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Abstract 
 
Reliability of an engineering system depends on two reliability metrics: the mechanical reliability, considering component failures, that 

a functional system topology is maintained and the performance reliability of adequate system performance in each functional configura-
tion. Component degradation explains not only the component aging processes leading to failure in function, but also system perform-
ance change over time. Multiple competing failure modes for systems with degrading components in terms of system functionality and 
system performance are considered in this paper with the assumption that system functionality is not independent of system performance. 
To reduce errors in system reliability prediction, this paper tries to extend system performance reliability prediction methods in open 
literature through combining system mechanical reliability from component reliabilities and system performance reliability. The ex-
tended reliability prediction method provides a useful way to compare designs as well as to determine effective maintenance policy for 
efficient reliability growth. Application of the method to an electro-mechanical system, as an illustrative example, is explained in detail, 
and the prediction results are discussed. Both mechanical reliability and performance reliability are compared to total system reliability in 
terms of reliability prediction errors. 
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1. Introduction 

In reliability engineering, there are two major failure cases 
of practical importance. These are a) hard failures that imply 
complete breakdown in functionality, and b) soft failures 
whereby the system is functional but the performance meas-
ures are out of conformance due to mainly component degra-
dations [1]. For hard failures, most traditional reliability stud-
ies have focused on so-called mechanical reliability and use 
binary state reliability models based on parallel/series/ com-
plex configurations [2]. For soft failures, performance reliabil-
ity is defined as the probability that system performance 
measures are within specification limits for the lifetime [3]. 
There have been research activities to relate reliability con-
cepts to performance reliability. Styblinski [4] defined “drift 
reliability” as a probability that the system will perform satis-
factorily (will not fail) for a specific period of time under the 
stated environmental conditions, provided that the only cause 
of failure is drift (or degradation) of component values in time. 
Drift reliability considers soft failure in the circuit and does 

not include hard failure. Condra [5] stated “Reliability is qual-
ity over time.” The definition is a much simpler customer-
oriented definition, and it is mainly based on quality over time, 
not functionality. Yang et al. [2] decomposed system failure 
mode into degradation failure mode and catastrophic failure 
mode, and they defined total system reliability function RT(t) 
at a time t as  

 
( ) ( ) ( )T

D CR t R t R t=  (1) 
 

where RD(t) is related to system response degradation, and 
RC(t) to catastrophic failure in component. In addition, com-
ponent or device reliability has been evaluated through inte-
grating catastrophic failures and degradation failures in the 
aspect of multiple competing failure modes [6, 7].  

Savage and Carr revisited definition of quality and reliabil-
ity and related them through a framework that emphasized 
conformance and functionality [8]. They proposed that a struc-
ture of reliability consisted of functionality and quality, 
wherein functionality is related to component reliability and 
quality to system responses. They defined total system reli-
ability as a probability that system performance standard is 
satisfied, conditional on the system being in a functional to-
pology, and it can be rewritten as 
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where S(t) is the event of successful system performance and 
Ti(t) is the event that the system exists in functional topology 
(ft). Pr(S(t)|Ti(t)) is the probability of conformance for each 
functional topology, and Pr(Ti(t)) is the topological probability 
for each functional topology Ti. Therefore, total system reli-
ability becomes system performance reliability when the term 
Pr(Ti(t)) in Eq. (2) is assumed to be unity, and it becomes sys-
tem mechanical reliability when the term Pr(S(t)|Ti(t)) is as-
sumed to be unity. It is necessary to consider the term 
Pr(S(t)|Ti(t)) for accurate reliability evaluation if mechanical 
reliability is not independent of performance reliability.   

Consideration of component degradation links to reliability 
problems. Modeled degradation data have been used to infer: 

- Case (a): component lifetime distribution or reliability 
function,  

- Case (b): system mechanical reliability from inferred 
component reliabilities,  

- Case (c): system mechanical reliability from component 
degradation data using analytical system response models,  

- Case (d): system performance reliability using both com-
ponent degradation data and mechanistic system models for 
multi-response systems, and  

- Case (e): system dependability through integrating system 
mechanical reliability and system performance reliability.  

 
For Case (a), using both predicted degradation models X(t) 

and the pre-defined particular critical levels of degradation, 
either life-time distribution or reliability is inferred. Degrada-
tion data over time are fitted to degradation path curves or 
degradation distributions, and then the fitted degradation 
models are used to infer failure times.  

