
Reliability Support in Virtual Infrastructures
Guilherme Koslovski∗, Wai-Leong Yeow†, Cedric Westphal†, Tram Truong Huu‡,

Johan Montagnat§ and Pascale Vicat-Blanc¶
∗INRIA - University of Lyon †DoCoMo USA Labs ‡University of Nice - I3S §CNRS - I3S ¶INRIA - LYaTiss
Email: guilherme.koslovski@ens-lyon.fr, wlyeow@ieee.org, cwestphal@docomolabs-usa.com, tram@polytech.unice.fr,

johan@i3s.unice.fr, pvb@lyatiss.com

Abstract—Through the recent emergence of joint resource and
network virtualization, dynamic composition and provisioning of
time-limited and isolated virtual infrastructures is now possible.
One other benefit of infrastructure virtualization is the capability
of transparent reliability provisioning (reliability becomes a
service provided by the infrastructure). In this context, we discuss
the motivations and gains of introducing customizable reliability
of virtual infrastructures when executing large-scale distributed
applications, and present a framework to specify, allocate and
deploy virtualized infrastructure with reliability capabilities. An
approach to efficiently specify and control the reliability at
runtime is proposed. We illustrate these ideas by analyzing the
introduction of reliability at the virtual-infrastructure level on a
real application. Experimental results, obtained with an actual
medical-imaging application running in virtual infrastructures
provisioned in the experimental large-scale Grid’5000 platform,
show the benefits of the virtualization of reliability.

I. INTRODUCTION

Several proposals have been made to combine the virtual-
ization of the computing resources with that of the network
infrastructure (see for instance [1], [2], [3], [4]), delivering a
provision model known as Infrastructure-as-a-Service or Cloud
infrastructure services. This virtualization of the infrastructure
encompasses computing, storage and networking resources,
enabling the definition of confined execution environments,
with a user-specified amount of virtual resources intercon-
nected by a private virtual network. A key element of the
virtualized infrastructure is to specify the reliability to be pro-
vided to the different tasks within the execution environment.
Some tasks are critical and their failure would cause the system
to collapse; the failure of some non-critical tasks could still
significantly impact (for instance, delay) the completion of
the overall effort. On the other hand, an element of a virtual
infrastructure can be migrated to a different location in case
of failure of the physical substrate.

One key goal is thus for the infrastructure user to be
able to specify the reliability associated with a task during
the virtual infrastructure bootstrap, and for the infrastructure
provider to transparently provide the reliability to the user
and to effectively provision the desired reliability through the
allocation of virtual back-up nodes ready to take over in case
of node failure through active state synchronization.

We present in this paper the key components to achieve
this goal and to achieve reliability in the middleware. These
components include a language to allow the specification
of the reliability level for the different network elements;
an interpretation mechanism to translate the reliability of

the specified virtualized infrastructure into a provisioning of
back-up resources; and an allocation mechanism to efficiently
associate the reliable virtual infrastructure onto the physical
resources.

These tools are designed so as to render the reliability
transparent: an application could perform an assignment of
tasks to the virtualized reliable resource, and receive in re-
turn the outcome of the tasks’s execution independently of
any physical node failure. The underlying physical resource
providing the task might have changed, but the integrity of
the virtual infrastructure is preserved. Reliability becomes a
service provided by the infrastructure. Further, virtualizing
reliability allows the use of the same node as back-up to
multiple primary nodes, and thus strongly reduces the cost
of providing reliability.

As a proof of concept, we implemented these tools over a
large-scale distributed platform (Grid’5000 [5]) and evaluated
the costs and benefits of reliability for an existing large-scale
distributed application. In this example, an application highly
sensitive to substrate failures, which is not able to be executed
without reliability support in the presence of failures, was
executed with no modification on its original code. A cost
analysis using a simple pricing model shows that the overall
cost to the application user for reserving additional resources
for reliability is more than offset by the reduced execution
time.

The paper is organized as follows. Section II motivates the
introduction of reliability in virtual infrastructures and identi-
fies system goals which will guide our design choices. In Sec-
tion III, we discuss the issues associated with a specification
language for reliability. Section IV discusses how to synchro-
nize nodes to effect the desired reliability. In Section V, we
discuss how to translate the language into a graph; Section VI
then describes the tools used to allocate this graph onto the
physical substrate. In Section VII, we describe an application
we implemented as a proof of concept and show preliminary
experimental results, as well as a cost analysis. Related works
are reviewed in Section VIII. Section IX discusses our design
and offers suggestions for future work.

