
In Proc� of Paci�c Rim Intl� Symposium on Fault�Tolerant Systems���� Taipei� Taiwan

Reliability Simulation of Fault�Tolerant Software and Systems

Swapna S� Gokhale��� Michael R� Lyu�� Kishor S� Trivedi�y

� Dept� of Electrical and Computer Engg� Center for Advanced Comp� � Comm�

Duke University� Durham� NC ���������	 � USA

E�mail
 fssg�kstg�ee�duke�edu

Phone
 ��	�
 ��������� Fax
 ����
 ���������

� Room No� �A��	�� Lucent Technologies� Bell Laboratories
���� Mountain Avenue� Murray Hill� NJ �����

E�mail
 lyu�research�bell�labs�com

Phone
 ����
 ��������� Fax
 ����
 ���������

Abstract

Fault tolerance is a survival attribute of complex
computer systems and software in their ability to de�
liver continuous service to their users in the presence of
faults� Formulating an analytic model for dependabil�
ity and performance evaluation of hardware�software
fault tolerant architectures can be quite cumbersome�
Also� in practice� isolating the e�ect of various param�
eters on a system� while holding the others constant
requires exploring a variety of scenarios� It is econom�
ically infeasible to build several such systems� Simu�
lation o�ers an attractive mechanism for dependabil�
ity evaluation and the study of the in�uence of vari�
ous parameters on the failure behavior of the system�
In this paper� we develop algorithms to simulate the
failure behavior of three commonly used fault tolerant
architectures� viz�� Distributed Recovery Block 	DRB
�
N�Version Programming 	NVP
 and N�Self Checking
Programming 	NSCP
� We demonstrate the ability of
the approach to simulate complex failure scenarios with
various dependencies using some illustrative numerical
examples�

�Supported in part by Bellcore as a core project in the Center

for Advanced Computing and Communication
ySupported in part by National Science Foundation under

grant number EEC��������	

� Introduction

The size and complexity of modern software sys�
tems embedded in sophisticated hardware has grown
more rapidly in the past decade� than our ability to
design� implement� test and maintain them� Faults in
a computer system are inevitable as the system com�
plexity grows� and hence computer systems are often
designed to tolerate both software and hardware faults�
by con�guring multiple software versions on redundant
hardware� Fault tolerance is the survival attribute of
computing systems or software in their ability to de�
liver continuous service to their users in the presence
of faults ����

Dependability and performance modeling of fault
tolerant software has been done extensively ��� ��� for
the quantitative evaluation of their relative and abso�
lute merits� Most of these techniques do not explic�
itly consider hardware failures� Dugan et al� �	� model
fault tolerant architectures providing a uni�ed toler�
ance to both hardware and software faults in a hier�
archical manner� Formulating an analytical model of
a system� which employs both hardware and software
fault tolerance� can be quite cumbersome� Rate�based
simulation can o
er an attractive mechanism to study
the combined in�uence of hardware and software fail�
ures� and the possible interactions between them on
the overall failure behavior of a system� Also� the ul�
timate success of modeling is governed by the avail�
ability of comprehensive� complete and consistent data

�



sets� Fault tolerant systems are inherently complex
due to various dependencies between the software and
hardware components� and hence collection of compre�
hensive and homogeneous data sets for such systems
is a formidable task� Also� in practice� isolating the
e
ect of various parameters on a system� while hold�
ing the others constant requires exploring a variety of
scenarios� It is economically infeasible to build several
systems with di
erent values�levels of the factors of in�
terest� Simulation can also provide a viable mechanism
to supply carefully controlled� homogeneous data sets�
and to study the overall failure behavior of a system as
well as the in�uence of various parameters�factors on
the failure behavior�

The layout of the paper is as follows� Section �
presents an overview of rate�based simulation tech�
nique for non�homogeneous continuous time Markov
chains 
NHCTMCs� and brie�y describes the three
fault tolerant architectures studied here� Section � dis�
cusses various assumptions based on which the algo�
rithms are developed� Section 	 describes combinations
of software and hardware failures that could lead to a
system failure� Section � presents some illustrations to
demonstrate the ability of simulation to study the fail�
ure behavior� and Section � concludes the paper and
discusses directions for future research�

� Background

2.1 Simulation for NHCTMCs

In this section we provide an overview of rate based
simulation technique which forms the basis of this
paper� The failure behavior of an individual com�
ponent can be described by a process belonging to
a class of non�homogeneous continuous time Markov
chains 
NHCTMCs�� The stochastic process of in�
terest� fX
t�g� is the number of faults activated in
the component� and depends only on a rate function
�
n� t�� where n denotes the state of the system� and is
the number of faults detected upto time t� The condi�
tional probability that an event occurs in the in�nitesi�
mal interval 
t� t�dt� is given by �
n� t�dt� If we assume
that the number of faults detected at t � � is �� then
the state of the system is � at time t � �� the fault
detection rate is given by �
�� t�� and the probability
that a fault will not be detected in the time interval

�� t�� denoted by P�
t�� is given by�

P�
t� � e�m����t� 
��

�System in this section is a single component

�� Input parameters and functions are assumed

to be defined at this point ��

double single�event�double t� double dt�

double � �lambda� �int�double��

�

int event � �	

while �event �� ��

�

if �occurs�lambda�n�t� � dt��

event 

	

t 
� dt	

�

return t	

�

Figure 1. Single Event Simulation Routine

where

m�
t�� t� �

Z t

t�

�
�� ��d� 
��

�
�� t� is often referred to as failure intensity� since
the events of interest are failures� and m�
�� t� is the
mean value function� The subscript � on m�
�� t� in�
dicates that no failure have occurred prior to time
t � �� The cumulative distribution function F�
t� and
the probability density function f�
t� of the time to
occurrence of the �rst event are then given by �����

F�
t� � �� P�
t� � �� e�m����t� 
��

and

f�
t� �
d

dt
F�
t� � �
�� t�e�m����t� 
	�

Expressions for occurrence times of further events
are rarely analytically tractable ����� These processes
are also known as conditional event�rate processes �����

The occurrence time of the 
n� ��st event of the
NHCTMC based process described above can be gen�
erated 
sampled� using the C�like routine shown in Fig�
ure � ����� The function single event
� returns the oc�
currence time of the 
n� ��

st
event� In the routine

above� occurs
x� compares a random number with x�
and returns � if random
� � x� and � otherwise� This
routine is the basis of all the algorithms developed in
this paper�

2.2 Fault Tolerant Architectures

In this section we brie�y discuss the three system ar�
chitectures� viz�� Distributed Recovery Block
DRB�� N�
Version Programming
NVP� and N Self�Checking Pro�
gramming 
NSCP�� studied in this paper� Each system
is characterized by the number of software variants� the

�



number of hardware replications� and the decision al�
gorithm�

����� Distributed Recovery Block �DRB�

The recovery block 
RB� ���� approach to software fault
tolerance consists of a set of diverse program versions
called alternates� along with an error detection routine
known as the Acceptance Test 
AT�� The acceptability
of a computation performed by the primary is deter�
mined by an acceptance test� If the results are deemed
unacceptable� the state of the system is rolled back to
that on entry to the RB and a spare is executed� This
process is repeated until an acceptable result is deliv�
ered or no more alternates are available� Alternates are
designed to provide the same functionality as the pri�
mary but deliberately as independent as possible� The
Distributed Recovery Block 
DRB� proposed by Kim
et� al ��� provides a way of combining hardware redun�
dancy with recovery blocks� The RB���� ��� structure
used in this study and is obtained by the duplication
of RB composed of two alternates and an acceptance
test on two hardware components�

����� N�Version Programming �NVP�

The NVP method employs N independently devel�
oped� functionally equivalent software versions� from
the same initial speci�cation� to perform the same
task ���� The programming e
orts are carried out by N
individuals or groups that do not interact with respect
to the programming process� so that the versions are as
diverse as possible� These versions are executed in par�
allel using identical inputs� and their outputs are col�
lected and evaluated by a decider�voter�adjudicator�
In the event that all the outputs do not match� the out�
put produced by the majority of the versions is taken
to be correct� The NVP���� ��� system studied here is
assumed to have three identical hardware components�
each running a distinct software version�

����� N Self�Checking Programming �NSCP�

The NSCP���� ��� architecture considered in this study
is comprised of four software versions and four hard�
ware components� each grouped in two pairs� essen�
tially dividing the system in two halves� The hardware
pairs operate in hot standby redundancy with each
hardware component supporting one software version�
The version pairs form self�checking software compo�
nents� so that error detection is done by comparison�
The four software versions are executed and the re�
sults of the two versions executing in each half of the
system are compared� If either pair of results do not

match� they are discarded and only the remaining two
are used� If the results do match� the results of the
two pairs are then compared� A hardware fault causes
the software version running on it to produce incorrect
results� as would a fault in the software version itself�
This results in a discrepancy in the output of the two
versions� causing that pair to be ignored�

� Simulation Assumptions

In this section� we describe the assumptions regard�
ing the failures of the software versions� permanent and
transient hardware failures� failures of the acceptance
test�voter� and coincident failures among versions� The
simulation algorithms are based on these assumptions�

� Task Computation� We assume that the com�
putation being performed is a task or 
a set of
tasks� that is repeated periodically� A set of sen�
sor inputs is gathered and analyzed and a set of
actuations are produced� Each repetition of the
task is independent� We do not address timing
or performability issues in this study� The inter�
ested reader is referred to ���� for a performability
analysis�

� Failures of software versions
and AT�Decider� We assume that the failure
process of the versions�alternates and acceptance
test�voter can be described by the failure intensity
function associated with one of the six software
reliability growth models ����� Most of the exist�
ing approaches to dependability modeling of fault
tolerant systems either assign a �xed failure prob�
ability or a constant failure rate to the software�
except the one by Kanoun et al ���� Simulation
can easily accommodate reliability growth of the
software versions� as we will see in the sequel�

� Coincident errors� When two software ver�
sions fail� they produce either similar or dif�
ferent erroneous results� We use the Ar�
lat�Kanoun�Laprie ��� terminology for software
failures and assume that similar erroneous� or
identical�and�wrong 
IAW� results ��� are caused
by related software faults� and di
erent erroneous
results are caused by unrelated or independent
software faults� We also assume that related and
unrelated software faults are mutually exclusive�

� Permanent hardware faults� The rate of oc�
currence of a permanent hardware fault is assumed
to be time independent�

�



� Transient hardware faults� They are modeled
separately from permanent hardware faults� A
transient hardware fault is assumed to upset the
software running on the processor and produce an
erroneous result which is indistinguishable from an
input activated software error� We assume that
the lifetime of a transient hardware fault is shorter
when compared to the length of task computation�
We assume that a hardware transient fault occurs
with a �xed probability during each time frame�

� Fault Treatment� No fault treatment mecha�
nisms are employed to make a faulty software
version passive� Should a version produce an
incorrect result as detected by the acceptance
test�voter� it is still kept in the system architec�
ture and supplied with new input data ����

Most of the assumptions described above� except the
one which assumes that related and unrelated faults are
mutually exclusive� are the same as in �	�� Software
error detection is performed at the end of each time
frame of �xed duration�

� Failure Scenarios

In this section� we describe various combinations of
software and hardware failures for the three fault tol�
erant architectures that could lead to a system failure�
Simulation programs for these failure scenarios have
been developed�

4.1 DRB System

The recovery block is executed on redundant hard�
ware in the initial con�guration� and can lead to an
unacceptable result if the software recovery block fails�
or a transient fault occurs in both the hardware hosts�
The software RB can fail as follows� the execution
of the primary can 
�� result in a success� 
�� acti�
vation of an independent fault� 
�� activation of a re�
lated fault between primary and secondary� or 
	� the
activation of a related fault between primary and ac�
ceptance test� An independent fault can be activated
in the acceptance test after the activation of an inde�
pendent fault in the primary� The activation of a re�
lated fault between primary and secondary or primary
and AT leads to a failure� Thus the secondary alter�
nate is executed only when an independent fault has
been activated either in the primary and�or AT ����
The activation of a fault in the secondary alternate

leads to an unacceptable result� and hence an unre�
liable operation of the RB� The activation of an in�
dependent fault in the acceptance test after the suc�
cessful execution of the secondary also leads to a fail�
ure� Further distinction of the fault activated in the
secondary into related�independent is necessary from
the point of view of safety analysis� since they lead to
undetected�detected failures respectively� After the oc�
currence of a permanent hardware fault� the DRB is re�
con�gured and a single copy of the RB is executed� An
unacceptable result in the recon�gured mode of opera�
tion can be caused by an error in the RB� or a transient
failure of the hardware host on which the software is
executing� Thus the key di
erence between the initial
and the recon�gured mode is the reduction in hardware
redundancy�

4.2 NVP System

The ��version programming system consists of three
software versions running on three di
erent processors�
and hence di
erent failure scenarios� including related
and unrelated software faults� hardware transients� and
combination of hardware and software faults must be
considered� The NVP system in its initial con�gura�
tion can fail from several causes� 
�� if two of the three
versions activate unrelated faults� or if any related fault
between two versions is activated� 
�� if the input acti�
vates a fault which a
ects all three versions or a fault
in the voter� 
�� two of the three processors experience
faults� and 
	� if a hardware host fails and one of the
software version on the other host also fails 
via an
unrelated or related fault� �	�� Thus the activation of
either an independent or a related fault between two or
three software versions leads to an unreliable behavior
of the NVP system� The activation of an independent
fault leads to a detected failure� whereas the activation
of a related fault leads to an undetected failure� We
assume that the system is recon�gured to the simplex
mode after the �rst permanent hardware fault� In this
recon�gured state� an unacceptable result is produced
by either a hardware transient or a software fault acti�
vation�

4.3 NSCP System

The NSCP system is vulnerable to related faults�
whether they involve versions running in the same or
di
erent half of the system� We have ignored the pos�
sibility of a related fault among all three versions to
enable comparisons with NVP and DRB systems� The
various causes due to which NSCP system can fail in its
initial con�guration are� 
�� any two versions activate

	



related faults� 
�� activation of a related fault among
all four versions� or voter failure� 
�� activation of inde�
pendent faults among two versions� if the versions are
running on two hardware hosts in two di
erent halves�

	� activation of an independent fault in two versions
in the same half of the system and the activation of a
transient fault in the hardware host in the other half�
and 
�� activation of a transient hardware fault in each
half of the system� The key di
erence between NVP�
DRB and NSCP systems is that in case of NSCP� two
independent faults in the software versions can be tol�
erated as long as they occur in the same half of the
system� and the hardware host in the other half does
not fail�

� Numerical Results and Discussion

In this section� we describe the results of the sim�
ulation of the failure behavior of the three systems�
The failure pro�le is expressed in terms of the expected
number of failures experienced by the system over a pe�
riod of time� The rate functions and the values of the
parameters chosen are merely to demonstrate the util�
ity of simulation� and are not based on any systematic
experimental study�

Without loss of generality we assume that the fail�
ure intensities of the versions � alternates � voter � AT
are given by the failure intensity of the Goel�Okumoto
model ���� Thus �
n� t� � abe�bt� where a is the ex�
pected number of faults that would be detected given
in�nite testing time� and b is the failure occurrence rate
per fault� The failure intensities used in this study are
summarized in Table �� The parameters of Failure In�
tensity � � are estimated from NTDS data ���� Ini�
tially� we study the vulnerability of the fault tolerant
architectures to related faults among software versions�
The failure intensity of the AT � voter is assumed to
be Failure Intensity � 	 in this case� The e
ect of
the failure behavior of AT�voter on the overall failure
behavior of the fault tolerant architectures was stud�
ied next� The probability of a related fault among the
software versions was set to a very low value in this
case� Simulations were carried out by setting the fail�
ure intensities of the acceptance test � voter to all the
four intensities in Table �� Figure �� Figure � and Fig�
ure 	 show the expected number of failures for vari�
ous values of correlation and failure intensities of the
acceptance test�voter� for DRB� NVP and NSCP� re�
spectively� The �gure also shows the expected number
of faults that would be detected from a single version
with the same failure intensity� for the sake of com�
parison� Initially we assume that the hardware hosts
are perfect� by setting the probability of activation of

Table 1. Failure Intensities of
AT�Voter�Versions�Alternates

Failure Intensity � � �� � ������ � e���������t�

Failure Intensity � 	 �� � ����	� � e���������t�

Failure Intensity � � ��� � ����	� � e���������t�

Failure Intensity � � ���� � ����	� � e���������t�

a transient hardware fault� and rate of occurrence of a
permanent hardware fault to ���� Figures �� � and 	
depict that for a given value of the probability of a re�
lated fault� the expected number of failures is highest
for NSCP� followed by NVP� followed by DRB� This
could be attributed to the fact that NSCP has four
software versions executing in parallel� NVP has three�
while two versions execute sequentially in case of DRB�
Also� as the probability of a related fault increases� re�
lated fault increases� the expected number of failures
increases� and after a certain threshold probability� the
single version software is in fact less failure�prone than
the fault tolerant software� The expected number of
failures increases as the failure intensity of the AT �
voter ranges from Failure Intensity �	 to Failure In�
tensity ���

We then compared the failure pro�les of DRB� NVP�
NSCP and a single version� An extreme case of an ac�
ceptance test is another module� The expected number
of failures observed by DRB and NVP systems in this
extreme situation 
assuming that NVP system has a
perfect voter�� was comparable� The expected number
of failures of NSCP system is higher than NVP system�
followed by the DRB system� The probability of a re�
lated fault among two versions is assumed to be ����
and the probability of a related fault among all ver�
sions is assumed to be ���� For a low probability of a
related fault among software versions� fault tolerance
does improve the reliability of a system over a single
version� NSCP system experiences a larger number of
failures than NVP� and hence is more unreliable than
NVP�

Failures experienced by a fault tolerant system can
be classi�ed into two categories� viz�� detected and un�
detected� Undetected failures lead to an unsafe opera�
tion of the system� and it could be highly undesirable
if the system is a part of a safety�critical application�
Simulation was used to compute the percentage of un�
detected faults for NVP and NSCP systems� for di
er�
ent values of the probability of a related fault among
two versions� which is the most comon source of unde�
tected failures� The e
ect of the probability of a related
fault was studied assuming a perfect voter� The results

�



0.0 100.0 200.0
Time

0.0

10.0

20.0

30.0

E
xp

ec
te

d 
N

um
be

r 
of

 F
ai

lu
re

s

Expected Number of Failures vs. Time
(Effect of Correlation)

Correlation = 0.0
Correlation = 0.2
Correlation = 0.6
Correlation = 0.9
Single Version

0.0 100.0 200.0
Time

0.0

5.0

10.0

15.0

20.0

E
xp

ec
te

d 
N

um
be

r 
of

 F
ai

lu
re

s

Expected Number of Failures vs. Time
(Effect of Failure Behavior of the Acceptance Test)

Failure Rate #1
Failure Rate #2
Failure Rate #3
Failure Rate #4

Figure 2. DRB - Failure Behavior in the Absence of Hardware Failures

0.0 100.0 200.0
Time

0.0

10.0

20.0

30.0

40.0

50.0

E
xp

ec
te

d 
N

um
be

r 
of

 F
ai

lu
re

s

Expected Number of Failures vs. Time
(Effect of Correlation)

Correlation = 0.0
Correlation = 0.2
Correlation = 0.6
Correlation = 0.9
Single Version

0.0 100.0 200.0
Time

0.0

10.0

20.0

30.0

E
xp

ec
te

d 
N

um
be

r 
of

 F
ai

lu
re

s

Expected Number of Failures vs. Time
(Effect of Failure Behavior of the Voter)

Failure Rate #1
Failure Rate #2
Failure Rate #3
Failure Rate #4

Figure 3. NVP - Failure Behavior in the Absence of Hardware Failures

0.0 100.0 200.0
Time

0.0

20.0

40.0

60.0

80.0

E
xp

ec
te

d 
N

um
be

r 
of

 F
ai

lu
re

s

Expected Number of Failures vs. Time
(Effect of Correlation)

Correlation = 0.0
Correlation = 0.2
Correlation = 0.6
Correlation = 0.9
Single Version

0.0 100.0 200.0
Time

0.0

10.0

20.0

30.0

40.0

E
xp

ec
te

d 
N

um
be

r 
of

 F
ai

lu
re

s

Expected Number of Failures vs. Time
(Effect of Failure Behavior of the Voter)

Failure Rate #1
Failure Rate #2
Failure Rate #3
Failure Rate #4

Figure 4. NSCP - Failure Behavior in the Absence of Hardware Failures

0.0 100.0 200.0
Time

60.0

70.0

80.0

90.0

100.0

P
ec

en
ta

ge
 o

f U
nd

et
ec

te
d 

F
au

lts

Percentage of Undetected Faults vs. Time
(NVP)

Correlation = 0.2
Correlation = 0.4
Correlation = 0.6
Correlation = 0.9

0.0 100.0 200.0
Time

2.0

4.0

6.0

8.0

10.0

P
er

ce
nt

ag
e 

of
 U

nd
et

ec
te

d 
F

ai
lu

re
s

Percentage of Undetected Failures vs. Time 
(NSCP)