For Case (b), component reliability functions are inferred as 
mentioned in Case (a). Then, system reliability is predicted 
using series/parallel system reliability models assuming that 
Pr(S(t)) = 1 in Eq. (2). In the prediction, all components are 
assumed to be independently working and degrading over 
time. For examples, Liao and Elsayed [9] predicted system 
mechanical reliability of a brake system using component 
reliabilities and parallel/series system reliability models. Coit 
et al. [10] inferred component reliabilities using a distribution-
based approach, and then predicted system mechanical reli-
ability function through applying a series system reliability 
model. For example, predicted reliability RM(t) of a system 
comprising two independent components (monotonically de-
creasing X1(t) and X2(t) with each lower critical level ζ1 and 
ζ2) has the form 

 
( ) ( ){ }
{ } { }
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 (3) 

 
For Case (c), mechanical reliability of a system has been 

analyzed using degrading characteristics of components and 
analytical system responses (i.e., strength of a structure). Sys-
tem reliability was predicted through applying traditional 
stress-strength interference (SSI) reliability models presented 
in Ref. [11] assuming that Pr(S(t)) = 1 in Eq. (2). In the mod-
els, one-dimensional probability distribution was used to de-
scribe each stochastic process such as stochastic loading and 
strength aging, and both processes were assumed to be statisti-
cally independent. As well, Andrieu-Renaud et al. proposed a 
time-variant FORM (first order reliability method) to evaluate 
an out-crossing rate [12]. They predicted reliability of a struc-
tural system with strength aging due to corrosion. The reliabil-
ity function was built numerically at discrete time intervals.  

For Case (d), there are two different approaches: tracking-
based approach and non-tracking based approach, assuming 
that there is no failure in system functionality due to degrada-
tions i.e. Pr(Ti(t)) = 1 in Eq. (2). The tracking-based approach 
that uses Monte-Carlo simulation (MCS) takes samples of the 
component distributions at t = 0 and traces their paths using 
their degradation models to provide time-variant system re-
sponses [4, 13, 14]. Through tracking and comparing the time-
variant system responses with response specifications, system 
performance reliability is predicted. For the non-tracking 
based approach, system performance reliability has been pre-
dicted through relating time-variant system responses to their 
response specifications, by time-variant limit-state functions. 
Then, based on a set-theoretic concept, the incremental failure 
region, emerging from success region in the limit-state func-
tions during a time interval, is approximated using only two 
contiguous discrete times. Finally, system cumulative distribu-
tion function at a time is evaluated through summing up prob-
abilities of the incremental failure regions over time. Either 
non-sample based method using FORM [1, 12, 13] or sam-
pling method based on MCS [16] has been used to evaluate 
the incremental failure probability.  

For Case (e), the fundamental idea of evaluating system de-
pendability comes from Case (d); system mechanical reliabil-
ity is evaluated considering a system-level response such as a 
mechanic stress that component interactions provide, not 
component reliabilities related to degradation [17]. Cases (c) 
and (d) are integrated in system level to evaluate system de-
pendability that considers both mechanical and performance 
reliability simultaneously. In general, system maintenance 
policy is based on component reliability information. Thus, it 
would be difficult to determine maintenance periods to either 
fix or replace critical components using the system mechani-
cal reliability based on a system-level response. It follows that 
system reliability evaluation based on Cases (b) and (d) would 
be required for efficient maintenance policy in order to per-
form effective reliability growth. Therefore, it is necessary to 
evaluate system reliability through integrating both system 
mechanical reliability from component reliabilities and system 
performance reliability.  

This paper, related to Cases (b) and (d), considers multiple 
competing failure modes for systems with degrading compo-
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nents connected in series in terms of system functionality and 
system performance, assuming that system functionality is not 
independent of system performance. System performance 
reliability prediction methods in open literature are extended 
to predict total system reliability of systems. The extended 
method combines system mechanical reliability from compo-
nent reliabilities and system performance reliability, and it 
would provide an efficient way to evaluate Eq. (2).  