II. MOTIVATIONS AND SYSTEM GOALS

Networking and computing infrastructures are subject to
random failures of nodes and links. These failures are not
rare in the case where the number of physical entities are
large, especially in distributed systems. The reliability of a

system may be evaluated quantitatively and qualitatively. The
Mean Time Between Failures (MTBF) is a statistical metric
to determine the failure rate of the underlying infrastructure,
which can be evaluated by the infrastructure’s management
system. Already, the impact of a node failure to a distributed
application can be very different; a failed worker node amongst
hundreds of others is less significant than the failure of a
database server.

One approach is for the system designer to ensure relia-
bility her/himself, by providing redundancy in the elements
composing the system. However, this requires different sets of
expertise: one is the expertise to design the system in order
to deliver the intended application; another is to ensure that
the components are integrated so as to support the desired
reliability.

Furthermore, the actual reliability will depend on the phys-
ical resource upon which the system is deployed. If the
application developer provides his/her own physical servers
and switches, then s/he can specify the reliability of each
individual element. If on the other hand the system is deployed
using a virtualized infrastructure, the reliability characteristics
of the physical resources might be unknown.

Since it is common for the application developer to delegate
the elastic provisioning of resources to the infrastructure
provider, in order to only use the proper amount of resource in
the face of varying demands, the corresponding provisioning
of the reliability must by the same token be delegated as well.

From the point of view of the application provider, it is
easier and more flexible to specify a level of reliability and
have the physical substrate provide it transparently as part of a
service-level agreement. From the point of view of the physical
network operator, reliability becomes a service that can be
added and that can generate new revenue streams. Further, the
infrastructure provider is free to manage reliability in light of
his/her own constraints and optimization opportunities: a back-
up might be associated to different resources from different
independent applications. This multiplexing of the back-up
resources provides economy of scale to the infrastructure
provider.

These observations highlight a few requirements for a
reliable virtualized infrastructure:

• the virtual-infrastructure user should be able to specify
reliability in a flexible and expressive manner (this is
discussed in more detail in Section III);

• the virtual-infrastructure provider should be able to im-
plement reliability transparently for the user (Section IV);

• the virtual-infrastructure provider should be able to im-
plement and allocate back-up resources efficiently (Sec-
tion V and VI);

• both the virtual-infrastructure user and the physical-
network provider need to see their business objectives
satisfied (Section VII).

Fig. 1 summarizes the stages and requirements to provide
reliable virtual infrastructures considering the application-
provider specification. Our goal is to describe tools which

allow to satisfy these requirements, and to deliver the effi-
cient provisioning of reliability in a virtual infrastructure, as
specified by the virtual infrastructure user.

Service/Application Developer Virtual Infrastructure Provider

r=99.9%

r=99.99%r=99.9%

r=99.999%

Physical

I Substrate

Physical

I Substrate

I. Language

description

II. Graph

translation

III. Resource

Allocation

:redundancy node

Virtual Infrastructure Specification
Reliability Expansion

Physical substrate resource provisioning

System

Architecture

Service

requirements

Fig. 1. The vertical integration of reliability from the user specifica-
tion to the physical resource allocation.

An immediate consequence of the last requirement is that
we will build upon tried-and-true existing components and
technologies wherever possible, so as to provide an easier
evolutionary path to implement our suggested designs.

The remainder of this paper is dedicated to translating this
overarching goal into specific and practical design for the
different required components.

III. VIRTUAL INFRASTRUCTURES DESCRIPTION

For the efficient provisioning of reliability, we use a Vir-
tual Private eXecution Virtual Infrastructure (ViPXi) [1], as
specified by the virtual-infrastructure user. A ViPXi is a
time-limited interconnection of virtual computing resources
interconnected by a virtual private network. By combining
resource virtualization and network virtualization, the user of
a ViPXi has the illusion s/he is using a private distributed
system, while in reality s/he is using multiple systems that are
part of a virtualized physical substrate.

ViPXis are dynamically-provisioned entities which can be
defined and modeled to represent the application’s require-
ments in terms of computing and communication. A descrip-
tive language dedicated to virtual-infrastructures specification
must be abstract enough and more adaptive than conventional
resources-description languages and models [6], [7], [8]. In
addition, it needs to combine the spatial and temporal aspects
of virtual infrastructures.

New challenges coming from virtualization techniques have
to be considered to complement the specification proposed
by classical infrastructures. For example, the Open Virtual-
ization Format (OVF) [9] proposes a mechanism to package
and distribute software to be run in one or more virtual
machines. In [10], this standard is extended to address the
service-specification requirements in Cloud environments, in-
cluding key performance indicators, service-elasticity rules
and bounds, and required (public and private) network links.

Already, the Open Cloud Computing Interface Working
Group (OCCI-WG) [11] is investigating a solution to interface

with Cloud Infrastructures exposed as services. The cloud
infrastructures resources are described using a simple key-
value-based descriptor format.

