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Abstract Reliability sensitivity analysis is used to find the
rate of change in the probability of failure (or reliability) due
to the changes in distribution parameters such as the means
and standard deviations. Most of the existing reliability sen-
sitivity analysis methods assume that all the probabilities
and distribution parameters are precisely known. That is,
every statistical parameter involved is perfectly determined.
However, there are two types of uncertainties, epistemic
and aleatory uncertainties that may not be perfectly deter-
mined in engineering practices. In this paper, both epis-
temic and aleatory uncertainties are considered in reliability
sensitivity analysis and modeled using P-boxes. The pro-
posed method is based on Monte Carlo simulation (MCS),
weighted regression, interval algorithm and first order reli-
ability method (FORM). We linearize original non-linear
limit-state function by MCS rather than by expansion as
a first order Taylor series at most probable point (MPP)
because the MPP search is an iterative optimization process.
Finally, we introduce an optimization model for sensitiv-
ity analysis under both aleatory and epistemic uncertainties.
Four numerical examples are presented to demonstrate the
proposed method.
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1 Introduction

In reliability analysis and reliability-based design, sensitiv-
ity analysis identifies the relationship between the change
in reliability and the change in the characteristics of uncer-
tain variables. Sensitivity analysis is also used to identify
the most significant uncertain variables that have the highest
contribution to reliability (Guo and Du 2009). Furthermore,
sensitivity analysis could be used to provide information
for the reliability-based design. If the reliability of a design
does not meet requirements, there are several useful ways
to improve the reliability, including (1) change of the mean
values of random variables, (2) change of the variances of
random variables, and (3) truncation of the distributions
of random variables (Du 2005). Sensitivity analysis can
provide the information about which random variables are
the most significant and therefore, in an effective manner,
should be changed in order to improve reliability. Reliabil-
ity sensitivity analysis has played a key role in structural
reliability design. A number of sensitivity analysis meth-
ods exist in literature. Among them, Ditlevsen and Madsen
(2007) presented an expression based on the first order relia-
bility method (FORM) to evaluate reliability sensitivity for a
structural system with linear limit-state and normal random
variables. De-Lataliade et al. (2002) developed a method
using Monte Carlo simulation (MCS) for reliability sensi-
tivity estimations. Ghosh et al. (2001) proposed a method
using the first order perturbation for stochastic sensitivity
analysis. For more information, please refer to references
(Mundstok and Marczak 2009; Xing et al. 2009; Au 2005;
Rahman and Wei 2008; Liu et al. 2006). In the afore-
mentioned literatures, most of methods assume that all the
stochastic characteristics of random variables are precisely
known. That means that every random parameter involved is
perfectly determined. However, in reality, this assumption
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is unrealistic because both types of uncertainties, epis-
temic and aleotary uncertainties, often exist in engineering
practice (Kiureqhian and Ditlevsen 2009; Kiureghian 2008;
Huang and Zhang 2009; Huang and He 2008; Zhang et al.
2010a, b; Zhang and Huang 2010). Epistemic uncertainty is
derived from incomplete information, less sampling data or
ignorance while aleatory uncertainty comes from inherent
variations (Du 2008). Approaches to describe the epis-
temic uncertainty in structural reliability analysis include
the interval analysis (Merlet 2009; Kokkolaras et al. 2006),
evidence theory (Christophe and Philippe 2009), possibil-
ity theory (Du et al. 2006; Nikolaidis et al. 2004; Zhou
and Mourelatos 2008), imprecise probability (Aughenbaugh
and Herrmann 2009), fuzzy theory and P-boxes models
(Tanrioven et al. 2004; Karanki et al. 2009). Aleatory
uncertainty is usually modeled using the probability the-
ory. Data error is inevitable due to multiple contributions
from machine errors, human errors or other unexpected sit-
uations. For example, a parameter is random subject to a
normal distribution while the mean value and standard devi-
ation can not be precisely determined. Therefore, in struc-
tural reliability sensitivity analysis, a unified uncertainty
analysis method is needed to model both epistemic and alea-
tory uncertainties.

Research efforts have been made these days on reliability
sensitivity analysis when both epistemic and aleatory uncer-
tainties are present in engineering systems (Guo and Du
2007, 2009). In this paper, the parameters with sufficient
information are modeled using probability distributions
while others are modeled by a pair of upper and lower cumu-
lative distributions (the so-called P-box). P-boxes (Utkin
and Destercke 2009; Tucker and Ferson 2003) are one of the
simplest and the most popular models of sets of probability
distributions, directly extended from cumulative distribu-
tions used in the precise case. Assume that the information
about a random variable X is represented by a lower bound
F and an upper bound �F , the cumulative distribution func-
tion can be defined based on the P-box bound [F, �F]. Thus,
the lower bound F and the upper bound �F distributions
define a set ϕ(F, �F) of precise distributions such that (Utkin
and Destercke 2009; Tucker and Ferson 2003)

ϕ
(
F, �F) = {F |∀X ∈ Rv, F (X) ≤ F (X) ≤ �F (X)

}
(1)

where Rv denotes a set of real numbers.
In the interval form, F I is used to denote the P-box

[F, �F], i.e.

F I = [F, �F] = {F ≤ F ≤ �F} (2)
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Fig. 1 CDF of parameter X

The P-box of a distribution is a closed-form function or
figure. For example, X ∼ N ([4, 6] , [1, 2]) represents that
X is normally distributed but its mean and standard devi-
ation value is not known precisely. However, its mean
value is known to locate in the interval [4, 6] and its stan-
dard deviation is within the interval [1, 2]. The cumulative
distribution function (CDF) of parameter X is shown in
Fig. 1.

In literature, there are studies on sensitivity analysis
using P-boxes (Ferson and Tucker 2006a, b; Hall 2006).
However, the proposed sensitivity analysis methods are
slightly different from reliability sensitivity analysis. Fur-
thermore, Monte Carlo simulation (MCS) based methods
were used widely in the reliability sensitivity analysis, for
example, De-Lataliade et al. (2002) proposed a sensitivity
estimation method based on MCS. Melchers and Ahammed
(2004) proposed an efficient method for parameter sensi-
tivity estimation based on MCS. However, these methods
can only model aleatory uncertainty rather than both epis-
temic and aleatory uncertainties. In this paper, by inte-
grating the principle of P-box, interval arithmetic, FORM,
MCS, weighted regression, and the works in references
(De-Lataliade et al. 2002; Melchers and Ahammed 2004),
we propose a unified reliability sensitivity estimation
method under both epistemic and aleatory uncertainties.

This paper is organized as follows. Section 2 pro-
vides a brief background about the structural reliability
and FORM. Structural reliability analysis in the interval
form is presented in Section 3. Section 4 proposes a
method for system reliability sensitivity analysis in interval
form. Four numerical examples are presented in Section 5.
Brief discussion and conclusion are presented to close the
paper.
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2 Reliability analysis by FORM

In the system reliability analysis, the system reliability R
and probability of failure Pf are defined as (Melchers 1999)

R = P [G (X) ≥ 0] (3)

and

Pf = 1 − R = P [G (X) < 0] (4)

respectively, where P[·] denotes a probability, G(·) is a
performance function, and X = (X1, X2, · · · , Xn) is the
vector of random variables.

fx denotes the joint probability density function (PDF)
of X, the probability of failure is calculated by the integral

Pf = P [G (X) < 0] =
∫

G(x)<0
fX (x) dx (5)

The direct evaluation of the probability integration in (5)
is extremely difficult. The main reasons are given in (Du
2005), including:

1. Since there are n random variables in the performance
function, the probability integration is multidimen-
sional.

2. The performance function G(X) is usually a non-linear
function of X, and therefore the integration boundary is
also non-linear.

MCS (Ditlevsen and Madsen 2007; Melchers 1999;
Melchers and Ahammed 2004) can be used to evaluate the
integration in (5). However, the main disadvantage of MCS
is that it needs a large number of samples in simulation. So
the MCS is time-consuming, especially for small probabil-
ity of failure. Classical reliability estimation methods, such
as FORM (Du 2005; Melchers 1999; Haldar and Mahadevan
2001; Koduru and Haukaas 2010) and second order reli-
ability method (SORM) (Du 2005; Ditlevsen and Madsen
2007; Melchers 1999; Hohenbichler et al. 1987), are widely
used for engineering reliability analysis and reliability-
based design for the good balance between accuracy and
efficiency. The performance function G(X) is transformed
into the U -space (standard normal space), denoted as Ĝ(U).
The first order Taylor expansion of Ĝ(U) can be expressed
as (Du 2005; Melchers 1999)

Ĝ (U) ≈ ĜL (U) = Ĝ
(
u∗)+

n∑

i=1

∂Ĝ

∂Ui

∣
∣
∣∣
∣
u∗

(
Ui − u∗

i

)
(6)

where ĜL (U) is the linearized performance function, and
u∗ = (u∗

1, u∗
2, · · · , u∗

n) is the expansion point. Assume
all random variables are statistically independent. Typical

FORM involves the three steps to estimate the probability
of failure Pf (Guo and Du 2009; Du 2005; Ditlevsen and
Madsen 2007).

1. Transform the random vector X = (X1,X2, · · ·,Xn) in X -
space into standard normal vector U = (U1,U2, · · ·,Un)

in U -space by Rosenblatt transformation (Ditlevsen and
Madsen 2007; Melchers 1999)

Ui = �−1 [FXi (Xi )
]

(7)

where �−1[·] is the inverse CDF of the standard normal
distribution, and FXi (Xi ) is the CDF of Xi .

2. Find the most probable point (MPP). The MPP u∗ =(
u∗

1, u∗
2, · · · , u∗

n

)
search is an iterative optimization

process

{
min

u
β = ‖u‖

s.t.Ĝ (u) = 0
(8)

where ‖ · ‖ denotes the magnitude of a vector and β is
called the reliability index.

3. Calculate the probability of failure by the following
equation

Pf = P [G (X) < 0] ≈ �(−β) (9)

where �(·) is the CDF of the standard normal distribu-
tion.

Generally, the main work of FORM is the MPP
search. From (6), reliability index β can also be
expressed as (Du 2005)

β =
(

μĜL (U)

σĜL (U)

)

(10)

where μĜL (U)
= −

n∑

i=1

∂Ĝ
∂Ui

∣
∣
∣∣
u∗

u∗
i is the mean value of

the function GL (U), and σĜL (U)
=
[

n∑

i=1

(
∂Ĝ
∂Ui

∣
∣∣
u∗

)2
] 1

2

is the standard deviation of the function ĜL (U).

3 Structural reliability in interval form

Let the random vector X = (X1, X2, X3, · · · , Xn) repre-
sent all basic variables which define and characterize the
behavior and safety of the structure, and let G(X) rep-
resents the performance function of the system. Typical
examples of random variables included in the vector of X
are dimensions, densities or unit weights, material, loads,
material strengths, and so on. In structural reliability anal-
ysis, if there is incomplete information or ignorance about
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a parameter, the parameter could be modeled using P-boxes
as X I

j ∼ N ([μ
x j

,�μx j ], [σ x j
,�σx j ]). Then these i parameters

can be denoted by XI
i = (X I

1 , X I
2 , X I

3 , · · · , X I
i

)
. The other

(n − i) parameters Xi = (Xi+1, Xi+2, Xi+3, · · ·, Xn) which
we have sufficient information about are modeled with pre-
cise probability distribution such as X j ∼ N

(
μX j , σX j

)
.

The parameters of system can be expressed by

XI =
(

XI
i , Xi

)
=
(

X I
1 , X I

2 , · · · , X I
i ; Xi+1, Xi+2, · · · , Xn

)

(11)

According to (11), the corresponding performance function
can be expressed as G(XI ). Because both epistemic and
aleatory uncertainties are present in a system, the proba-
bility of failure is an interval rather than a precise value.
From (5), the probability of failure P I

f in an interval form is
given by

P I
f = P

[
G
(

XI
)

< 0
]

=
∫

G(xI )<0
fX

(
xI
)

dx (12)

where fx(xI ) is the joint PDF of the n-dimensional vector
XI of basic random variables.

From (12), the probability of failure P I
f also can be

calculated as

P I
f =

[
P f ,

�Pf

]
=
[

min

(∫

G(xI )<0
fX

(
xI
)

dx

)

,

max

(∫

G(xI )<0
fX

(
xI
)

dx

)]

(13)

where P f and �Pf are the lower and upper bounds of P I
f ,

respectively.
From (13), in order to keep the consistency, the following

constraint must be satisfied

0 ≤ P f ≤ �Pf ≤ 1 (14)

As discussed in Section 2, the calculation of the integrals
in (5) and (13) are very difficult. The FORM can be used
to acquire an approximate solution which assumes the per-
formance function to be linear. However, in practice, the
performance function G(X) usually is of a more complex
form than linear functions. Furthermore, random variables
X j (1, 2, · · · , n) are usually not independent or normally
distributed. In practice, a dependent non-normal basic ran-
dom vector X = (X1, X2, · · · , Xn) can be transformed
into an independent standardized normal distributed ran-
dom vector U = (U1, U2, · · · , Un) through the Rosenblatt
(Ditlevsen and Madsen 2007; Melchers 1999) transforma-
tion U = T X by U1 = Fi (Xi |X1, X2, · · · , Xi−1), where

Fi is the conditional CDF of random vector X. In order
to use the FORM, a practical approach is to use linearized
GL (X) by expanding G(X) as a first-order Taylor series at
the MPP. However, the expansion of G(X) at MPP is a very
challenging because the MPP u∗ = (u∗

1, u∗
2, · · · , u∗

n

)
search

is an iterative optimization process (Guo and Du 2009; Du
2005), and sometimes there are more than one MPPs or the
MPP search process does not converge. Furthermore, when
both P-boxes and precise distributions are presented in a
system, the MPP search is more difficult than that has only
precise distributions. There is a very limited number of lit-
erature in describing how to find the MPP with both precise
distribution and interval variables under consideration (Du
2008; Du et al. 2005). In Du et al. (2005), when both pre-
cise distributions and interval variables exist in a system, the
MPP search is the double optimization process. The deriva-
tives of a non-linear function with a number of variables
can be very complicated. Therefore, linearization of G(X)
to GL (X) at MPP could not be the best approach because it
is not so robust in such a case. A more robust way to lin-
earize G(X) = 0 may be the sampling method. As being
efficient, we should consider those sample points which
contribute the most to the probability density or the maxi-
mum likelihood of a limit-state function. Those important
sample points are usually around or near limit-state func-
tion (Melchers 1999; Melchers and Ahammed 2004). The
method to linearize G(X) = 0 to GL (X) = 0 through MCS
involves the following steps:

1. Generate k sample points xl(l = 1, 2, · · · , k) by MCS.
2. Calculate the function values of G(xl ).
3. Give a constraint such as −∞ < G(xl) < 0.
4. Assume there are m samples which satisfy the con-

straint, i.e., −∞<G(x j )<0, ( j = 1, 2, · · · , m). Carry
out the weighted regression analysis on function values
G(x j ), we can acquire a linear tangent plane GL (X) =
0 of the original limit-state function G(X) = 0.

Generally, consider a linear function which is given by

GL (X) = a0 +
n∑

j=1

a j X j (15)

The coefficients of the function determined by the normal
linear regression can be expressed as

a =
(

xT
DxD

)−1
xT

DG (16)

where xD is the design matrix given by the m samples, i.e.

xD =

⎡

⎢⎢
⎢
⎣

1 x1 (1) · · · xn (1)

1 x1 (2) · · · xn (2)
...

...

1 x1 (m) · · · xn (m)

⎤

⎥⎥
⎥
⎦

(17)
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In the normal regression analysis, all m samples are equally
weighted. However, the sample point near the limit state is
more important than others. The coefficients of the function
are determined by the weighted linear regression expressed
as (Kaymaz and Mcmahon 2005)

a =
(

xT
DwxD

)−1
xT

DwG (18)

where w is an m × m diagonal matrix of weights which is
given by

w (x) =

⎡

⎢⎢
⎢
⎣

w (x1) 0
w (x2)

. . .

0 w (xm)

⎤

⎥⎥
⎥
⎦

(19)

The following expression is suitable to obtain the weight for
each sample point (Kaymaz and Mcmahon 2005)

w
(
x j
) = exp

[

−
∣
∣G
(
x j
)∣∣− gworst

gworst

]

(20)

gworst = max
∣
∣G
(
x j
)∣∣ , j = 1, 2, · · · , m (21)

5. Use the linearized tangent function GL (X) to replace
the original function G(X) in the reliability analysis.

The limit-state function G(X) = 0 and its linearized func-
tion GL (X) = 0 in the two dimensional space are shown in
Fig. 2.
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Fig. 2 Limit-state function and its linearized function with two basic
variables

For an illustration purpose, we assume that all random
variables are normally distributed and mutually independent
in this paper. From the weighted regression analysis, the
linearized performance function GL (X) can be written in
the same form as (15).

According to (10) and (15), the reliability index is
given by

β = μGL

σGL

(22)

where

μGL = a0 +
n∑

j=1

a jμX j (23)

and

σGL =
√√√
√

n∑

j=1

(
a jσX j

)2 (24)

From the discussion above, (10), (11), (15), and (22), (23),
(24), for the linearized limit-state function GL(X) = 0,
when the random variables and P-boxes are present in the
system. The system probability of failure and reliability
index derived from interval-valued probabilities becomes

P I
f =

[
P f ,

�Pf

]
= �

(
−β I

)
(25)

where

β I =
[
β, �β

]
(26)

and

β = μGL

�σGL

=
a0 +

i∑

j=1
a jμX j

+
n∑

j=i+1
a jμX j

√
i∑

j=1

(
a j�σX j

)2 +
n∑

j=i+1

(
a jσX j

)2
(27)

and

�β = �μGL

σ GL

=
a0 +

i∑

j=1
a j�μX j +

n∑

j=i+1
a jμX j

√
i∑

j=1

(
a jσ X j

)2 +
n∑

j=i+1

(
a jσX j

)2
(28)

respectively. Here, for a parameter X j ∼ N ([μ
X j

,�μX j ],
[σ X j

,�σX j ]), the midpoint values of intervals [μ
X j

,�μX j ],
[σ X j

,�σX j ] are expressed as μ̃X j =
μ

X j
+�μX j

2 , and
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σ̃X j = σ X j
+�σX j

2 . The interval [μ
X j

,�μX j ] of parameter X j

can be expressed by [μ̃X j − �μX j , μ̃X j + �μX j ], where

�μX j =
�μX j −μ

X j
2 . Likewise, the expression of the stan-

dard deviation could be obtained. Now, we use two variation
coefficients which are defined as

ε j = �μX j

μ̃X j

, ξ j = �σX j

σ̃X j

(29)

The variation vector of XI = (XI
i , Xi ) = (X I

1 , X I
2 , · · · , X I

i ;
Xi+1, Xi+2, · · · , Xn) can be expressed as

ε = [ε1, ε2, ε3, · · · , εi , 0, 0, 0, · · · , 0] (30)

and

ξ = [ξ1, ξ2, ξ3, · · · , ξi , 0, 0, · · · , 0] (31)

respectively. From (29), (30), (31), the mean and deviation
of a parameter X j ∼ N ([μ

X j
,�μX j ], [σ X j

,�σX j ]) in interval

form become

μI
X j

=
[
μ

X j
, �μX j

]
= [μ̃X j

(
1 − ε j

)
, μ̃X j

(
1 + ε j

)]
(32)

and

σ I
X j

=
[
σ X j

, �σX j

]
= [σ̃X j

(
1 − ξ j

)
, σ̃X j

(
1 + ξ j

)]
(33)

respectively.
From (27), (28) and (32), (33), the lower bound and

upper bound of reliability indexes can be expressed as

β =
μ

GL

�σGL

=
a0 +

i∑

j=1
a j μ̃X j

(
1 − ε j

)+
n∑

j=i+1
a jμX j

√
i∑

j=1

[
a j σ̃X j

(
1 + ξ j

)]2 +
n∑

j=i+1

(
a jσX j

)2

(34)

and

�β = �μGL

σ GL

=
a0 +

i∑

j=1
a j μ̃X j

(
1 + ε j

)+
n∑

j=i+1
a jμX j

√
i∑

j=1

[
a j σ̃X j

(
1 − ξ j

)]2 +
n∑

j=i+1

(
a jσX j

)2

(35)

respectively.

4 Reliability sensitivity analysis in interval form

Reliability sensitivity analysis is used to find the rate of
change in the probability of failure due to the changes in
the parameters, such as means and standard deviations, of
distributions (Du 2005). Furthermore, sensitivity analysis

could be used to provide information for the reliability-
based design. As discussed in previous sections, we can
linearize a non-linear limit-state function by simulation.

The reliability sensitivity of a parameter X j is usually
defined as (Guo and Du 2009; Du 2005; Melchers and
Ahammed 2004)
(

∂ Pf

∂μX j

,
∂ Pf

∂σX j

)

(36)

where Pf is the probability of failure; μX j and σX j are
the mean value and standard deviation of parameter X j ,
respectively.

From (9), (15), and the chain rule of partial derivative,

the reliability sensitivities

(
∂ Pf
∂μX j

,
∂ Pf
∂σX j

)
can be expressed

as

∂ Pf

∂μX j

= ∂ P [GL (X) < 0]

∂μX j

= ∂� (−β)

∂μX j

= ∂� (−β)

∂β

∂β

∂μX j

(37)

and

∂ Pf

∂σX j

= ∂ P [GL (X) < 0]

∂σX j

= ∂� (−β)

∂σX j

= ∂� (−β)

∂β

∂β

∂σX j

(38)

respectively.
Since all random variables are normally distributed, the

partial derivatives of ∂�(−β)
∂β

can be calculated as

∂� (−β)

∂β
=

∂
(

1√
2π

∫ −β

−∞ e− 1
2 x2

dx
)

∂β
=− 1√

2π
e− 1

2 β2
(39)

The partial derivatives of ∂β
∂μX j

and ∂β
∂σX j

can be calcu-

lated as (Du 2005)

∂β

∂μX j

=
∂
(

μGL
σGL

)

∂μX j

= a j

σGL

(40)

and

∂β

∂σX j

=
∂
(

μGL
σGL

)

∂σX j

= −a2
j μGL σX j

σ 3
GL

(41)

respectively. Based on (37), (38) and (40), (41), an approx-
imate approach to calculate the system reliability sensi-
tivities

∂ Pf
∂μX j

and
∂ Pf
∂σX j

becomes (Melchers and Ahammed

2004)

∂ Pf

∂μX j

≈ ∂ P [GL (X) < 0]

∂μX j

= ∂� (−β)

∂β

∂β

∂μX j

=− a j√
2πσGL

exp

[

−1

2

(
μGL

σGL

)2
]

(42)
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Table 1 Distribution details of random variables

Variable Mean Standard Variation Distribution

deviation coefficient

X1 40 5 (ε1, ξ1) Normal

X2 50 2.5 (ε2, ξ2) Normal

X3 1,000 200 (ε3, ξ3) Normal

and
∂ Pf

∂σX j

≈ ∂ P [GL (X) < 0]

∂σX j

= ∂� (−β)

∂β

∂β

∂σX j

= a2
j μGL σX j√

2πσ 3
GL

exp

[

−1

2

(
μGL

σGL

)2
]

(43)

respectively.

As discussed in Section 3, when both epistemic and
aleatory uncertainties are considered, reliability sensitivity
of X j is mathematically an interval with its lower and upper
bounds. From (25), (42) and (43), and from the interval

operation, the lower and upper bounds of reliability sensitiv-
ity of each parameter can be expressed as two optimization
problems

∂ P I
f

∂μX j

=
[

min

(
∂ P I

f

∂μX j

)

, max

(
∂ P I

f

∂μX j

)]

(44)

min (max)

(
∂ P I

f

∂μX j

)

= min (max)

{

− a j√
2πσGL

exp

[

−1

2

(
μGL

σGL

)2
]}

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s.t.μ
X j

≤ μX j ≤ �μX j ( j = 1, 2, · · · , i)

σ X j
≤ σX j ≤ �σX j ( j = 1, 2, · · · , i)

μ
GL

≤ μGL ≤ �μGL

σ GL
≤ σGL ≤ �σGL

(45)

and

∂ P I
f

∂σX j

=
[

min

(
∂ P I

f

∂σX j

)

, max

(
∂ P I

f

∂σX j

)]

(46)

Table 2 Results of numerical
example 1 Sensitivity type Variation coefficients Results provided by the

proposed method

∂ P I
f

∂μX1

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.05 [−2.45 × 10−3, −9.66 × 10−5]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.03 [−1.46 × 10−3, −2.12 × 10−4]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.01 [−8.18 × 10−4, −4.31 × 10−4]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.00 −5.99 × 10−4 (−6.02 × 10−4)
∂ P I

f

∂μX2

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.05 [−1.40 × 10−3, −5.52 × 10−5]
ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.03 [−8.33 × 10−4, −1.21 × 10−4]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.01 [−4.68 × 10−4, −2.47 × 10−4]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.00 −3.42 × 10−4 (−3.64 × 10−4)
∂ P I

f

∂μX3

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.05 [2.01 × 10−6, 5.10 × 10−5]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.03 [4.41 × 10−6, 3.03 × 10−5]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.01 [8.97 × 10−6, 1.70 × 10−5]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.00 1.25 × 10−5 (1.23 × 10−5)
∂ P I

f

∂σX1

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.05 [1.67 × 10−4, 7.27 × 10−3]
ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.03 [4.11 × 10−4, 3.89 × 10−3]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.01 [9.31 × 10−4, 1.97 × 10−3]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.00 1.36 × 10−3 (1.35 × 10−3)
∂ P I

f

∂σX2

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.05 [2.73 × 10−5, 1.19 × 10−3]
ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.03 [6.71 × 10−5, 6.36 × 10−4]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.01 [1.52 × 10−4, 3.21 × 10−4]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.00 2.23 × 10−4 (2.76 × 10−4)
∂ P I

f

∂σX3

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.05 [2.89 × 10−6, 1.26 × 10−4]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.03 [7.10 × 10−6, 6.73 × 10−5]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.01 [1.61 × 10−5, 3.40 × 10−5]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.00 2.36 × 10−5 (2.32 × 10−5)
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min (max)

(
∂ P I

f

∂σX j

)

= min (max)

{
a2

j μGL σX j√
2πσ 3

GL

exp

[

−1

2

(
μGL

σGL

)2
]}

⎧
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⎪⎪⎪⎩

s.t.μ
X j

≤ μX j ≤ �μX j ( j = 1, 2, · · · , i)

σ X j
≤ σX j ≤ �σX j ( j = 1, 2, · · · , i)

μ
GL

≤ μGL ≤ �μGL

σ GL
≤ σGL ≤ �σGL

(47)

respectively. Since the two optimization problems are very
complicated and time consuming, for the purpose of conve-
nience and simplicity, (42), (43) and the interval operation
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Fig. 4 Parameter deviation sensitivities with different coefficients

Wave Generator Flexspline Circular Spline

Fig. 5 Schematic of a harmonic drive

can be further used to calculate the approximate interval
bounds of parameter sensitivities as follows

∂ P I
f

∂μX j

≈
{

− a j√
2πσ GL

exp

[

−1

2

(μ
GL

�σGL

)2
]

,

− a j√
2π�σGL

exp

⎡

⎣−1

2

(
�μGL

σ GL

)2
⎤

⎦

⎫
⎬

⎭
(48)

and

∂ P I
f

∂σX j

≈
⎧
⎨

⎩

a2
j μGL

σ X j√
2π�σ 3

GL

exp

⎡

⎣−1

2

(
�μGL

σ GL

)2
⎤

⎦ ,

a2
j �μGL�σX j√
2πσ 3

GL

exp

[

−1

2

(μ
GL

�σGL

)2
]}

(49)

5 Numerical examples

In this section, four examples are provided to demon-
strate the application of the proposed method as well as
its effectiveness. All parameters are expressed by P-boxes
in Example 1. Two parameters are expressed by P-boxes
while one is expressed by precise probability distribution
in Example 2. Example 3 is used to demonstrate the accu-
racy of the proposed method when the limit-state function

Table 3 Distribution details of random variables

Variable Mean Standard Variation Distribution

deviation coefficient

Th(N.m) 350 35 (ε1, ξ1) Normal

Nv(rpm) 0.1 0.01 (ε2, ξ2) Normal

K 1.3 0.1 0 Normal

T (N.m) 2,000 0 0 . . . . . .
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Table 4 Results of example 2
Sensitivity type Variation coefficient Results provided by the

proposed method

∂ P I
f

∂μTh

ε1, ε2 = ξ1, ξ2 = 0.05 [−2.356 × 10−3, −1.585 × 10−3]

ε1, ε2 = ξ1, ξ2 = 0.03 [−2.199 × 10−3, −1.727 × 10−3]

ε1, ε2 = ξ1, ξ2 = 0.01 [−2.029 × 10−3, −1.875 × 10−3]

ε1, ε2 = ξ1, ξ2 = 0.00 −1.950 × 10−3 (−1.801 × 10−3)

∂ P I
f

∂μNv

ε1, ε2 = ξ1, ξ2 = 0.05 [1.457, 2.165]

ε1, ε2 = ξ1, ξ2 = 0.03 [1.587, 2.016]

ε1, ε2 = ξ1, ξ2 = 0.01 [1.722, 1.864]

ε1, ε2 = ξ1, ξ2 = 0.00 1.791 (1.744)
∂ P I

f

∂μK
ε1, ε2 = ξ1, ξ2 = 0.05 [0.322, 0.478]

ε1, ε2 = ξ1, ξ2 = 0.03 [0.350, 0.444]

ε1, ε2 = ξ1, ξ2 = 0.01 [0.380, 0.412]

ε1, ε2 = ξ1, ξ2 = 0.00 0.396 (0.386)
∂ P I

f

∂σTh

ε1, ε2 = ξ1, ξ2 = 0.05 [2.066 × 10−3, 4.115 × 10−3]

ε1, ε2 = ξ1, ξ2 = 0.03 [2.385 × 10−3, 3.603 × 10−3]

ε1, ε2 = ξ1, ξ2 = 0.01 [2.744 × 10−3, 3.148 × 10−3]

ε1, ε2 = ξ1, ξ2 = 0.00 2.939 × 10−3 (2.740 × 10−3)

∂ P I
f

∂σNv

ε1, ε2 = ξ1, ξ2 = 0.05 [0.498, 0.993]

ε1, ε2 = ξ1, ξ2 = 0.03 [0.575, 0.869]

ε1, ε2 = ξ1, ξ2 = 0.01 [0.662, 0.759]

ε1, ε2 = ξ1, ξ2 = 0.00 0.709 (0.669)
∂ P I

f

∂σK
ε1, ε2 = ξ1, ξ2 = 0.05 [0.243, 0.484]

ε1, ε2 = ξ1, ξ2 = 0.03 [0.280, 0.424]

ε1, ε2 = ξ1, ξ2 = 0.01 [0.323, 0.370]

ε1, ε2 = ξ1, ξ2 = 0.00 0.346 (0.352)
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is a highly non-linear function. In Example 4, the limit-state
function is a black-box.

5.1 Example 1: a mathematical problem

Consider a non-linear limit state function with 3 normal ran-
dom variables. The limit-state function is G (X) = X1 X2 −
X3 = 0. The distribution details of random variables are
given in Table 1 (Melchers and Ahammed 2004).

106 samples are used and 1194 samples fall in the
constraint domain. With weighted regression analysis, the
approximating hyper-plane GL is

GL (X) = −1299.77 + 47.13X1 + 26.94X2 − 0.980X3
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Fig. 9 Parameters deviation sensitivities with different variation
coefficients
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Fig. 10 A beam

The interval-valued reliability sensitivities based on the hy-
per-plane GL under different variation coefficients (ε1, ξ1)
are shown in Table 2, and the values in brackets (·) of
Table 2 are calculated by using the MCS-based reliability
sensitivity method with the 106 samples.

From the results in Table 2, it can be concluded that
the reliability sensitivity of each random variable is very
sensitive to its distribution parameter. ε1, ε2, ε3 = ξ1,
ξ2, ξ3 = 0.05. This means that the variation coefficients
of all parameters are equal, that is, ε1 = ε2 = ε3 =
ξ1 = ξ2 = ξ3 = 0.05. When we have sufficient infor-
mation about all parameters of the systems, ε1, ε2, ε3 =
ξ1, ξ2, ξ3 = 0, that is, there is no epistemic uncertainty
in the system. The sensitivity analysis results are precise
values rather than intervals. For example, the reliability
sensitivity of the variable X1 is (−5.99 × 10−4, 1.36 ×
10−3). However, in reality, it is impossible to know the
parameter probability distributions precisely. If the varia-
tion coefficients are ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.05, the
reliability sensitivity of variable X1 is within an interval
([−2.45×10−3,−9.66×10−5], [1.67×10−4, 7.27×10−3]).
It should be noted that the variation coefficients of parame-
ters may not be all equal, such as, ε1 =0.05, ε2 =ε3 =0.03.
The method to handle this case is the same as that used
for equal coefficients. For the purpose of simplicity and
illustration, we assume that all variation coefficients are
equal to each other. The figures of system reliability sen-
sitivities are shown in Figs. 3 and 4. From Figs. 3 and 4,
we know that random variables are sensitive to its distribu-
tion parameters and a small change to a parameter may lead
to a large change to the reliability sensitivity results. The

Table 5 Distribution details of random variables

Variable Mean Deviation Variation Distribution

coefficient type

P 6,070 200 (ε1, ξ1) Normal

L 120 6 (ε2, ξ2) Normal

a 72 6 (ε3, ξ4) Normal

S 170,000 4,760 (ε4, ξ4) Normal

d 2.3 1/24 (ε5, ξ5) Normal

tw 0.16 1/48 (ε6, ξ6) Normal

t f 0.26 1/48 (ε7, ξ7) Normal

b f 2.3 1/24 (ε8, ξ8) Normal
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variable X1 is more sensitive than the other variables in the
system. Therefore, in reliability-based design, we need to
pay more attention to X1 than to the other variables.

Furthermore, in this paper, for the purpose of simplic-
ity, we give an accuracy comparison between the pro-
posed method and the MCS-based method for the reliability

Table 6 Results of example 3
Sensitivity type Variation coefficients The proposed method

∂ P I
f

∂μP
ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.01 [−1.11 × 10−4, −8.19 × 10−5]

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.00 −9.59 × 10−5 (−1.01 × 10−4)
∂ P I

f

∂μa
ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.01 [8.35 × 10−3, 1.14 × 10−2]

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.00 9.78 × 10−3 (8.94 × 10−3)
∂ P I

f

∂μL
ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.01 [−1.40 × 10−2, −1.03 × 10−2]

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.00 −1.20 × 10−2 (−1.15 × 10−2)
∂ P I

f

∂μd
ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.01 [0.285, 0.387]

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.00 0.333 (0.352)
∂ P I

f

∂μb f

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.01 [0.190, 0.259]

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.00 0.222 (0.253)
∂ P I

f

∂μtw
ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.01 [0.156, 0.212]

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.00 0.183 (0.213)
∂ P I

f

∂μt f

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.01 [1.171, 1.593]

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.00 1.370 (1.445)
∂ P I

f

∂μS
ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.01 [4.31 × 10−6, 5.84 × 10−6]

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.00 5.05 × 10−6 (5.04 × 10−6)
∂ P I

f

∂σP
ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.01 [2.39 × 10−5, 3.53 × 10−5]

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.00 2.92 × 10−5 (4.54 × 10−5)
∂ P I

f

∂σa
ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.01 [7.45 × 10−3, 1.10 × 10−2]

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.00 9.11 × 10−3 (8.81 × 10−3)
∂ P I

f

∂σL
ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.01 [1.13 × 10−2, 1.66 × 10−2]

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.00 1.38 × 10−2 (1.34 × 10−2)
∂ P I

f

∂σd
ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.01 [6.02 × 10−2, 8.88 × 10−2]

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.00 7.35 × 10−2 (8.69 × 10−2)
∂ P I

f

∂σb f

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.01 [2.69 × 10−2, 3.97 × 10−2]

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.00 3.28 × 10−2 (4.72 × 10−2)
∂ P I

f

∂σtw
ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.01 [9.05 × 10−3, 1.34 × 10−2]

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.00 1.11 × 10−2 (1.92 × 10−2)
∂ P I

f

∂σt f

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.01 [0.508, 0.750]

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.00 0.621 (0.796)
∂ P I

f

∂σS
ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.01 [1.58 × 10−6, 2.33 × 10−6]

ε1, · · ·, ε8 = ξ1, · · ·, ξ8 = 0.00 1.93 × 10−6 (2.00 × 10−6)
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sensitivity analysis with variation coefficients equal to
zeros. From Table 2, we know that the results obtained using
the proposed method is almost identical to the results using
the MCS-based method.

5.2 Example 2: a harmonic drive

A harmonic drive, shown in Fig. 5, is widely used in the
solar array drive mechanism and the antenna pointing mech-
anism because of its high carrying capacity, light weight,
small size, and etc.

The performance function of a harmonic drive for its life
estimation is (Du 2010)

G (Th, NV , T, K , m) = 75 × 105

NV

(
Th

K T

)3

− 8760 × m

where m is the number of years, and Th , NV , K , and T are
the rated output torque, input speed, condition factor and
nominal output torque, respectively. 8760 = (365 × 24) is
the total number of hours for one year. When G > 0, sys-
tem is considered safe. When G < 0, system falls in the
failure domain. The distribution details of random variables
are given in Table 3. In this example, we only consider the
reliability of the harmonic drive for 10 years.

5 × 104 samples are used and 1,640 samples fall in
the constraint domain. By applying the weighted regression
analysis, the approximating hyper-plane GL is

GL (Nv, K , Th) = 5.8172 × 104 − 6.7030 × 105 Nv

+ 7.2950 × 102Th − 1.4801 × 105 K

The interval-valued reliability sensitivities based on the
hyper-plane GL under different variation coefficients (ε1,
ξ1) are listed in Table 4. The values in brackets (·) of Table 4
are calculated using the MCS-based reliability sensitivity
method with the 106 samples.

In Example 2, the distribution parameters of Th and
Nv have variation coefficients which are modeled using
P-boxes. The variation coefficient of the variable K is
equal to zero which is modeled using a precise probabil-
ity distribution. Both epistemic and aleatory uncertainties
are considered in this example. From the results in Table 4,
we can see that the larger the variation coefficients are,
the wider the interval is. The reason is that a large varia-
tion coefficient represents a large uncertainty of parameters’
influence on the system. When all the variation coefficients
are zero, the distributions of all random variables can be pre-
cisely determined. The sensitivity analysis results of these
variables become precise values. The figures of system
reliability sensitivities are shown in Figs. 6, 7, 8, 9. From
these figures, a conclusion is reached that the system is very
sensitive to the variable Nv , which is a key design variable
considered in the reliability-based design.

(Length)

(Load)

(Width)

30

50φ

Fig. 11 A wrench

5.3 Example 3: a beam

As shown in Fig. 10, a beam example is used to demonstrate
the accuracy of the proposed method. The performance
function is given by (Huang and Du 2006)

Z = f
(
P, L , a, S, d, b f , tw, t f

) = σmax − S

where

σmax = Pa (L − a) d

2L I

and

I = b f d3 − (b f − tw
) (

d − 2t f
)3

12

The distribution details of random variables are given in
Table 5. We only consider a case of Z < −50,000 in the
example.

5 × 104 samples are used and 2350 samples fall in the
constraint domain. With the weighted regression analysis,
the approximating hyper-plane ZL is

ZL ≈ 19.220P − 1960.267a + 2409.748L − 66824.231d

− 44658.404b f − 36644.644tw

− 274666.167t f − 1.012S + 275102.329

The interval-valued reliability sensitivities based on the
hyper-plane ZL under different variation coefficients (ε1,
ξ1) are shown in Table 6.

In this example, the limit-state function is highly non-
linear. From Table 6 we know that the results calculated

Table 7 Distributions details of random variables

Variable Mean Deviation Variation Distribution

coefficient

Load 500 20 (ε1, ξ1) Normal

Length 330 15 (ε2, ξ2) Normal

Width 30 3 (ε3, ξ3) Normal

σ s 320 0 0 –
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Table 8 Results of example 4
Sensitivity type Variation coefficients Results provided by the proposed method

∂ P I
f

∂μX1

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.01 [6.32 × 10−4, 6.42 × 10−4]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.00 6.37 × 10−3 (5.69 × 10−3)
∂ P I

f

∂μX2

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.01 [−9.73 × 10−2, −9.88 × 10−4]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.00 −9.81 × 10−2 (−9.01 × 10−2)
∂ P I

f

∂μX3

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.01 [3.76 × 10−3, 3.82 × 10−3]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.00 3.79 × 10−3 (4.73 × 10−3)
∂ P I

f

∂σX1

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.01 [1.25 × 10−3, 1.32 × 10−3]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.00 1.28 × 10−3 (1.58 × 10−3)
∂ P I

f

∂σX2

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.01 [5.91 × 10−2, 6.24 × 10−2]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.00 6.08 × 10−2 (6.62 × 10−2)
∂ P I

f

∂σX3

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.01 [5.89 × 10−4, 6.22 × 10−4]

ε1, ε2, ε3 = ξ1, ξ2, ξ3 = 0.00 6.06 × 10−4 (3.63 × 10−3)

using the proposed method are not very accurate when com-
pared with the results using the MCS-based method. The
values in brackets (·) are calculated using the MCS-based
method with 106 samples with all the variation coefficients
equal to zeros. It is observed that when the limit-state func-
tion is highly non-linear, the results calculated using the
proposed method are not accurate results.

5.4 Example 4: a wrench

In an example of a wrench as shown in Fig. 11, the limit-
state function is given by (Wang et al. 2006)

g (σmax, σs, Load, Width, Length) = σmax − σs = 0

where σmax and σ s are the maximum stress and the rated
stress. The distribution details of random variables are given
in Table 7.

103 samples are used and 222 samples fall in the con-
straint domain. With the weighted regression analysis, the
approximating hyper-plane gL is

gL ≈ 207.577 − 1.041X1 + 16.030X2 − 0.620X3

where X1, X2 and X3 are used to denote random variables
Length, Width and Load, respectively.

Applying the proposed method, the interval-valued relia-
bility sensitivities based on the hyper-plane gL for different
variation coefficients (εi , ξ i ) are given in Table 8.

In this example, the limit-state function is an implicit
function or a black-box. In order to calculate σmax, the
finite element analysis (FEA) method is used. The FEA for
wrench is shown in Fig. 12. Generally, the results calculated
using the proposed method are not accurate, especially for
large-scale real engineering problems. Because FEA is time
costly, the results calculated by the MCS-based method with
1,000 samples are used as reference results for accuracy
comparison.

6 Conclusions

Based on the P-boxes, interval algorithm, MCS, weighted
linear aggression analysis and FORM, a new sensitivity
analysis method is proposed. In the structural reliability and
sensitivity analysis, it is practically appropriate to obtain a
P-box interval constraint for system random variables rather
than precise distributions because two types of uncertain-
ties, epistemic and aleatory uncertainties, exist widely in
engineering practices. The results of the four examples have

Fig. 12 FEA for wrench
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shown that the proposed method is effective because it pro-
vides a means of reliability sensitivity analysis under either
epistemic uncertainty, aleatory uncertainty or both of them.
Generally, it is more robust than the traditional sensitiv-
ity method such as the FORM-based ones because it does
not require the MPP search. Furthermore, the proposed
method is superior to the MCS-based method in terms of
computational times. In addition, the proposed method is
also applicable for the situation where the limit-state func-
tion is a black box. The numerical examples indicate that a
small change to a distribution parameter may lead to a large
change to the reliability sensitivity results.

It should be noted that there are limitations to the pro-
posed method based on the interval form. The proposed
method is an approximation method that is laid on a lin-
earized function instead of its original limit-state function.
The linearization may cause a loss of information. The
result of the interval bounds in the paper is an approxima-
tion rather than an exact solution. Generally, the proposed
method is not available for large-scale real engineering
problems with highly non-linear performance functions.
The more nonlinearity of a limit-state function is, the larger
errors will be. Future work involves an accuracy improve-
ment especially when the system failure probability is very
small and the computational time is huge.
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