Total system reliability modeling using component degrada-
tions is described in Sec. 2. Specifically, mechanical reliability 
modeling using component reliability and performance reli-
ability modeling using system responses are shown in Sec. 2.1 
and Sec. 2.2, respectively, and total system reliability model-
ing is given in Sec. 2.3. The total system reliability assessment 
based on a sampling approach is explained in Sec. 3. Applica-
tion of total system reliability prediction method to an electro-
mechanical system is discussed with some error analyses in 
Sec. 4.  

 
2. Total system reliability modeling using component 

degradations 

2.1 System mechanical reliability modeling 

Most components exhibit unavoidable degradations over 
time. Degradation arises from environmental conditions or 
stresses under which a component operates. There are two 
general types of degradation modeling being widely used [18]: 
the degradation path curve approach, and the degradation dis-
tribution-based approach known as a graphical approach.  

The degradation path curve approach starts with a determi-
nistic description of degradation path (i.e., a known physical 
model of degradation over time). In the approach, it is widely 
assumed that each sample degrades in the same way under 
fixed environmental conditions, and each degradation path has 
an identical functional form [18]. Random coefficients are 
introduced to describe variations due to manufacturing proc-
esses in the path curve. Then, statistical distribution parame-
ters of random coefficients are numerically estimated using 
observed degradation data [10]. A single degradation path 
curve X(t) of V (= X(t =0)) under a deterministic environ-
mental condition c is a function of both a vector θ and time: 
X(t) = f(θ(V, c), t), where the vector θ is composed of constant 
and random coefficients. For example, a single linear degrada-
tion path model with fixed coefficient θ0 and random coeffi-
cient θ1, θ = [θ0, θ1], has the form X(t) = θ0 + θ1t.  

The degradation distribution-based approach is based on 
statistical models, i.e., distribution parameters. In the approach, 
degradation is characterized by change of distribution parame-
ters versus time. A probability distribution function is chosen 
to adequately describe the degradation data at each observa-
tion time. A two-step statistical analysis: (a) estimating the 
distribution parameters at each observation time supposing 
that the degradation data at each time follows the chosen dis-
tribution with time-variant distribution parameters, and then 
(b) fitting time-dependent distribution parameter functions is 

carried out to model degradation data [18]. Degradation data 
X(t) with distribution parameters versus time (p′(t)) are ex-
pressed as a function of initial distribution parameters p and 
time t, and have the form p′(t) = f(p, t). For example, Yang et 
al. [19] used the s-normal random process to model degrada-
tion data under the assumption that at an individual time ti, the 
observed degradation data follows a s-normal distribution with 
mean μ′(ti) and standard deviation σ′(ti) at time ti.  

For the two types of degradation modeling, Son et al. pro-
posed a unified general model based on Rosenblatt transfor-
mation denoted as Γ(u, v, p) = 0 with standard normal vari-
ables u and distribution parameters p of v [20]. From the uni-
fied degradation model, the degradation sample x(t) of X(t) in 
u-space is expressed as  

 
( ) ( , ,  )x t f t= p u .

 
 (4) 

 
From the point of view of hard failure related to degradation, 
component reliability has been evaluated using a pre-defined 
particular critical level of degradation that would lead to hard 
failure. Component degradation model X(t) with a critical 
level ζ provides a time-variant limit-state function, and the 
functions for a upper critical level ζU and a lower critical level 
ζL have the forms, respectively,  

 
( ( )) ( )
( ( )) ( ) .

U

L

g X t X t
g X t X t

ζ
ζ

= −

= −  
 (5) 

 
Thus, reliability of a component with a degradation model X(t) 
can be defined as  

 
( )( ) Pr ( ( )) 0R t g X t= > .

 
 (6) 

 
Let us consider a system comprising m degrading compo-

nents (X1(t), L  Xm(t)) connected in series, and the compo-
nents fail independently. The system mechanical reliability 
function RM(t) can be rewritten in terms of m limit-state func-
tions as, for ∀τ∈[0, t] 

 
( )1 1( ) Pr ( ( ( )) 0) ( ( ( )) 0)M

m mR t g X g Xτ τ= > >ILI

 
 (7) 

 
where gi represents the limit-state function for Xi(t). For ex-
ample, system mechanical reliability function expressed as Eq. 
(3), can be rewritten as, for [0,  ]tτ∀ ∈    

 
( )1 1 2 2( ) Pr ( ( ( )) 0) ( ( ( )) 0)MR t g X t g X t= > >I

 
 (8) 

 
where gi = Xi(t) – ζi for i = 1, 2.  

Now, system mechanical reliability RM(t) in terms of the 
unified degradation model denoted as Eq. (4) can be expressed 
as  

 

1
( ) Pr ( (( ) ,( ) , ) 0),  for [0,  ]

mM
i i ii

R t g tτ τ
=

⎛ ⎞= > ∀ ∈⎜ ⎟
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p uI
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where Xi(t) is mapped to the standard normal vector (u)i using 
the distribution parameter vector (p)i. The vector (u)i are ele-
ments of u, and (p)i are also elements of p. Hence, RM(t) has a 
general form  

 

1
( ) Pr ( ( , , ) 0),for [0,  ]

mM
ii

R t g tτ τ
=

⎛ ⎞= > ∀ ∈⎜ ⎟
⎝ ⎠

p uI .
 

 (10) 

 
2.2 System performance reliability modeling 

A system model relating outputs to inputs could be formed 
by either a mechanistic approach using the interactions of 
components, or an empirical approach using response surface 
methodology. In both approaches, the q uncertain perform-
ance measures such as responses, Z = [Z1, Z2,… Zq] can be 
written as functions of the m system variables V in the explicit 
form,  

 
Zi = zi(V) for i = 1, 2, L , q.  (11) 
 

The system variables represent component characteristics such 
as (a) resistance for a resistor in electrical circuits, and (b) 
either torque constant or winding resistance for a servo motor 
in electro-mechanical system. System responses depend on 
time when component degradations X(t) for V are considered 
in Eq. (11). Now, the ith time-variant system response zi(x(t)) 
has a form in terms of degradation models following Eq. (4) 
as [20]:  

 
( ( )) ( ,  ,  )i iz t z t=x p u .

 
                  (12) 

 
Relating the response to a specification limit by a limit-state 
function leads to a time-variant limit-state function of the form  

 
{ }( ( )) ( , ,  )i ig t z t ζ= ± −x p u

 
         (13) 

 
where zi is a response and ζ is either a lower or an upper limit-
specification.  

System performance reliability has been interpreted using a 
series system concept [1, 3-4]. That is, performance reliability 
at time t is the probability that all time-variant responses sat-
isfy their critical limits before time t. Thus, system perform-
ance reliability for q responses with n limit-state functions can 
be expressed as [1] 

 

1
( ) Pr ( ( , , ) 0),for [0,  ]

nP
ii

R t g tτ τ
=

⎛ ⎞= > ∀ ∈⎜ ⎟
⎝ ⎠

p uI .
 

 (14) 

 
2.3 Total system reliability modeling 

If components comprising a system degrade and fail with-
out leading to system performance change, system mechanical 
reliability is independent of system performance reliability, 
and thus total system reliability has the form  

( ) ( ) ( )T M PR t R t R t= ⋅ .                         (15) 
 

In general, component degradation explains not only compo-
nent aging processes leading to failure in function, but system 
performance change over time. It follows that system me-
chanical reliability would not be independent of system per-
formance reliability. For more accurate reliability estimation, a 
total system reliability prediction method to combine system 
mechanical reliability from component reliabilities and system 
performance reliability is required.  

Let us consider a system wherein system mechanical reli-
ability is not independent of system performance reliability. 
Combination of system mechanical reliability RM(t) in Eq. 
(10) with system performance reliability RP(t) in Eq. (14) pro-
vides total system reliability. For notation convenience, setting 
gi (the limit-state function related to system performance) as 
gi+m for i = 1, 2,… n, we have the total system reliability in 
terms of (m + n) limit-state functions as  

 

( )
1

( ) Pr ( , , ) 0 ,  for [0,  ]
n mT

ii
R t g tτ τ

+

=
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⎩ ⎭

p uI .
 

 (16) 

 
The reliability model denoted as Eq. (16) provides an efficient 
way to evaluate total system reliability in Eq. (2) since reli-
ability of both system functionality and system performance 
can be simultaneously investigated in the same space, i.e., u-
space.  

 
3. Total system reliability assessment 

Total system reliability expressed as Eq. (16), can be more 
easily evaluated by considering non-conformance, i.e., g(x(t)) 
< 0, and thus we have the cumulative distribution function, 
complement of total system reliability, as  

 

( )
1

( ) 1 ( )

Pr  ( ,  ,  ) 0 ,  for [0,  ] .

T T

n m
ii

F t R t

g tτ τ
+

=

= −

⎧ ⎫= ≤ ∃ ∈⎨ ⎬
⎩ ⎭

p uU
  (17) 

 
Probability in Eq. (17) herein is numerically approximated 
using discrete time events based on a finite time step [1]. Con-
sider a selected time tL using a fixed time step h. For a time 
index l = 0, 1,… L, tl (= l·h) denotes the time at the lth step. 
Now Eq. (17) becomes 

 

0 1
( ) Pr  ( ( , , ) 0 .

L n mT
L i ll i

F t g t
+

= =

⎧ ⎫⎛ ⎞⎪ ⎪= ≤⎨ ⎬⎜ ⎟
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p uU U
 

(18) 

 
For an instantaneous failure region of the ith limit-state func-

tion at a discrete time tl, { }, : ( ,  ,  ) 0l i i lE g t= ∈ ≤u U p u , we 
have a system instantaneous failure region El at time tl as  

 

,1 ,2 , ,1

n m
l l l l n m l ii

E E E E
+

+ =
= =E U ULU U . (19) 
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System incremental failure probability from time tl during the 
time step h is written from Refs. [1, 16] as  

 
1( , ) Pr( ) Pr( )l l l lF t +Δ = −p E E EU .

  
     (20) 

 
A random sampling method such as Monte Carlo simulation is 
herein applied to evaluate probabilities in Eq. (20) even 
though FORM could be applicable [1, 15]. Probabilities in Eq. 
(20) may be evaluated directly by sampling the sign of the 
appropriate limit-state functions [16]. To obtain the signs, two 
test functions for  [1, ]i n m∃ ∈ +  are defined as 

 

1
1  if ( ,  ,  ) 0  

( ,  )
0  otherwise            

i l
l

g t
tφ

≤⎧
= ⎨
⎩

p u
u ,

 
     (21) 

1
2

1  if ( ,  ,  ) or ( ,  ,  ) 0
( ,  ) .

0  otherwise                                
i l i l

l
g t g t

tφ + ≤⎧
= ⎨
⎩

p u p u
u

 
    (22) 

 
Based on a random sampling method with N samples for u, 
the number of systems Nf (tl) that do not conform to the speci-
fications at time tl, and the number of systems Nf (tl, tl+1) that 
do not conform to the specifications at times tl and tl+1 are 
evaluated respectively as  

 

1
1

( ) ( ,  )
N

k
f l l

k

N t tφ
=

=∑ u ,
 

    (23) 

1 2
1

( ,  ) ( ,  )
N

k
f l l l

k

N t t tφ+
=
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    (24) 

 
Now, we have the approximate incremental failure over time h, 

ˆ ( )lF tΔ , as 
 

1( ,  ) ( )ˆ ( ) f l l f lT
l

N t t N t
F t

N
+ −

Δ = .
 

    (25) 

 
Then, total system reliability is evaluated using both Eq. (23) 
with l = 0 and Eq. (25) as  

 

0

0

ˆ ˆ( ) 1 ( )

( ) ˆ1 { ( )} .

T T

L
f T

l
l

R t F t

N t
F t

N
=

= −

⎡ ⎤
⎢ ⎥= − + Δ
⎢ ⎥⎣ ⎦

∑  
    (26) 

 
Eq. (26) is also used to evaluate both mechanical reliability 
including component reliability and performance reliability in 
this paper since Nf (tl) and Nf (tl, tl+1) are determined by the 
corresponding limit-state functions.  

 
4. Case studies 

The servo system of interest is shown in Fig. 1 with compo-
nents and interconnection models taken from [15]. A voltage 
supply v1 acts as the input, and at the output an applied torque 

τ15 models the load arising from some arbitrary connected 
subsystem. The electro-mechanical characteristics of the sys-
tem arise from three subsystems; the difference amplifier, the 
motor and tacho-generator (M7,9 and G8,10), and the gear train 
shown as G12,13. The difference amplifier consists of the three 
resistors R2, R3 and R4 along with the operational amplifier 
(O5,6) of a very large closed-loop gain. System variables of 
interest comprise the torque constants K, the rotational inertias 
J, the winding resistances Rm, the resistance for R2, R3 and R4, 
and the gear ratio r (= r12/r13) for the gear train.   

The three system performance measures related system per-
formance reliability in this work are 1) the time constant tc 
related to the time for the shaft speed at S to reach steady-state 
speed, 2) the steady-state shaft speed at S denoted as ωss, and 3) 
the required initial, or starting torque τo to supply the load at 
point S. The mechanistic models in terms of the electro-
mechanical characteristics with the response specification are 
given in Table 1. The value of voltage v1 supplied from a 
known power supply is uncertain owing to manufacturing 
variations. The value for load torque τ15 of a known range is 
uncertain owing to the particular end-use. Thus, both v1 and τ15 
are designated as random variables. Also, the resistances of 
resistors R2, R3, and R4, are uncertain due to variation in their 
manufacturing process, and thus they are considered as random 
variables. Moreover, values for the torque constant K, the mo-
tor resistance Rm, and the gear ratio r, respectively, that are 
critical system variables, are considered as random variables. 
However, the value for the rotor inertia J of both the motor and 
tacho-generator is fixed at the nominal value 1/1000000 kg-m2.  

According to Bonnett and Soukup [21], electric motor prob-
lems occur for a variety of reasons, ranging from basic design 
faults and poor manufacturing quality to problems caused by 

Table 1. Mechanistic models and performance specifications of a servo 
system. 
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Fig. 1. Schematic of mechatronic servo system. 
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application and site conditions. Specifically, they are most 
likely to arise from bearing failures - probably the most com-
mon cause - with stator winding insulation degradation a close 
second. The critical degradation limit for motor winding resis-
tance Rm is related to the insulation system in the motor. The 
degradation of motor winding resistance above a certain criti-
cal limit is supposed to provide hard failure of the insulation 
system in the motor [22]. This hard failure would cause the 
motor to fail, and thus the servo system fails in system func-
tionality. For resistors, failure causes of resistors may be deg-
radation in resistance as well as dielectric breakdown and 
either short or open circuit. Abrupt increase in resistance of a 
resistor might cause an open circuit problem. Thus, resistance 
degradation for each resistor R2, R3, and R4 above each certain 
critical limit is supposed to provide hard failure of the resistor. 
The servo system is assumed to fail in system functionality if 
the motor and resistors fail due to degradation in resistance.  

Distribution and degradation information for each variable 
is given in Table 2. Four resistances Rm, R2, R3, and R4 are 
assumed to degrade. The assumed degradation characteristics 
in terms of both means and tolerances (i.e. p = [μ1, tol1, μ2, tol2, 
L  μ8, tol8] ) are given in Table 2. The eight u-v mappings for 
the system variables are given explicitly as  

 

( ) ( ) ( )5 5 5 5 5 5 5

  for   1, 2, 3, 4, 6, 7 and  8

2
i i i iv u i

v tol tol u

μ σ

μ μ μ

= + =

= − + Φ  
    (27) 

 
where Φ represents a cumulative standard normal distribution 
function.  

Thus, the degradation models for the winding resistance Rm, 
and resistors R2, R3, and R4 versus usage time are written as  

 
( ) ( ) ( )   for   2, 6, 7 and  8.k k k kx t t t u kμ σ′ ′= + =

 
    (28) 

 
For other system variables that have no degradation, we use 
x(t) = v. For component failure, critical upper specification 
limits for resistance degradations X6(t), X7(t), and X8(t) are 
considered as 11000, 44000, and 11000 [Ω], respectively, and 
the limit for initial winding resistance X2(t) is as 3.103 [Ω]. 
Thus, each limit-state function has is expressed as  
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( )
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1 2 2 2 2

2 6 6 6 6

3 7 7 7 7

4 8 8 8 8

( ( )) 3.103 ( ) ( ) ,

( ( )) 11000 ( ) ( ) ,
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( ( )) 11000 ( ) ( ) .

g X t t t u

g X t t t u

g X t t t u

g X t t t u

μ σ

μ σ

μ σ

μ σ

′ ′= − +

′ ′= − +

′ ′= − +

′ ′= − +
 

    (29) 

 
Thus, component reliability from Eq. (6) with each specifica-
tion limit ζi is defined as  

 
( )( )

( )
i i

i
i

tR t
t

ζ μ
σ

⎛ ⎞′−
= Φ⎜ ⎟⎜ ⎟′⎝ ⎠

 for i = 2, 6, 7, 8.
 

    (30) 

 
The system mechanical reliability RM(t) from Eq. (10) is de-
fined as, for ∀τ∈[0, t] 

 
1 2 2 6

3 7 4 8

( ( ( )) 0) ( ( ( )) 0)
( ) Pr

( ( ( )) 0) ( ( ( )) 0)
M g X g X

R t
g X g X

τ τ
τ τ

> >⎛ ⎞
= ⎜ ⎟> >⎝ ⎠

I I

I  
.   (31) 

 
The four time-variant limit-state functions for three responses 
have the forms 
 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

5 1

6 2

7 2

8 3

, ,  0.045 , ,  ,

, ,  589 , ,  ,

, ,  , ,  551,

, ,  , ,  0.22.

g t z t

g t z t

g t z t

g t z t

= −

= −

= −

= −

p u p u

p u p u

p u p u

p u p u
 

    (32) 

 
The terms zi(p, u, t) for i = 1, 2, and 3 in Eq. (32) represent a 
time-variant response affecting system performance reliability. 
For example, we have the time-variant response for starting 
torque τo in g8 as 

 

( )( )
( )( )( ) ( )

3

1 1 1 7 7 7
4 4 4

3 3 3 2 2 2 6 6 6
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( ) ( )
.
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u t t u
u

u t t u t t u
μ σ μ σ

μ σ
μ σ μ σ μ σ

′ ′+ +
= +

′ ′ ′ ′+ + +

p u

   

 (33) 
 

System performance reliability is expressed using the limit-
state functions in Eq. (32) as  

 
8

5
( ) Pr ( ( , , ) 0),for [0,  ]P

ii
R t g tτ τ

=

⎛ ⎞= > ∀ ∈⎜ ⎟
⎝ ⎠

p uI .
 
    (34) 

Table 2. Component information for a servo system. 
 

System  
variable 
(compo-

nent) 

Distribution 
Distribution  
parameters 

pi 
Degradation model, t [year]

V1  
(K) Normal 

μ1 = 0.008534  
tol1 = 2%  

(σ1 = tol1μ1/300) 
None 

V2  
(Rm) Normal 

μ2 = 2.9 Ω 
tol2 = 2%  

(σ2 = tol2μ2/300) 

3
2 2( ) exp(9 10 )t tμ μ −′ = ×

3
2 2( ) exp(1 10 )t tσ σ −′ = ×

V3  
(r) Normal 

μ3 = 0.52575 
tol3 = 2%  

(σ3 = tol3μ3/300) 
None 

V4  
(v1) 

Normal 
μ4 = 12 volts 

tol4 = 1%  
(σ4 = tol4μ4/300) 

None 

V5  
(τ15) 

Uniform μ5 = 1/100 N-m 
tol5 = 2% None 

V6 

(R2) 
Normal 

μ6 = 10,000 Ω 
tol6 = 2%  

(σ6 = tol6μ6/300) 

2
6 6( ) exp(1.2 10 )t tμ μ −′ = ×

3
6 6( ) exp(4.5 10 )t tσ σ −′ = ×

V7  
(R3) 

Normal 
μ7 = 40,000 Ω 

tol7 = 2%  
(σ7 = tol7μ7/300) 

2
7 7( ) exp(1.3 10 )t tμ μ −′ = ×

3
7 7( ) exp(5.0 10 )t tσ σ −′ = ×

V8  
(R4) 

Normal 
μ8 = 10,000 Ω 

tol8 = 2%  
(σ8 = tol8μ8/300) 

2
8 8( ) exp(1.2 10 )t tμ μ −′ = ×

3
6 6( ) exp(4.5 10 )t tσ σ −′ = ×
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Now, total system reliability for the servo system can be writ-
ten as 

 

( )
8

1
( ) Pr ( , , ) 0 ,  for [0,  ]T

ii
R t g tτ τ

=

⎧ ⎫= > ∀ ∈⎨ ⎬
⎩ ⎭

p uI .
 