Unfortunately, none of the proposed languages meet all the
specification requirements in terms of flexibility, expressive-
ness, reliability, and simplicity, required to achieve an optimal
ViPXi specification and allocation [4], [12].

We extend the Virtual eXecution Description Language
(VXDL: for more details, please refer to [13]) to enable
the specification of reliable virtual infrastructures. VXDL
is an XML-based language that allows the description of
virtual infrastructures; more specifically, the identification and
parameterization of virtual resources and groups of resources
(according to their functionalities), as well as the network
topology (based on the link-organization concept), using the
same grammar. VXDL also introduces the internal virtual
infrastructure timeline, which explores the elasticity of ViPXis,
enabling application providers to specify the exact intervals
when virtual resources must be provisioned.

The extension proposes identifying the required reliability
level for a ViPXi. The application provider can set the reliabil-
ity requirement individually for each virtual resource (nodes
and links), or for a group of resources. This approach enables
the composition of a ViPXi with different requirements in
terms of reliability level. For instance, an application with a
master-worker architecture, e.g. MapReduce, can require more
reliability support for masters, and set the same reliability
level for a group of workers. The example below illustrates
the flexibility of the specification language. Part of a VXDL
file, the example describes a group of 30 virtual nodes with a
reliability specification of 99.9% (among other parameters).

<vxdl:vGroup id="workers" multiplicity="30">
<vxdl:vNode id="worker">
<vxdl:reliability>99.9%</vxdl:reliability>
<vxdl:memory>

<vxdl:simple>512</vxdl:simple>
<vxdl:unit>MB</vxdl:unit>

</vxdl:memory>
<vxdl:cpu>
<vxdl:cores>1</vxdl:cores>
<vxdl:frequency>

<vxdl:simple>1.0</vxdl:simple>
<vxdl:unit>GHz</vxdl:unit>

</vxdl:frequency>
</vxdl:cpu>
</vxdl:vNode>

</vxdl:vGroup>

IV. PROVIDING TRANSPARENT RELIABILITY

Recovering from failures has been well studied in the liter-
ature, and we can leverage existing solutions in our reliability
design. This section specifies which solution we use from the
available ones.

On a large-scale execution environment, the re-submission
mechanism is one of the solutions used to make the application
continue running when a failure is detected [14], [15]. The
application’s makespan is longer in this case especially when
the submitted task’s execution time is long. Another possible
solution is to periodically save static snapshots of the entire

ViPXi [16] to disk, while execution is in progress. The
live snapshots are reloaded as a new submission if failures
are encountered in the current execution. The application’s
makespan then depends on the re-submission interval and the
snapshot interval, which may be long due to disk-access times.

These mechanisms, unfortunately, do not provide sufficient
transparency against failures. Re-initiating or resuming appli-
cations at a later time to recover from failures will impact
any time-sensitive applications. Therefore, a live protection
mechanism such as Remus [17] or Kemari [18] is needed.
In both Remus and Kemari, the memory state of a protected
(critical) node is continuously “synchronized” with a replica
(back-up node), as with checkpointing. When a failure in the
protected node occurs, the back-up node can resume execution
immediately, and the failover process can be made transparent
to other nodes in the ViPXi. This live protection mechanism
has another advantage over prior snapshotting mechanism:
instead of the entire ViPXi, only the critical nodes need to
be checkpointed.

The key difference between Remus and Kemari is that
Kemari initiates a checkpoint only when external events occur,
such as disk writing and network-packet sending, whereas
Remus checkpoints at a regular interval. One important feature
of Remus is that, at every checkpoint, the external output
is buffered locally in the critical node until it is assured
that the back-up node completes that checkpoint update. This
ensures that any failover operation will be transparent to other
unaffected nodes. Moreover, the protected node continues exe-
cution in parallel until the next checkpoint, thereby increasing
system performance over classical lock-step checkpointing.
Kemari, on the other hand, does not perform any buffering and
relies on pausing the protected node to achieve the required
transparency. We chose to use Remus over Kemari in our proof
of concept as it provides a finer and customizable granularity
between checkpoints, which can be as frequent as tens of
milliseconds. As of Xen 4.0.0, Remus is included in the official
Xen releases.

V. TRANSLATION OF THE SPECIFICATION LANGUAGE INTO
A VIPXI REQUEST

The VXDL parser [19] is a versatile tool that interprets
and translates a ViPXi specification into a resource request to
the physical infrastructure. Specifically, it analyzes the ViPXi
specification, automatically fills in any missing components
(e.g., default elements and values by some predefined tem-
plates), and translates the ViPXi into a graph representation for
resource allocation (see next section). Furthermore, automated
inclusion of back-up components into the graph for targeted
reliabilities is added onto the VXDL parser. The procedure is
described below.

A. Automatic Generation of Backup Nodes

A targeted reliability, in general, can be achieved with
sufficient back-up nodes. A critical node with a low MTBF
will require more back-up nodes on standby (synchronized
through Remus) than another node with a higher MTBF for

the same reliability level, if physical failures are independent.
As noted in [20], back-up nodes can be shared among different
groups of critical nodes to minimize the total number of
back-up nodes (and hence, minimal idle nodes). For example,
a ViPXi has two groups of critical nodes with n1 and n2

critical nodes respectively, requires at least r1 and r2 reliability
respectively, and k1 and k2 back-up nodes respectively. It is
possible to share the back-up nodes for n1 + n2 nodes such
that the total number of back-up nodes is lower than k1 + k2
provided that every back-up node is a standby for all other
critical nodes. In [20], the Opportunistic Redundancy Pooling
(ORP) mechanism imposes a sharing policy between groups
of critical nodes such that it is possible to have min(k1, k2)
back-up nodes so long as the reliabilities of every group is
satisfied.

The VXDL parser uses ORP to evaluate the number of back-
up nodes required. Since ORP assumes independent physical
failures, it also generates additional physical-embedding con-
straints such that the physical locations of all shared back-up
nodes and critical nodes validate that assumption. For example,
virtual nodes may not be embedded onto the same physical
host, or rack that is connected to the same switch, or power
supply.

B. Backup links: consistent network topology

Failovers from the critical nodes to back-up nodes are
expected to be transparent to the unaffected nodes of the
ViPXi. While Remus guarantees the failover time in tens
of milliseconds and consistency across the ViPXi through
output buffering, consistency in the network topology has to
be guaranteed through additional links to the back-up nodes.
That is, failed critical nodes which are resumed at the back-up
nodes must be connected to the rest of the ViPXi as described
in the original specification.

To ensure failover transparency, the additional back-up links
are pre-allocated (together with the ViPXi) rather than on
demand after failures occurred. In the latter case, resources
for back-up nodes cannot be guaranteed and, even if sufficient
resources are available, undesired delays may be incurred
during failover. Furthermore, active synchronization from the
critical nodes to back-up nodes consume bandwidth, which
has to be allocated as well.

Harary and Hayes [21] have devised methods to minimize
the number of additional links required. Specifically, a new
graph G′ is constructed with n+k nodes such that the original
ViPXi is always a subgraph of G′ when any k nodes are
removed. Unfortunately, this class of solutions is infeasible
in our system:

1) Guaranteeing that the ViPXi is a subgraph of G′ only en-
sures that the graph after k node failures is isomorphic.
Hence, recovering from failures may result in unaffected
nodes being moved around in order to recover the ViPXi.

2) Exact solutions are found only for regular graphs such as
rings, lines, square-grids and trees. For general graphs,
heuristics are used [22], [23].

1 Mbps
50ms

2 Mbps
150ms

0.5 Mbps
30ms

r1
v r2

v

r3
v

(a) Original ViPXi

1 Mbps
50ms

2 Mbps
150ms

0.5 Mbps
30ms

2 Mbps
150ms

1 Mbps
50ms

2 Mbps
50ms

r1
b

r1
v r2

v

r3
v

(b) Add one back-up

0.5 Mbps
30ms

1 Mbps
50ms

2 Mbps
150ms

0.5 Mbps
30ms

2 Mbps
150ms

1 Mbps
50ms

2 Mbps
50ms

1 Mbps
50ms

2 Mbps
150ms

2 Mbps
50ms

r2
br1

b

r1
v r2

v

r3
v

(c) Add two back-ups

Fig. 2. The figures show the steps (from left to right) as each
back-up node is added to the original ViPXi for reliability. Nodes
rv1 and rv2 are critical nodes, and nodes rb1 and rb2 are back-up nodes.
Backup links are reused for synchronization (in bold dotted lines),
and the respective attributes are determined by the existing links in
the original ViPXi.

3) The solution assumes unweighted links; adding weights
on top of the solution introduces an additional layer of
complexity.

As such, similar to the approach in [20], we add (i)
links from nodes of the ViPXi to back-up nodes such that
every back-up node is linked to neighbors of critical nodes,
and (ii) links interconnecting the back-up nodes since two
critical nodes which are neighbors of each other may fail
simultaneously. We call the former set first-order back-up links
and the latter set second-order back-up links. The second-order
links are only required if two critical nodes are linked in the
original ViPXi.

In addition to the results of [20], we reuse the first-order
back-up links for synchronization between critical nodes and
back-up nodes whenever possible. Algorithm 1 shows the
procedure for the generation and reuse of first-order back-up
links and their attributes: bandwidth (bw) and latency (lat).
We omit details on the generation of second-order links and
the remaining synchronization links that were not reused from
the first-order links, since the procedure is similar to that of
the first order.

Algorithm 1: Generating First-Order Backup links

Rb: set of back-up nodes.1

C(b): set of critical nodes which uses b as a back-up2

node.
Lv: set of links in ViPXi.3

for b ∈ Rb do4

for (i, j) ∈ Lv do5

if i ∈ C(b) then6

bw(b, j) ← bw(b, j) + bw(i, j)7

lat(b, j) ← min {lat(b, j), lat(i, j)}8

if j ∈ C(b) then9

Label (b, j) as synchronization link.10

Ensure bw and lat suffice for Remus.11

Fig. 2 shows an example of how back-up links are gen-
erated. A new link between a back-up node and some other
node is created if it is a neighbor of a critical node. Hence,
in Fig. 2b, node rb1 connects to all three nodes. Furthermore,
the attributes of link (rb1, r

v
3) can function as links (rv1 , r

v
3) or

(rv2 , r
v
3). Links (rb1, r

v
1) and (rb1, r

v
2) are reused for synchro-

nization. With one more back-up node (as in Fig. 2c), the
first-order back-up links of node rb2 are the same as those of
node rb1, and with a second-order back-up link between node
rb1 and rb2 to function as the link (rv1 , r

v
2) when both critical

nodes fail.

VI. VIPXI ALLOCATION ALGORITHM

Translating a ViPXi to a graph representation results in
a unified input to a resource allocation manager, regardless
whether a ViPXi requires reliability support. This immedi-
ately translates the resource allocation problem into a graph
embedding problem. However, reliability support demands
tighter allocation constraints that are not present in ViPXi’s
that does not require any reliability guarantee. That is, virtual
nodes should be mapped in a way that virtual node failures
resulting from the physical substrate should be independent.
Then, virtual nodes of the same ViPXi should not be allocated
onto the same physical node. In a data center scenario, placing
virtual nodes onto the same rack should be prohibited. In
the subsequent sections, we describe the graph embedding
problem, to the constraints.

A. Graph embedding and mapping constraints

Given a ViPXi graph Gv(Rv, Lv, t) and a physical substrate
graph Gp(Rp, Lp, t) at time t where Rv and Rp are the set
of virtual and physical nodes, respectively, and Lv and Lp are
the set of virtual and physical links, respectively. Let Pp be
the set of all simple physical paths between any two physical
nodes. Further, denote by QR(r, t) be the vector of capacities
(storage, memory, CPU) of a node r (physical or virtual) at
time t. Let QL(l, t) be the vector of characteristics (capacity,
latency) of link l, and Qp

P (p, t) be the vector of the same
characteristics of a physical path p at time t. For a path p =
(lp1, l

p
2, . . .), the capacity of p is the minimum of all capacities

of lpi in p and the latency of p is the sum of all latencies of
lpi in p.

The embedding problem is then to obtain a map that maps
virtual nodes Rv to physical nodes Rp, denoted by MR, and
virtual links Lv to physical paths Pp, denoted by ML, such
that the resource demands are satisfied, i.e., QR(MR(rvi)) �
QR(rvi) and QP (ML(lvi)) � QL(lvi) for all virtual nodes and
links in Gv . An example of an embedding of a ViPXi with one
back-up node (Fig. 2b) onto a physical substrate is shown in
Fig. 3. The physical substrate is composed of three racks that
host two physical nodes each: rp1 and rp4 , rp2 and rp5 , and rp3
and rp6 , respectively. Suppose all physical node capacities are
sufficient in this example, one mapping solution could be that
in Fig. 3b. A virtual link can be mapped onto multiple links,
e.g., in the case of lp2 and lp8 providing a virtual link between
node rv1 and back-up node rb1, provided that the minimum

r 1
p

r 3
p

r 4
p

r 5
p

r 6
p

r 2
p

10Mbps
5ms

5Mbps
20ms

1Mbps
100ms

5Mbps
20ms

1Mbps
100ms

10Mbps
5ms

10Mbps
5ms

4M
bp

s
50

m
s

4M
bp

s
50

m
s

l1
p

l 2
p l 4

p

l 3
p

l 7
p

l 6
p

l 5
p

l8
p

l 9
p

(a) Physical substrate.

r1
p

r3
p

r 4
p

r5
p

r6
p

r2
p

2.5Mbps
20ms

1Mbps
100ms

1Mbps
100ms2M

bp
s

50
m

s

1M
bp

s
50

m
s

r3
v

r1
b

r2
v

10Mbps
5ms

9Mbps
5ms

10Mbps
5ms

3Mbps
20ms

l1
p

l 2
p l 4

p

l 3
p

l 7
p

l 6
p

l 5
p

l8
p

l 9
p

r1
v

(b) Embedded Graph.

Fig. 3. Example of embedding a graph in Fig. 2b onto a physical
substrate represented by (a).

capacity and total latency are sufficient for the virtual link
requirements. Physical links can host multiple virtual links,
e.g., lp2 . The remaining capacities of the links and nodes are
then considered for embedding other virtual graphs that arrive
at a later time t.

While the classical graph embedding problem enforces
virtual nodes to be placed only onto unique physical nodes, it
is insufficient to assure independent failures. In the example,
nodes to be protected rv1 and rv2 , and back-up node rb1 would
need to be placed on different racks, hence creating additional
mapping constraints to the graph embedding problem.

B. Mapping Solution

The graph embedding problem is well-known to be NP-
hard [24]. It differs from that of a graph isomorphism problem
(which is solvable in polynomial time) as virtual links can be
mapped onto a series of physical links and thereby exploding
the complexity. There has been numerous work on solving the
graph embedding problem: isomorphism-based detection [25],
[26], path-splitting methods [27], multicommodity flow model-
ing [28], and heuristics based on substrate characteristics [29].
These proposals aim at maximizing the resource usage or
at minimizing the maximum link load. From the application
perspective, the objective is to minimize the execution time
and the cost of renting the infrastructure [12].

The additional allocation constraints between virtual nodes,
however, does not make the problem less complex since
solution space remains the same even though the search space
may be reduced. To this end, we choose to use Lischka and
Karl’s [25] graph embedding method based on isomorphism
detection. Furthermore, it is relatively straightforward to incor-
porate the additional allocation constraints using this method.

We briefly describe the graph embedding method as follows.
It is essentially a depth-first search that looks at all possible
node mappings and eliminate the choices based on feasibility
of virtual links emanating from the node in consideration.
Initially, all possible node mappings are generated and sorted
in some order that optimize some objective (e.g. minimize
cost). The first mapping is picked, and the subsequent possible
mappings on the neighbors of that node is considered. At each
search step, one such possible node mapping is examined and

r1
p

r3
p

r 4
p

r5
p

r6
p

r2
p

4M
bp

s
50

m
s

4M
bp

s
50

m
s

10Mbps
5ms

10Mbps
5ms

10Mbps
5ms

l 7
p

l 6
p

l 5
p

r1
v

1Mbps
100ms

5Mbps
20ms

5Mbps
20ms

l1
p

l 2
p l 4

p

l 3
pl8

p

l 9
p

r 1
b :�r 1,

p r 4,
p r 5,

p r6
p�

r2
v

r 3
v :�r1,

p r 4,
p r 5,

p r 6
p �

4.5Mbps
20ms

(a)

r1
p

r3
p

r 4
p

r5
p

r6
p

r2
p

2.5Mbps
20ms

1Mbps
100ms

1Mbps
100ms2M

bp
s

50
m

s

5Mbps
20ms

10Mbps
5ms

10Mbps
5ms

10Mbps
5ms

l 7
p

l 6
p

l 5
p

l1
p

l 2
p l 4

p

l 3
pl8

p

l 9
p

r1
b

r2
v

r1
v

1M
bp

s
50

m
s

r 3
v :�r1,

p r 5,
p r 6

p �

(b)

Fig. 4. Intermediate steps of mapping a graph in Fig. 2b onto a physical
substrate represented by Fig. 3a. The list of the top left of each figure
represents the available options for mapping the next step.

is considered only if links of that node to existing mappings are
feasible. Refer to Fig. 4 for an illustration of the intermediate
steps. Suppose a possible mapping considered in Fig. 4a
and the next possible node mappings for neighbors of rv2
are generated: for both rb1 and rv3 , possible mappings are to
rp1 , rp4 , rp5 and rp6 . Fig. 4b supposes the mapping rb1 → rp4
is considered and subsequently examines it in depth. This
mapping is feasible because the virtual links to existing node
mappings are feasible, and links from rb1 to other unmapped
neighbors are still feasible in the remaining graph. The next set
of possible for the remaining virtual nodes are generated and
examined further in depth. If there are no feasible mappings
for remaining nodes, the steps are backtracked and continued
on the next available options.

There are other optimizations involved while considering
possible mappings, particularly the ordering of possible map-
pings considered and pre-filtering possible mappings to avoid
looking too deep into a search tree. We refer the reader to the
paper [25] for further details. For our purpose of incorporating
the additional placement constraints, a filtering step can be
added to the list of generated possible mappings. For example,
in Fig. 4a, rp5 and rp6 can be omitted from the possible
mappings of rb1 (underlined) because they are in the same rack
as the existing map. Further optimizations may be made, e.g.,
sorting the order of possible mappings to be considered based
on the additional constraints. We leave this to future work.