Correlation = 0.2
Correlation = 0.4
Correlation = 0.6
Correlation = 0.9

Figure 5. NVP & NSCP - Percentage of Undetected Software Failures

�



are shown in Figure ��
Similar experiments can be conducted under the in�

�uence of permanent and transient hardware faults�
The expected number of failures in case of all the three
systems will increase� due to the contribution of hard�
ware faults�

� Conclusions and Future Research

In this paper we have explored simulation technique
to study the failure behavior of the three commonly
used fault tolerant architectures� viz�� Distributed Re�
covery Block 
DRB�� N�Version Programming 
NVP�
and N�Self Checking programming 
NSCP�� We have
demonstrated the ability of simulation to study com�
plex failure scenarios with interactions among the var�
ious components comprising the system� by choosing
the rate functions to describe the reliability growth
of the software versions� and failure probabilities and
rates for the hardware hosts� The simulations have
been used to study the e
ect of various parameters
like the probability of a related fault� failure behav�
ior of the acceptance test�voter� etc� on the expected
number of failures of the system� Simulation can also
be used to compute other metrics of interest like the
mean time between failures 
MTBF�� expected num�
ber of hardware failures� expected number of failures
caused by related and independent software faults� ex�
pected number of failures of the acceptance test�voter
etc�� Simulations have been developed speci�cally for
� alternates in case of DRB� � versions in case of NVP�
and 	 versions in case of NSCP� and are not scalable�
Future work involves developing scalable simulations�
and studying the in�uence of the other parameters like
coverage etc� on the failure behavior of the system�
along with faster and better simulation techniques�

References

��� J� Arlat� K� Kanoun� and J� C� Laprie� �De�
pendability Modeling and Evaluation of Software
Fault Tolerant Systems�� IEEE Trans� on Comp��
��
	����	����� April �����

��� A� Avi�zienis� �Fault Tolerance� The Survival
Attribute of Digital Systems�� Proc� of IEEE�
��
�������������� Oct� �����

��� A� Avi�zienis� �The N�Version Approach to Fault�
Tolerant Software�� IEEE Trans� on Soft� Eng��
SE���
�����	�������� Dec� �����

�	� J� B� Dugan and M� R� Lyu� Software Fault Tol�
erance� M� R� Lyu� Ed��� chapter Dependability

Modeling for Fault�Tolerant Software and Sytems�
pp �������� John Wiley� New York� �����

��� A� L� Goel and K� Okumoto� �Time�Dependent
Error�Detection Rate Models for Software Relia�
bility and Other Performance measures�� IEEE
Trans� on Rel�� R���
����������� August �����

��� K� Kanoun� M� Kaaniche� C� Beounes� J� C�
Laprie� and J� Arlat� �Reliability Growth of
Fault�Tolerant Software�� IEEE Trans� on Rel��
	�
����������� June �����

��� K� H� Kim and H� O� Welch� �Distributed Exe�
cution of Recovery Blocks� An Approach for Uni�
form Treatment of Hardware and Software Faults
in Real�Time Applications�� IEEE Trans� on
Comp�� ��
����������� May �����

��� J� C� Laprie� J� Arlat� C� Beounes� and K� Ka�
noun� �De�nition and Analysis of Hardware� and
Software�Fault�Tolerant Architectures�� IEEE
Computer� ��������� July �����

��� D� F� McAllister and M� A� Vouk� Handbook of
Software Reliability Engineering� M� R� Lyu� Ed���
chapter Fault�Tolerant Software Reliability Engi�
neering� pp ������	� McGraw�Hill� New York�
NY� �����

���� B� Randell� �System Structure for Software Fault
Tolerance�� IEEE Trans� on Soft� Eng�� SE�
�
����������� June �����

���� R� C� Tausworthe and M� R� Lyu� Handbook of
Software Reliability Engineering� M� R� Lyu� Ed���
chapter Software Reliability Simulation� pp ����
���� McGraw�Hill� New York� �����

���� L� A� Tomek and K� S� Trivedi� Software Fault Tol�
erance� M� R� Lyu� Ed��� chapter Analyses Using
Stochastic Reward Nets� pp �������� John Wiley�
New York� �����

���� K� S� Trivedi� �Probability and Statistics with Re�
liability� Queuing and Computer Science Applica�
tions�� Prentice�Hall� Englewood Cli
s� New Jer�
sey� �����

�


