di,j , Ti,j) =










1−
∫Di,j

−∞
e
−

(x−E[θ(Ti,j)])
2

2Vsup[θ(Ti,j)]√
2πVsup[θ(Ti,j)]

dx,Di,j < E [θ(Ti,j)] ;

0, Di,j ≥ E [θ(Ti,j)] .

(14)

as a metric of the V2V communication reliability. From
(14), it can be seen that pV2V(Di,j , Ti,j) is a monotonous-
ly decreasing function of Di,j , shaped by the expected
V2V link capacity E [θ(Ti,j)] and the supper bound of the
variance Vsup [θ(Ti,j)]. Logically, a V2V link is more likely
to successfully transfer the data with smaller size by a
larger deadline. Thus, the reliability metric pV2V(Di,j , Ti,j)
increases by reducing Di,j and/or increasing Ti,j .

3.5 Modeling of V2I Communication Reliability

3.5.1 V2I channel model

For modeling the V2I communication, we consider that the
V2I connection is provided based on the cellular network.
That is, the wireless access infrastructure of the roadside
cloudlet can be a cell base station in reality. However, quite
different from the exclusive DSRC-based V2V communica-
tion, the cellular licensed radio channel for the V2I commu-
nication can be usually assumed to follow the Rayleigh fad-
ing [43], [44], especially when the radio signal propagation is
operated in built-up urban environments. Let gV2I (dl(k)) be
the distance-dependent cellular V2I channel gain, in which
dl(k) is the relative distance between vehicle l (l ∈ {i, j})
and the infrastructure, i.e., dl(k) = |Ll(k)| based on (2).
Formally, the cellular V2I channel capacity between vehicle
l ∈ {i, j} and the infrastructure can be formulated as

πl(k) =
B

M
log2

(

1 + wlg
2
V2I (dl(k))

)

, (15)

where B is the available bandwidth, M is the number of
vehicles that are also accessing the infrastructure, and wl

denotes the normalized power of l for V2I communication.

3.5.2 V2I transmission performance

Given the path loss exponent β, the Rayleigh fading makes
g2V2I (dl(k)) follow an exponential distribution with the

parameter dβl (k). In this sense, denoting by ul(k) the data
volume that needs to be transmitted to the infrastructure in
time slot k, i.e., the number of bits offloaded from vehicle l to
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the infrastructure in time slot k, the probability of successful
transmission is

hl(ul(k);M) = Prob

{

πl(k) ≥
ul(k)

∆τ

}

=

exp

(

−2
ul(k)M

B∆τ − 1

wl

dβl (k)

)

.

(16)

Let the total number of data bits transmitted by ve-
hicle l to the infrastructure be Dout,l, and the allowable
deadline be TV2I,l. We can propose a V2I transmission
schedule on Dout,l across TV2I,l time slots by appropriate-
ly partitioning the total data file into a series of smaller
files {ul(k) ≥ 0, k = 1, 2, . . . , TV2I,l}, such that Dout,l =
∑TV2I,l

k=1 ul(k). Based on the multiplication principle, we
derive the overall success probability of V2I transmissions

H (Dout,l, TV2I,l;M) =

TV2I,l
∏

k=1

hl(ul(k);M) =

exp

(

−
∑TV2I,l

k=1 dβl (k)2
ul(k)M

B∆τ

wl

+

∑TV2I,l

k=1 dβl (k)

wl

)

.

(17)

3.5.3 Optimal V2I transmission scheduling

Since the V2I transmission is independently performed by
a vehicular node, this individual node can independently
optimize its V2I data transmission by optimally scheduling
{ul(k) ≥ 0, k = 1, 2, . . . , TV2I,l} transmitted across TV2I,l

time slots. Formally, the reliability-oriented optimization
model for the optimal V2I data transmission scheduling of
vehicle l ∈ {i, j} can be formulated as follows

max
{ul(k)}

: H (Dout,l, TV2I,l;M)

s.t.















TV2I,l
∑

k=1

ul(k) = Dout,l,

ul(k) ≥ 0, ∀k ∈ {1, 2, . . . , TV2I,l}

(18)

To further analyze the optimization model above, we equiv-
alently transform it to the following one

min
{ul(k)}

: G (ul) =

TV2I,l
∑

k=1

dβl (k)2
ul(k)M

B∆τ

s.t.















TV2I,l
∑

k=1

ul(k) = Dout,l,

ul(k) ≥ 0, ∀k ∈ {1, 2, . . . , TV2I,l}

(19)

where ul = [ul(1), ul(2), . . . , ul(TV2I,l)]
T

denotes a data
scheduling solution.

To derive the optimal V2I transmission scheduling, we
first provide the following lemma based on model (19),
the proof of which is given in the online supplementary
material.

Lemma 2. Suppose that uopt
l is the optimal feasible solution for

(19). For any two nonzero optimal data partitions ul(k
′) > 0 and

ul(k) > 0, ul(k
′), ul(k) ∈ u

opt
l (k ̸= k′), the partial derivative

of the objective function G(ul) with respect to them are identical,
i.e., ∂G(ul)/∂ul(k

′) = ∂G(ul)/∂ul(k). In contrast, for any
zero data partition in u

opt
l , the corresponding partial derivative

of the objective function is not less than those associated with

TABLE 3
Cellular V2I communication configuration

B [Mbit] 200
Average noise strength [dBm] -96
V2I transmission power [W] 1
V2I SNR gap 5
RV2I [m] 1000
β 2

the nonzero partitions, i.e., ∂G(ul)/∂ul(k
∗) ≥ ∂G(ul)/∂ul(k)

holding for any ul(k
∗) = 0, ul(k) > 0, ul(k

∗), ul(k) ∈ u
opt
l .