C. From Mapping to Allocation

The map provided by the allocation step is interpreted and
instantiated using the HIPerNet framework1. The HIPerNet
framework combines system and networking virtualization
technologies with bandwidth sharing and advance reservation
mechanisms to offer dynamic networking and computing
infrastructures as services [1], [30]. At the lower level, the
HIPerNet framework accesses and controls a part of the
physical infrastructure that is virtualized and exposed. Enrolled
physical resources are then registered to the HIPerNet registrar
and can be allocated to ViPXis. Once the resources have

1HIPerNet was designed in the context of the HIPCAL project http://hipcal.
lri.fr/

been exposed, HIPerNet gets full control over it. This set of
exposed virtualized resources composes the substrate hosting
the ViPXis.

At run-time, the HIPerNet manager communicates with
physical resources to deploy virtual nodes (configured respect-
ing the users requirements), monitor their status and configure
control tools to supervise the resource usage. In this fully-
virtualized scenario, HIPerNet interacts with multiple resource
providers to plan, monitor and control them. Functions such
as fault management, load balancing, bandwidth management
and performance control are handled taking both network- and
resource-virtualization techniques into account.

VII. EVALUATION THROUGH A USE CASE APPLICATION

We now apply these to an existing large-scale distributed
application, named bronze standard, for proof of concept
purpose. The bronze standard [31] technique tackles the
difficult problem of validating procedures for medical-image
analysis. As there is usually no reference, or gold standard, to
validate the result of the computation in the field of medical-
image processing, it is very difficult to objectively assess the
results’ quality. The statistical analysis of images enables the
quantitative measurement of computation errors. The bronze
standard technique statistically quantifies the maximal error
resulting from widely used image registration algorithms.
The larger the sample image database and the number of
registration algorithms to compare with, the most accurate
the method. This procedure is therefore very scalable and it
requires to compose a complex application workflow including
different registration-computation services with data transfer
inter-dependencies.

The bronze standard application can be represented as a
workflow of computational processes with I/O data dependen-
cies, as illustrated in Fig. 5. In the experiments reported below,
this workflow is enacted with the data-intensive grid-interfaced
MOTEUR workflow manager [32] designed to optimize the
execution of data-parallel flows. A clinical database of 59 pairs
of patient images to be registered by the different algorithms
involved in the workflow is used. Each service depicted in
Fig. 5 is instantiated as an independent computing task that
is delegated to one of the computing nodes. For each run, the
processing of the complete image database thus results in the
generation of 354 computing tasks (with a computation time
of 30 seconds to 5 minutes each on a state-of-the-art PC). The
data volume transferred for each task is in the order of 30 MB.
The makespan of the application’s execution is in the order of
20 minutes in the absence of failures.

The reliability mechanisms of HIPerNet presented in this
work, are based on a modified version of Remus. To enable
Remus protection, all VMs file-system were deployed on a net-
work file system (NFS) server. The first benchmarks performed
with Remus demonstrated that communication between the
NFS server (source) and VMs (destination) should be limited
to a maximum transfer rate of 100Mbps. Otherwise, Remus
cannot keep a stable copy of the critical VM for the default

http://hipcal.lri.fr/
http://hipcal.lri.fr/

�

BaladinOpt

CrestLines

Floating Reference CL_size

CrestMatch
PFMOpt

PFMatchICP

Yasmina

YasminaOpt

Baladin

PFRegister

Results

Fig. 5. Bronze Standard workflow.

checkpoint intervals of 200ms. In this initial work, the relia-
bility mechanisms are applied to virtual nodes. The protection
of network communication and data persistent on NFS are
out of scope and they are not discussed. The experiments are
carried out using ViPXis managed by HIPerNet within the
Grid’5000 testbed [5]. Grid’5000 enables a user to request,
reconfigure, and access physical machines belonging to nine
sites distributed in France. In our experiments, we use 100
physical nodes to compose a pool of virtualized physical
resources. The number of physical nodes exceeds that of
the number of virtual resources specified (see next section)
because virtual machines of the same application cannot be
co-located in the same physical node to prevent correlated
failures and additional virtual back-up nodes are needed to
protect the critical nodes.

Faults are simulated by shutting down physical machines re-
specting the Mean Time Between Failures (MTBF) parameter.
The MTBF of each node in each experiment is 60000s, 30000s
and 15000s. Assuming the largest makespan to be 30 minutes,
the failure probability of each node is then 0.03, 0.06 and
0.12, respectively. The initial MTBF value (60000s) is based
on failure rate of servers (with a probability between 0.02
and 0.04) identified by [33]. The other lower MTBF values
represent worse failure rates which could be attributed to a
variety of reasons. Some examples are improper cooling in
racks, irregular maintenance and inadequate protection from
power interruptions.