    (35) 

 
We predict total system reliability for p = [0.008534, 2, 2.9, 

2, 0.52575, 2, 12, 1, 1/100, 2, 10000, 2, 40000, 2, 10000, 2] 
using N = 10,000 samples up to the time t = 14 [year] with the 
time step h = 0.2 [year]. First, predicted component reliability 
values for the motor (Rm), and resistors (R2, R3, R4) using Eq. 
(30) are shown in Fig. 2. Reliability of R2 is similar to one for 
R4 within the maximum probability difference of 0.008. The 
system mechanical reliability is evaluated using Eq. (31), and 
it is added to Fig. 2. System mechanical reliability (hereinafter 
referred to as RM(t)) is mainly determined by both Rm and R3 

up to 7 years, but resistance degradation of R3 has a greater 
effect on RM(t) after 7 years than other components. Thus, it 
can be stated that reliability of R3 would be critical to RM(t).  

Prediction results of total system reliability (hereinafter re-
ferred to as RT(t)) using Eq. (35) and performance reliability 
(hereinafter referred to as RP(t)) using Eq. (34) are shown in 
Fig. 3, where RP(t) is critical to RT(t) up to 6 years, but RM(t) is 
critical to RT(t) mainly after 6 years. Thus, soft failures related 
to system performance, causing system failures, are expected 
to occur in most cases up to 6 years. But, system hard failures 
related to system functionality are predicted to occur fre-
quently after 6 years. In this work, repair or replacement of the 
resistor R3 would provide more efficient reliability growth 
than any other components in the aspect of system mainte-
nance, since reliability of R3 is critical to RM(t).  

There would be error in evaluating RT(t) with some assump-
tions. Prediction of RT(t) using RM(t) with the assumption of 
Pr(S(t)) = 1 in Eq. (2) causes errors in system reliability esti-
mation. And prediction of RT(t) as RP(t) with the assumption 
of Pr(Ti(t)) = 1 in Eq. (2) also leads to erroneous reliability 
estimation results. These errors are evaluated using difference 
in probability, [RM(t) – RT(t)] and [RP(t) – RT(t)], and they are 
shown in Fig. 4. The error denoted as [RM(t) – RT(t)] is within 

0.2 in probability. The error increases before about 6 years and 
then decreases after that time, and then becomes zero at 8 
years. The error denoted as [RP(t) – RT(t)] is within 0.6 in 
probability, and it increases before around 8 years and then 
decreases after that time. These error characteristics would be 
explained by the points that (a) RP(t) has more influence on 
RT(t) mainly before 6 years, and (b) RM(t) does on RT(t) after 6 
years.  

Prediction of RT(t) using a simple product of RM(t) and RP(t), 
i.e., RM(t)⋅RP(t) assuming that RM(t) is independent of RP(t), 
instead of Eq. (35) leads to a prediction error.  

Fig. 5 represents the prediction error that has a maximum 
value of about 0.019 in probability. The error is negligible 
when RM(t) ≈ 0 or RM(t) ≈ 1 where the intersection probability 
of failure regions in the limit-state functions related to soft and 
hard failures from Eq. (35) is very small. However, the error is 
not negligible in other cases. Thus, we may conclude that RT(t) 
is not a simple product of RM(t) and RP(t), and failure for the 
servo system in functionality is not independent of failure in 
performance.  

 

 
Fig. 2. System mechanical reliability with each component’s reliabil-
ity.  

Fig. 3. Total system reliability with mechanical reliability and per-
formance reliability.  
 

 
Fig. 4. Error due to consideration of either RM(t) or RP(t) as RT(t).  
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5. Conclusions 

This paper considered competing failure modes for systems 
with degraded components in terms of system functionality 
and system performance. To reduce errors in reliability predic-
tion, system performance reliability prediction methods in the 
open literature were extended to predict total system reliability. 
The extended total system reliability prediction method com-
bines system mechanical reliability from component reliabil-
ities and system performance reliability in case system func-
tionality is not independent of system performance. Applica-
tion of the prediction method to the servo system showed the 
importance of this work in reducing reliability prediction er-
rors.   

The extended reliability prediction method could provide an 
efficient way to evaluate total system reliability using not Eq. 
(2) but Eq. (26). The prediction method might be extended to 
reliability prediction of general systems with components 
connected in series and/or parallel, and provide a useful way 
to compare designs as well as to determine both maintenance 
policy and warranty time for efficient reliability growth. Total 
system reliability prediction approach for general engineering 
systems with multi-competing failure modes involving non-
degrading, stress-related failure mechanisms as well as com-
ponent degradation is an on-going research topic.  
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