Following Lemma 2, we further obtain the closed-form
optimal V2I data scheduling as well as the maximum prob-
ability of successful V2I data transmission in Theorem 2.

Theorem 2. For the optimal V2I data scheduling solution u
opt
l of

model (18), it always holds that for all ul(k) > 0, ul(k) ∈ u
opt
l ,

ul(k) =

B∆τ

(

TV2I,l
∑

k=1
log2 d

β
l (k)− TV2I,l log2 d

β
l (k)

)

MTV2I,l
+
Dout,l

TV2I,l
.

(20)
Correspondingly, the maximum overall probability of successful
V2I data transmission, Hopt (Dout,l, TV2I,l;M), is

Hopt (Dout,l, TV2I,l;M) =

exp















−
TV2I,l2

MDout,l
TV2I,lB∆τ

(

TV2I,l
∏

k=1
dβl (k)

)
1

TV2I,l

wl

+

TV2I,l
∑

k=1
dβl (k)

wl















.

(21)

The proof of Theorem 2 is given in the online sup-
plementary material. Furthermore, it is noticed that in the
optimal objective function, Hopt (Dout,l, TV2I,l;M), M is an
independent random variable, which reflects the stochastic
number of vehicles accessing the same infrastructure. At this
point, we turn to calculate the expected success probability
of V2I data transmission. Let the expected success probabil-
ity of V2I data transmission be pV2I,l (Dout,l, TV2I,l). We use
pV2I,l (Dout,l, TV2I,l) to quantify the V2I communication reli-
ability. Specifically, also following the Poisson distribution
assumption on M , we derive

pV2I,l (Dout,l, TV2I,l)

=
Mmax
∑

m=1

(SV2Iρc)
m

m!
exp(−SV2Iρc)H

opt (Dout,l, TV2I,l;m)

(22)

for l = i, j, where SV2I is the coverage area of the infrastruc-
ture, i.e., SV2I = πR2

V2I, and ρc is the vehicle density within
the coverage in vehicles per squared meter. Mmax denotes
the possible maximum number of vehicles simultaneously
accessing the infrastructure via V2I communication.

We further conduct simulation experiments to investi-
gate the V2I performance under different factors including
the total number of vehicles accessing the infrastructure, the
V2I relative distance, and the data volume required to be
transmitted over the V2I link. The basic parameter settings
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Fig. 5. The probability of success in the V2I transmission under different
accessing vehicle amounts and V2I transmission distances.

10
2

10
3

10
4

10
5

10
6

0

0.2

0.4

0.6

0.8

1

Fig. 6. The average probability of success in the V2I transmission with
different data volumes, Dout,l, under different vehicle densities ρc.

for the V2I-based data transmission are given in Table 3.
In Fig. 5 where the average data rate required is set to
ul(k)/∆τ = 1Mbit/s, the probability of success in the V2I
transmission, i.e., the non-outage probability hl(ul(k);M),
is degraded by increasing the transmission distance dl(k).
Compared to the effect of the geographic distance, the total
amount of vehicles accessing to the infrastructure has a
greater influence on the V2I transmission. Because more
accessing vehicles can lead to less available bandwidth
allocated to a single vehicle, the non-outage probability
decreases with increasing the number of V2I communication
vehicles. Interestingly, as Fig. 5 shows, the non-outage prob-
ability experiences a sharp decline when the total vehicle
number within the infrastructure coverage increases from
4000 to 6000. With the total vehicle number exceeding 6000,
the non-outage probability is at a low level (lower than 0.4).
In Fig. 6, we evaluate the average probability of success
in transmitting a certain volume of data over a V2I link

based on the proposed model (22). The communication
vehicle’s kinematic parameters are given as si(0) = 0m,
vi(0) = 100 km/h, and ai(k) = 0m/s2 for all k. The relative
distances are initialized as L0 = 500m and LV2I,i = 0m.
The application deadline is specified as TV2I,i = 1000ms,
while the data volume required to be transmitted, Dout,i, is
varied from 102 bit to 106 bit. The vehicle density within
the coverage of the infrastructure, ρc, is set to 1

102 , 1
202 ,

1
302 , 1

502 and 1
1002 (veh/m2), respectively. From Fig. 6, as

the data volume to be transmitted increases, the probability
of success in the V2I transmission decreases, and increasing
the vehicle density can also reduce the V2I performance.

3.6 Modeling of Vehicular Computation Reliability

According to current literature [45], [46], the number of CPU
clock cycles, W , required by processing an application can
be estimated by a linear function of the input data size of the
application, i.e., W = Din,lX where Din,l denotes the input
data bits to be locally processed by vehicle l ∈ {i, j} and X
is a random variable depending on many factors, such as the
nature of the application, the complexity of the processing
algorithm, etc., which can be modeled by a certain empirical
probabilistic distribution. Specifically, as shown in [45], [47],
X can be estimated by a Gamma distribution, and in addi-
tion, the Gamma distribution-based modeling of stochastic
CPU cycles per bit in mobile computing has been widely
adopted in much literature such as [20], [21]. Accordingly,
given a Din,l, we can derive the CDF for W as follows

gW (w;Din,l) =

∫ w
Din,l

0

e−
x
µ1

µ1Γ(µ2)

(

x

µ1

)µ2−1

dx (23)

where µ1 and µ2 are two fitting parameters of the Gamma
distribution, and w is the observation of W . Based on (23),
we can get the probability of requiring more than w CPU
clock cycles to complete an application as 1− gW (w;Din,l).

Besides, in a mobile CPU circuit, the clock frequency of
the chip is allowed to be dynamically configured by using
the dynamic voltage scaling (DVS) technique [48]. Thus, we
also consider the CPU clock-frequency configuration for the
vehicular computation device. Let fw denote the CPU clock-
frequency to be scheduled in the next CPU cycle given that
w CPU cycles have been completed. Then, the execution
duration of such a CPU cycle is 1/fw. As stated in [20], [21],
[46], [49], the total energy consumed during all the CPU
cycles executed by vehicle l can be estimated by

El (Din,l,Wl) = κ
Wl
∑

w=1

(1− gW (w;Din,l)) f
2
w (24)

given that the required number of CPU cycles by l is Wl,
where κ represents the chip architecture-dependent effective
switched capacity. From the measurements reported in [46],
we can set it to κ = 10−11.

Now, instead of minimizing the computing energy effi-
ciency, we aim to minimize the total vehicular computing
time by optimally scheduling the CPU clock frequency with
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preallocated computation energy Emax
l . Mathematically, we

formulate the optimization problem as follows

min
{fw}

: T (Din,l,Wl, E
max
l ) =

Wl
∑

w=1

1

fw

s.t.

{

El (Din,l,Wl) ≤ Emax
l ;

fw > 0, ∀w = 1, 2, . . . ,Wl.

(25)

Based on model (25), we can establish the connection be-
tween the input data size of the vehicular execution Din,l,
the required CPU clock cycles Wl, the available computing
energy Emax

l , and the optimal vehicular computing efficien-
cy in Theorem 3.

Theorem 3. Given Din,l, Wl and Emax
l for vehicle l ∈ {i, j},

the optimal CPU clock-frequency scheduling for model (25) is

fw =

√

Emax
l

κWl (1− gW (w;Din,l))
(26)

for w = 1, 2, . . . ,Wl, and the minimum scheduling time is

Tmin (Din,l,Wl, E
max
l )

=

√

Wl

Emax
l

(

Wl
∑

w=1

√

κ (1− gW (w;Din,l))

)

.
(27)

The proof of Theorem 3 is available in the online supple-
mentary material.

Denote by Tlocal,l, Tlocal,l < T , the actual deadline allo-
cated for the local execution by vehicle l ∈ i, j. Considering
the implementation of the optimal CPU clock-frequency
scheduling, we can solve the corresponding required CPU
clock cycle number Wl from (27). More specifically, we
denote such a number of the CPU clock cycles under the
optimal CPU scheduling policy by

Wl (Din,l, Tlocal,l, E
max
l )

= argmax
{

Wl ∈ Z
+
∣

∣Tmin (Din,l,Wl, E
max
l ) ≤ Tlocal,l

}

.
(28)

Therefore, with (28) above, we obtain the probability
of successfully completing the local execution by using
Wl (Din,l, Tlocal,l, E

max
l ) CPU clock cycles

plocal,l (Din,l, Tlocal,l)

= gW (Wl (Din,l, Tlocal,l, E
max
l ) ;Din,l)

(29)

as a metric of l’s computation reliability.
Compared with vehicular computation, in general, the

computation capacity of an infrastructure (e.g., the cloud)
is much more greater. At this point, it is reasonable to
assume that the infrastructure-based computation reliability
is 100%. That is, we assume that the infrastructure can
always successfully complete the whole computation task
within the given time window T .

To examine the impacts of some characteristic parame-
ters related to the computation capacity of a vehicle l, such
as (µ1, µ2) and Emax

l , we calculate the number of CPU clock
cycles required to complete a specified application under
different situations, as shown in Fig. 7, where (µ1, µ2) is set
to (3, 1), (5, 3) and (7, 5), respectively, while the available
computation energy Emax

l is varying from 0.01 J to 1 J. The
total input data size of the application is assumed to be
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Fig. 7. The number of required CPU clock cycles to complete an speci-
fied application under different (µ1, µ2) and Emax

l
.
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Fig. 8. The probability of success in the computation with different data
volumes, Din,l, and different deadlines, Tlocal,l.

Din,l = 1000 bit and its deadline is Tlocal,l = 20ms. Fig.
7 shows that more computation energy can provide more
power to increase the number of CPU cycles for the applica-
tion within the deadline, which implies that the probability
of application completion also increases. Besides, a larger
µ1 or a larger µ2 can lead to a lower number of needed
CPU cycles, which can also be observed according to the
PDF model (23). In addition, we fix the scale and shape
parameters (µ1, µ2) to (5, 3) and the available computation
power Emax

l to 0.5 J. We evaluate the probability of appli-
cation completion by an imposed deadline in Fig. 8, where
the size of the application input data, Din,l, is varied from
1000 bit to 10 000 bit and the given deadline from 0.01 s to
1 s. As expected, the more the application data needed to be
processed by a given deadline is, the smaller the completion
probability becomes. Similarly, the computation is more
likely not to be completed when the allowed execution time
is short. For example, from Fig. 8, it is observed that the
probability of successfully processing 8000-bit data within
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200ms is lower than 0.7. As discussed, an application with
a relatively large volume of input data and a short deadline
may hardly be accomplished by the fully local execution.
Hence, cooperative computation solution with optimal de-
sign is needed to support such a situation.

4 COOPERATIVE COMPUTATION OPTIMIZATION

4.1 Computation Modes

As shown in Fig. 1, there are 7 (=C1
3+C2

3+C3
3) computation

modes for executing a vehicular distributed application in
a three-node cooperative vehicle-infrastructure system. It
should be remarked that when considering multi-hop com-
munications, the cooperation mode becomes much more
complex. To implement a computation mode, we assume
that the real-time location information and the kinematic
parameters of a vehicle can be accessed by the on-board
global position system (GPS) and other vehicular motion
sensors. The location of the infrastructure (i.e., the cell base
station) can also be known in advance. Messages carrying
vehicular mobility information can be locally shared among
the neighbors via a common V2V broadcasting channel
(such as DSRC channel 178 for control signaling) [34]. Each
computation mode is elaborated on as follows.

Mode 1: The host vehicle self-independently executes
the whole computation task and then uploads the result to
the infrastructure via V2I communication.

Mode 2: The host directly transfers all the input data
to the infrastructure and then the infrastructure takes the
responsibility to complete the whole data process.

Mode 3: The host can offload all the input data to a near-
by vehicle via V2V communication, such that the cooperator
can help processing the task. Finally, it also needs to upload
the result to the infrastructure via V2I communication.

Mode 4: The host divide the input data into two sub-files
of different sizes, one of which is offloaded to the infrastruc-
ture for the cloud execution, and the other is processed by
the local execution. After completing the local execution, the
local output is also uploaded to the infrastructure.

Mode 5: The application execution is partitioned into
two local executions processed by the host vehicle and
a cooperative vehicle. Then, both the outputs of the two
vehicles are transferred to the infrastructure, respectively.

Mode 6: The host distributes two partitions of the ap-
plication to the cooperative vehicle and the infrastructure,
respectively. The application execution is operated by other
two nodes. Besides, the resulting data obtained by the coop-
erative vehicle needs to be transmitted to the infrastructure.

Mode 7: The host partitions the entire input data into
three files, two of which are offloaded to both the coop-
erative vehicle and the infrastructure. The host vehicle is
also responsible to process the computation task. Thus, the
computation can be completed by the three cooperative
nodes in a parallel fashion.

As can be seen, V2V and V2I communications build
fundamental and key blocks in all the computation modes.
Thus, the overall reliability and efficiency in completing the
application highly depend on the communication perfor-
mance in addition to the computing capacity of each node.

Based on modeling of vehicle mobility, vehicular commu-
nication and computation, we can propose an optimization
formulation for each cooperation mode.

4.2 Optimization formulations

4.2.1 Time allocation for computation and communication

Generally, it needs to reserve time for both the computation
and communication. The time needed is dependent of the
data volume. At this point, we assume that the time allocat-
ed to a procedure is linearly proportional to the size of the
data assigned to this procedure. Additionally, we introduce
two parameters, denoted by ωcomputation and ωcommunication,
as two weights of time allocations between computation
and communication, which are adjustable and reflect the
number of time units needed to process per-unit data in the
communication and in the computation, respectively. For
example, suppose that the data rate of communication is
1Mbit/s while that of computation is 3Mbit/s, and suppose
that the volume of data to be processed in communication
and in computation is equal to 3Mbit and the totally al-
lowed deadline is 4 s. Logically, the time reserved for com-
munication should be 3 s while that for computation should
be 1 s. To realize such time allocations in the example, we
can set ωcommunication = 1 and ωcomputation = 1

3 , and use
the following equations to calculate the time allocation







T1 =
(

ωcommunicationD1

ωcommunicationD1+ωcomputationD2

)

T ;

T2 =
(

ωcomputationD2

ωcommunicationD1+ωcomputationD2

)

T,
(30)

with T = 4 s, D1 = D2 = 3Mbit, where T1 and T2 denotes
the time allocated for communication and computation,
respectively, in this example. As we can see, these two
weights enable control of time allocation for communication
and computation. It is worth pointing out that in practice
these two design parameters can be pre-specified according
to an actual application situation.

Now, we can turn to Mode 1. We consider to divide the
overall deadline T into two parts, Tlocal,i and TV2I,i, one
of which is allocated for the local execution by vehicle i,
and the other is allocated for V2I transmission. As the local
execution is required to process the application with the
total input data Din while the output data of αDin bits need
to be uploaded to the infrastructure, the time allocations for
the computation and the V2I communication can be

{

Tlocal,i =
ωcomputationDin

ωcomputationDin+ωcommunicationαDin
T ;

TV2I,i =
ωcommunicationαDin

ωcomputationDin+ωcommunicationαDin
T.

(31)

Based on (31), the coupled reliability in Mode 1 is

MODE1(Din) = plocal,i (Din, Tlocal,i) pV2I,i (αDin, TV2I,i) .
(32)

In Mode 2, vehicle i needs to offload the whole data to
the infrastructure and then the infrastructure processes the
input data. Indeed, such a situation is a typical offloading
scheme. Here, to capture the computing efficiency of the
cloud execution, we assume that the time consumed by the
cloud to process Din-bit data is characterized by a prede-
fined parameter τcloud, and it is also reasonable to assume
that τcloud is much smaller than T , τcloud < T , due to the fact
that the infrastructure has much greater computing power
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Fig. 9. Structured view of an implementation framework based on the
proposed reliability optimization models.

than a single vehicle (See Fig. 1). It is worth pointing out that
modeling of an infrastructure’s computing capacity depends
on many factors, such as the number of computing servers
in the pool and the computing resource of the embedded
system in each server, etc., which is out of the scope of this
paper. Additionally, it should be observed that the model
is independent of the infrastructure computing technology,
since the operation of the infrastructure computing is ab-
stracted by a single parameter τcloud. This means that as long
as an infrastructure computing situation of interest is well
specified, our model can be exploited to facilitate the design
and/or analysis of the targeted system. In our consideration,
the V2I communication has a significant impact on the w-
hole efficiency of the cloud execution. Thus, the computing
reliability is mainly determined by the V2I communication
performance. Formally, we express the reliability in Mode 2
as MODE 2 (Din) = pV2I,i (Din, T − τcloud).

In Mode 3, vehicle i first transfers the whole data of Din

bits to vehicle j, and then vehicle j takes the responsibility
to process the data and to upload the output result to the
infrastructure. The durations allocated to the V2V, the local
computation, and the V2I processes, Ti,j , Tlocal,j , and TV2I,j ,
can be calculated by














Ti,j =
ωcommunicationDinT

ωcomputationDin+ωcommunication(Din+αDin)
;

Tlocal,j =
ωcomputationDinT

ωcomputationDin+ωcommunication(Din+αDin)
;

TV2I,j =
ωcommunicationαDinT

ωcomputationDin+ωcommunication(Din+αDin)
.

(33)
With (33), we can derive the coupled reliability in Mode 3

MODE 3(Din) =pV2V (Din, Ti,j)× plocal,j (Din, Tlocal,j)

× pV2I,j (αDin, TV2I,j)
(34)

In the following section, for notational simplicity, we
denote by Qopt

i , Qopt
cloud and Qopt

j , respectively, the relia-
bility performance of the independent computation modes
aforementioned, i.e., Qopt

i = MODE 1(Din), Qopt
cloud =

MODE 2(Din), and Qopt
j = MODE 3(Din).

4.2.2 Optimization under cooperation modes

Notice that the computation modes from 4 to 7 in Fig. 1
correspond to different cooperations among vehicles i, j and

the infrastructure, the optimization formulation of which
can be established on the basis of Modes 1, 2 and 3 above.
Our goal is to design an optimal data partition to maximize
the overall reliability under each cooperative computing
mode given the deadline constraint T .

For Mode 4, denoting by Din,i and Din,c the partitioned
input data for i’s local execution and the cloud execution,
respectively, we have

Qopt
i+cloud = max

{Din,i,Din,c}
: MODE 1(Din,i)MODE 2(Din,c)

s.t.

{

Din,i +Din,c = Din;

Din,i, Din,c > 0.

(35)

For Mode 5, we denote the input data for j’s local
execution by Din,j . Thus, we can get

Qopt
i+j = max

{Din,i,Din,j}
: MODE 1(Din,i)MODE 3(Din,j)

s.t.

{

Din,i +Din,j = Din;

Din,i, Din,j > 0.

(36)

For Mode 6, the optimization model of the input data
partition is expressed as

Qopt
j+cloud = max

{Din,c,Din,j}
: MODE2(Din,c)MODE 3(Din,j)

s.t.

{

Din,c +Din,j = Din;

Din,c, Din,j > 0.

(37)

Similarly, considering the cooperation among the three
computing nodes, we present the optimization model for
Mode 7 as follows

Qopt
i+j+cloud = max

{Din,i,Din,c,Din,j}











MODE 1(Din,i)

×MODE2(Din,c)

×MODE3(Din,j)











s.t.

{

Din,i +Din,c +Din,j = Din;

Din,i, Din,c, Din,j > 0.

(38)

4.2.3 Reliability-optimal computing policy

Fig. 9 shows how to implement the reliability-optimal mo-
bile computing in the CVIS based on our proposed op-
timization models above. We also remark that additional
information interaction between vehicles and roadside in-
frastructure is needed to exchange the vehicle mobility (e.g.,
the real-time location, speed and acceleration) or channel
state information in order to support the evaluation of the
optimization models. In practice, the information interaction
can be performed by employing a common broadcasting
channel such as the DSRC channel 178 for control signal-
ing [34]. In Fig. 9, to obtain the numerical results of the
optimal reliability performances under different computing
modes, i.e., Qopt

mode
, mode ∈ M = {i, j, cloud, i + cloud, i +

j, j + cloud, i + j + cloud}, we can resort to many exist-
ing numerical constrained optimization algorithms, such
as the projected gradient method, the sequential quadratic
programming (SQP), etc. In particular, for the cooperative
computing modes, we can use a one-dimensional searching
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TABLE 4
Parameter settings

α 0.001
Emax

i , Emax
j [J] 0.5

µ1, µ2 5, 3

ai(0), aj(0), [m/s2] 0
vi(0), vj(0) [km/h] 60,90
si(0), sj(0) [m] 0
LV2V,ij , L0, LV2I,i [m] 150, 300, 400
τcloud

T
0.5

ωcommunication, ωcomputation 1

Fig. 10. The optimal reliability performance of each computation mode
under different deadline requirements.

technique to solve (35), (36), and (37), and use a two-
dimensional searching to solve (38), since the equality con-
straints in (35), (36), and (37) involve only two decision
variables, and the equality constraint in (38) contains tree
variables. After that, we can select the best computing mode
to implement the computation partition and offloading, i.e.,
choosing modeopt = argmaxmode∈M{Qopt

mode}. The vehicle
can perform the local execution by using the optimal CPU
clock-frequency scheduling proposed in Theorem 3. Besides,
the vehicle adopts the adaptive transmission mechanism
given in the subsection 3.4.1 to implement the V2V-based
computation offloading, while it can use the optimal V2I
transmission scheduling mechanism in the subsection 3.5.3
to support the V2I-based computation offloading.

5 PERFORMANCE EVALUATION

In this section, we demonstrate how the key factors related
to the application profile, the mobility environment, and the
time allocation for communication and computation affect
the performance of different computation modes.

5.1 Parameter settings

The parameter settings given in Table 4 are employed for
configuration of local execution and remote execution as
well as for initializing vehicles’ kinematic parameters and
locations in our experiments. Additionally, with respect to
the V2V and V2I communication configurations, we refer
to the parameter settings given in Tables 1, 2 and 3. If not
specially stated, the parameter settings in Tables 1 to 4 are
adopted throughout the simulation experiments.

Fig. 11. The optimal reliability performance of each computation mode
under different input data sizes.

Fig. 12. Optimal reliability performance of each computation mode
in a stochastic application situation where the computation demand
Din is generated by following a normal distribution with the mean
at 1.5 × 105 bits and the standard deviation at 2.0 × 104 bits, i.e.,
Din ∼ N

(

1.5× 105, 4.0× 108
)

, and T = 0.6s.

5.2 Effects of Application Profile

To show how a vehicular user can benefit from the coopera-
tive computation, we compare the optimal reliability perfor-
mance (i.e., the maximum success probability of application
completion) under different cooperative computation mod-
els, i.e., Qopt

i+j , Qopt
i+cloud, Qopt

j+cloud and Qopt
i+j+cloud, with those

of the independent computation models, Qopt
i , Qopt

j and

Qopt
cloud, under different application profiles, (Din, T ). First,

we fix the input data size of the application atDin = 5000 bit
and vary the deadline T from 0.03 s to 0.3 s. The optimal
reliability performance of each computation mode obtained
at each point of T is illustrated in Fig. 10. It can be seen
that the reliability of every computation mode increases
as the allowed deadline becomes longer. However, when
given a relatively short deadline, for instance, T < 0.1 s,
the local execution independently by vehicle i or j and
the cooperative computation by both the vehicles are more
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Fig. 13. Optimal reliability performance of each computation mode in a
stochastic application situation where the computation demand Din is
generated by following a Poisson distribution with the mean at 1.5 ×

105 bits, i.e., Din ∼ Pois
(

1.5× 105
)

, and T = 0.6s.
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Fig. 14. Optimal reliability performance of each computation mode under
different vehicle densities.

likely to fail to complete processing the application by the
deadline. The main reason is that the constrained compu-
tation capacity of each vehicle cannot fully support the
execution of the application within a short period. Besides,
even though deploying the optimal cooperation between i
and j, the reliability performance Qopt

i+j is not satisfactory,
which is due to the fact that a part of time has to be spent
to achieve the data transmission from i to j through V2V
communication. After V2V communication, less time is left
for the other cooperator, j, to complete its assigned com-
putation task. But, the i+ j-based cooperative computation
can still perform better than the independent computation
mode by i or by j when T < 0.3 s. By contrast, using
the cooperative computation modes between the vehicles
and the infrastructure can achieve a higher reliability. In
particular, the cooperation mode of i + cloud can better
benefit the application execution under most of the deadline
requirements as shown in Fig. 10, the reliability of which is
almost 100%. Besides, the independent cloud computation
mode, cloud, also stays at a relatively high reliability level,
since the V2I communication can always guarantee the
offloading of 5000-bit data with a high reliability even when
the allowed deadline is short, and the V2I communication
reliability dominates the whole reliability performance in

the cloud computation situation.
In Fig. 11, we fix the total deadline at T = 0.6 s

while varying the input data size Din from 1× 103 bit to
1× 106 bit. As expected, when the input data size increases,
the probability of application completion decreases. Nev-
ertheless, if Din ranges between 1× 104 bit and 1× 105 bit,
the cooperation computation modes, i+cloud, j+cloud and
i + j + cloud, and the cloud computation mode cloud can
complete the application with a sufficiently high reliability
(e.g., above 95% even if Din = 1× 105 bit as shown in the
sub-figure in Fig. 11), while the others including i, j and i+j
can no longer reliably complete the application. In addition,
the cooperation mode i + cloud can perform best among
the computation modes under most of Din settings. It is
also interesting to observe that the reliability performance
of the cooperation mode i + j + cloud degrades slightly
slower than that of i + cloud when Din > 1.7× 105 bit.
This is because the degradation in the V2V communication
reliability is smaller than that in the computation reliability
as Din increases.

Furthermore, to show the effectiveness of the cooper-
ative vehicle-infrastructure computing approach, we have
also conducted extensive Monte Carlo simulations based
on the different computing modes. Specifically, we simulate
two typical types of stochastic application situations, where
the application input size, Din, is generated by following a
normal distribution and a Poisson distribution, respectively.
Each of the computing modes has been performed with
1000 replications per stochastic application situation, and
the results are shown with the average plus and minus
the standard deviation (i.e., avg.±std.) and with the 95%
confidence intervals (CI) as in Figs. 12 and 13. It can be seen
that the cooperative computing modes with assistance of
the cloud computing perform better than those independent
modes on average in both the stochastic situations. From
Fig. 12, the lower bound of the 95% CI of the cloud-assisted
cooperative computing modes is higher than 0.82, and their
average performance is around 0.95. By comparison, the
performance of the other modes only based on vehicular
computing is close to zero. These results indicate that the
cooperation between cloud and vehicular computing can
better benefit the system in terms of the reliability perfor-
mance even in a stochastic application situation. The similar
fact can also be confirmed by Fig. 13 where the lower bound
of the 95% CI of the cloud-assisted cooperative computing
modes is higher than 0.95. Interestingly, when comparing
Fig. 12 with Fig. 13, we can find that the standard deviations
in Fig. 13 are much smaller than those in Fig. 12. The
main reason is that the variance of the random application
input following the Poisson distribution is smaller than that
following the normal distribution. The 95% CIs of the cloud-
assisted cooperative computing modes shown in Fig. 13 are
also much narrower than those shown in Fig. 12, indicating
that these cooperative computing modes can perform in
a more deterministic manner even when the computation
demand follows the Poisson distribution pattern.

5.3 Effects of Mobility Environment

We examine the effects of the vehicle density in the mobility
environment on the optimal reliability performance of each
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Fig. 15. Optimal reliability performance of each computation mode with
different initial inter-vehicle distances and infrastructure positions.

computation mode. Two specific situations are considered,
in one of which the application input data size is set to
Din = 1× 104 bit and in the other Din = 5× 104 bit.
In both the situations, we fix the deadline at T = 0.5 s,
and test all the computation modes under three vehicle
density settings, i.e., ρ = 1

10 ,
1
15 ,

1
20 veh/m. In addition, with

respect to the vehicle density within the coverage of the
infrastructure, we set ρc = ρ2. From Fig. 14a, except for
the mode j, almost computation modes can achieve a high
probability of application completion by the deadline with
these vehicle density settings. This is because vehicle j has
less time to execute the whole application after receiving
the data via the V2V communication. In addition, compared
to the independent computation modes, the cooperative
computation modes can perform better especially when the
vehicle density is high, e.g., ρ = 1

10 veh/m.
From Fig. 14b, it can be seen that the reliability perfor-

mance of each computation mode increases with reducing
the vehicle density. This is because reducing the vehicle
density alleviates the contention for V2V and V2I channels,
which further improves the V2V and V2I communication
reliability. In this figure, the performance enhancement by
the cooperation among the vehicles and the infrastructure is
more obvious. With ρ = 1

15 veh/m, the cooperative compu-
tation mode i+ j+cloud can still guarantee a probability of
about 90% to complete the application, while the reliability
of the other modes is below 80%.

To further demonstrate the effects of the initial inter-
vehicle distance and the infrastructure position, we set
Din = 1× 105 bit and T = 0.5 s. The vehicle density is
set to ρ = 1

50 veh/m to simulate a low-density mobili-
ty environment. The initial inter-vehicle distance, LV2V,ij ,
ranges from 10m to 300m, and the relative vertical distance
between the infrastructure and the road, L0, ranges from
100m to 1000m. 50 samples on LV2V,ij and 20 samples
on L0 are generated. The computation modes are tested
with each combination of (Din, L0). The average result
of each computation mode is shown with the associated
standard deviation in Fig. 15. As can be seen, most of
cooperative computation modes with the support of cloud
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Fig. 16. Optimal reliability performance of each computation mode with
different settings on the cloud computation time and on the weights for
computation and communication.

computation, except for i+ j, can provide a high reliability
performance for the application execution, whose results
are above 90% on average. The high reliability achieved by
the cloud computation mode implies that L0, even ranging
within [100, 1000]m, has a negligible impairment on the V2I
data transmission. This is due to the fact that the V2I link
achieves a good throughput in the low-density situation.
As indicated by the error bars in Fig. 15, the cooperative
computation modes, j+cloud and i+ j+cloud, experience
a larger standard deviation, since their processes involve the
V2V communication. Compared with the V2I communica-
tion, the V2V communication is more significantly affected
by varying the inter-vehicle distance.

5.4 Effects of Time Allocation for Communication and

Computation

In our model, the efficiency of the cloud computation is
characterized by the parameter τcloud. Namely, the larger
τcloud is, the larger time consumption the cloud computa-
tion accounts for. Indeed, given a τcloud, the time reserved
for V2I transmission is T − τcloud. To show the impact
of τcloud, we set τcloud to 0.2T , 0.4T , 0.6T and 0.8T in
the respective experiments. In the experiments, Din and T
are fixed as Din = 5000 bit and T = 0.1 s. The vehicle
density is ρ = 1

30 veh/m (ρc = 1
302 veh/m

2). The optimal
reliability performance of each computation mode is shown
in Fig. 16a. Logically, those modes without involving the
cloud computation, i, j and i + j, are not affected by the
variation of τcloud. As Fig. 16a shows, the influence of the
variance of τcloud on the cooperative computation modes,
i + cloud, j + cloud and i + j + cloud, and on the cloud
computation mode, cloud, are also negligible. The main
reason is that even though given a short V2I transmission
period, for instance, 0.2T when τcloud = 0.8T , the V2I link
can guarantee transferring 5000-bit data from the vehicle to
the infrastructure with almost 100% non-outage probability.

Additionally, we fix τcloud at 0.5T . The impacts of the
weights, ωcomputation and ωcommunication, which are used to
determine the time allocation for computation and commu-
nication processes, are shown in Fig. 16b. When the ratio
ωcomputation/ωcomputation increases, the computation modes,
j and i + j, experience more obvious variance in their
reliability performance than the other modes. It is because
increasing ωcomputation can lead to an increase of time period
reserved for the vehicular computation by j. When there is
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no support of the infrastructure’s cooperation, the overall
performance of j or i+ j heavily relies on the computation
reliability in j’s execution. It can also be found that there
is a performance gap between the computation mode i and
j even when their computation capacity is identical. This
is because the implementation of the computation mode j
involves the V2V transmission, a process that requires cer-
tain time consumption. As a consequence, the time reserved
for vehicle j-based local execution is always shorter than
that for vehicle i-based local execution. By comparison, the
cooperative computation modes and the cloud computation,
with above 95% probability of application completion, can
provide higher reliability than the independent local com-
putation modes i and j even when the weight ratio increases
from 1 to 11.

6 CONCLUSION AND FUTURE WORK

We have proposed a theoretically analytical framework
for cooperative computation optimization in a coopera-
tive vehicle-infrastructure system, which takes into account
modeling and optimization of vehicular communication
and computation. With respect to modeling, we have pre-
sented some stochastic analysis to evaluate the reliability
performance of data transmissions over the dynamic V2V
and V2I links with consideration of the vehicle mobility,
channel contentions and channel fading. Moreover, we have
modeled the vehicular computation and obtained a closed-
form optimal solution for CPU scheduling in terms of min-
imizing the application execution time. The computation
reliability has been formulated by taking into consideration
both the computation capacity and the application require-
ments. With respect to optimization, we consider that a
vehicular distributed application can be partitioned into
multiple parallel computation tasks and transmitted to d-
ifferent computing nodes for cooperative execution. Several
optimization models have been developed to maximize the
coupled reliability of communication and computation pro-
cesses by optimizing the data partitions. Numerical results
are also provided to demonstrate the impacts of many fac-
tors including communication, computation and application
profile on the optimal reliability performance of different
cooperative computation modes. The comparative results
confirm the strength of reliability-optimal cooperative com-
putation in support of distributed application execution.

Notably, our theoretical development and numerical re-
sults can motivate how to leverage the power of vehicular
networking and communication to benefit the deployment
of a reliable CVIS. The results in this paper can also be
utilized to develop optimal admission control and optimal
cooperator selection strategies for efficient and reliable co-
operative computation applications. Another research direc-
tion is to extend the cooperative computation optimization
paradigm to more complex cooperation situations where
multi-hop routing should be carefully modeled and inte-
grated into the communication and computation processes.
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1 PROOF OF THEOREM 1

Based on the definition of the variance, we have
V [θ(Ti,j)] = E [θ(Ti,j)− E[θ(Ti,j)]]

2
, which can be rear-

ranged as follows

V [θ(Ti,j)] = E
[

θ2(Ti,j)
]

− (E[θ(Ti,j)])
2
. (S.1)

Using the Cauchy-Schwarz inequality, we can further obtain

θ2(Ti,j) =





Ti,j
∑

k=1

Ω(C,N)∆τ





2

≤





Ti,j
∑

k=1

(
√
∆τ)2









Ti,j
∑

k=1

Ω2(C,N)(
√
∆τ)2





= Ti,j∆τ

Ti,j
∑

k=1

Ω2(C,N)∆τ .

(S.2)

Combining (S.1) and (S.2) immediately results in (13).

2 PROOF OF LEMMA 2

Letting Λ = [λk ≥ 0, k = 1, 2, . . . , TV2I,l]
T and δ ∈ R denote

Lagrange multipliers, we construct a generalized Lagrange
function for model (19) as follows

L(ul,Λ, δ) =G (ul)−
TV2I,l
∑

k=1

λkul(k)

− δ





TV2I,l
∑

k=1

ul(k)−Dout,l



 .

(S.3)

Based on the the Karush-Kuhn-Tucker (KKT) theorem, the
optimal feasible solution satisfies the complementary slack-
ness. That is, we can have λkul(k) = 0 for all ul(k) ∈ u

opt
l .

Therefore, it can be observed that for any nonzero ul(k) ∈
u
opt
l , ul(k) > 0, it must hold that λk = 0, while for any

zero ul(k
∗) ∈ u

opt
l , ul(k

∗) = 0, λk∗ ≥ 0 always holds as the
given condition.

Moreover, the KKT theorem also guarantees that the op-
timal feasible solution u

opt
l satisfies the gradient condition,

i.e., ∇ul
L(uopt

l ,Λ, δ) = ∇ul
G(uopt

l ) − Λ − δ1 = 0, where

1 and 0 are column vectors whose entries are all equal to 1
and 0, respectively. Accordingly, for each uk(k) ∈ u

opt
l , we

have ∂G(uopt
l )/∂ul(k) = λk+δ. For any nonzero ul(k) > 0,

∂G(uopt
l )/∂ul(k) = δ since λk = 0. For any zero ul(k

∗) = 0,

∂G(uopt
l )/∂ul(k

∗) = λk∗ + δ ≥ δ since λk∗ ≥ 0. Thus, the
lemma has been proven, which indicates that all the partial
derivatives associated with the nonzero ul(k) are identical
and not larger than those with zero ul(k

∗).

3 PROOF OF THEOREM 2

Let q = M/(B∆τ) for national simplicity. Based on Lemma
2, we can further get

δ =
∂G(uopt

l )

∂ul(k)
= dβl (k)2

ul(k)qq ln 2 (S.4)

for all ul(k) > 0, which indicates

ul(k) =
1

q

(

log2(δ)− log2

(

dβl (k)
)

− log2 (q ln 2)
)

. (S.5)

and the summation
∑TV2I,l

k=1 dβl (k)2
ul(k)q =

∑TV2I,l

k=1 (δ/(q ln 2)) = TV2I,lδ/(q ln 2). Hence, we can
further rearrange the overall probability of successful V2I
data transmission as

Hopt (Dout,l, TV2I,l;M) = exp

(

− TV2I,lδ

q ln 2wl

+

∑TV2I,l

k=1 dβl (k)

wl

)

(S.6)
On the other hand, applying the multiple products to

(S.4) can yield

δTV2I,l =





TV2I,l
∏

k=1

dβl (k)



 2q
∑TV2I,l

k=1
ul(k) (q ln 2)

TV2I,l . (S.7)

Noting
∑TV2I,l

k=1 ul(k) = Dout,l, we get

δ =





TV2I,l
∏

k=1

dβl (k)





1

TV2I,l

2
qDout,l
TV2I,l (q ln 2). (S.8)

Substituting (S.8) into (S.5) and (S.6), respectively, can im-
mediately achieve the proof.



2

4 PROOF OF THEOREM 3

Applying the Cauchy-Schwarz inequality can yield

Wl
∑

w=1

1

fw
≥

(

Wl
∑

w=1

√

κ (1− gW (w;Din,l))

)2

(

Wl
∑

w=1
κ (1− gW (w;Din,l)) fw

)

(S.9)

where the equality is satisfied if and only if ∃ν ∈ R,
ν =

√

κ (1− gW (w;Din,l))fw holds for all w. For na-
tional simplicity, we denote the right term of (S.9) by
T lb (Din,l,Wl, E

max
l ), which is indeed a lower bound of

T (Din,l,Wl, E
max
l ) and can be further rearrange as

T lb (Din,l,Wl, E
max
l ) =

1

ν

(

Wl
∑

w=1

√

κ (1− gW (w;Din,l))

)

.

(S.10)

Additionally, recalling the inequality constraint given in

(25), we see
∑Wl

w=1 ν
2 = Wlν

2 ≤ Emax
l , i.e., ν2 ≤ Emax

l /Wl.
This implies that the lower bound T lb (Din,l,Wl, E

max
l )

attains its minimum point only when ν =
√

Emax
l /Wl.

Thus, substituting this result into (S.10) can obtain (27),
and for each w, the optimal fw can also be solved from
√

κ (1− gW (w;Din,l))fw =
√

Emax
l /Wl.
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