A. ViPXi composition

The optimal ViPXi specification to bronze standard is based
on [12], where 31 virtual resources are configured with 512MB
of RAM, and 1GHz of CPU, and 10Mbps of bandwidth
requirement for each virtual link between the database and the
workers. Virtual nodes require exclusivity on physical nodes.
As shown in Fig. 6, the HIPerNet engine deploys and manages
virtual machines on these computers on demand (dark arrows).

The MOTEUR workflow engine, as a client of the HIPerNet
framework, was hosted on one physical host, outside of the
ViPXi. MOTEUR produces VXDL descriptions including the

reliability requirements that are requested to the HIPerNet
engine (blue connection). After receiving all virtual machines
allocated to the ViPXi, MOTEUR connects to the computing
nodes (worker nodes) to invoke the application services (red
connections). The computing nodes connect to the database
host to copy the input data and send the computational results,
and the final results are sent to MOTEUR (green connections).

11

Runs on the virtualized infrastructure

Virtual Machine 2
Computing Node

Virtual Machine 1
Database

HIPerNet engine

Virtual Machine k
Computing Node

Virtual Machine 31
Computing Node

Fig. 6. Experimental infrastructure.

B. Cost model

From an infrastructure provider point of view, the major
challenge is to account (financially or not) for resources
usage according to specific criteria (e.g. fair share among
users, digressive price, reliability level etc). Although a quasi-
unlimited amount of computing resources may be allocated,
a trade-off has to be found between (i) the allocated in-
frastructure cost, (ii) the expected performance, and (iii) the
optimal performance achievable, which depends on the level
of parallelization of the application.

Considering this scenario, we introduce a simple cost
model for the pricing of a ViPXi with reliability support.
The substrate provider estimates the provisioning cost of an
extended ViPXi (already with back-up resources identified).
We consider different prices for active and back-up resources.

We define a price function ΨR(r, t) which sets the price
for an amount of resource r at time t. Similarly, ΨL(l, t)
would set a price for the bandwidth. The total price for the use
of the resource is thus, over the lifetime [0, T] of the virtual
infrastructure G:

PG(T) =

∫ T

0

(
Σi∈RvΨR(rvi (t), t) + Σj∈LvΨL(lvj (t), t)

)
dt

Introducing link and node redundancy to increase the reli-
ability corresponds to an additive cost to the user which has
to be evaluated. The cost function is extended to calculate the
total price (PG′(T)) for the extended graph (G′v(R′v, L

′
v, T)),

including reliable resources (Rb, Lb). The price of reliability
(PB) of a virtual infrastructure is given by

PB(T) =

∫ T

0

(
Σi∈Rb

ΨR(rbi (t), t) + Σj∈Lb
ΨL(lbj(t), t)

)
dt

and the total price of a reliable virtual infrastructure is of
course PG′(T) = PG(T) + PB(T).

For a first order assessment of the performance of our
model, we consider a pricing model based on the published
prices of Amazon EC22 for Europe. A detailed economics
analysis is outside of the scope of this document and we set
ΨR(r, t) to correspond to a fixed price per hour use for one
of two types of nodes, and one of two types of contract: basic
node (with 1.7GB RAM) and high performance node (with
7.5GB RAM); short term lease, and long term lease. Those
prices are given on Table I. EC2 does not charge any link cost
in between nodes of its data center, and since the data transfers
in our application can be fulfilled by typical ethernet links,
we do not include any specific link pricing in our basic cost
analysis. For EC2-like infrastructures, there is a cost and delay
associated with uploading the medical images to process up to
the data center over the Internet, however this is independent
of the reliability and outside of the scope of our paper.

TABLE I
AMAZON EC2 EUROPE PRICES FOR VMS (PER HOUR OR PART

THEREOF).

VM Specifications 1.7GB RAM 7.5GB RAM

Short term lease $0.095 $0.38
Long term lease $0.031 $0.031

We consider prices for the user, but an analysis of the
costs to the provider would yield similar results. Our intent
is to provide some rough estimates to illustrate the trade-off
between resource and reliability.

C. Experimental results

The application makespan when the application is executed
on a substrate without simulated failures is 1205s ± 40s,
serving as the base-line. For these values, the regular cost
of this ViPXi without reliability support is $2.95 (short term
lease), serving as base cost to analysis.

The first experiment examines the protection of the database
node. In this case, the database is the unique component
protected, and faults are submitted in accordance with MTBF
definition. Table II summarizes the execution of this scenario.
The application makespan increases proportionally to the
number of failures detected on database node. Comparing with
the base-line, the application makespan increases by +16%,
+26% and +40% with regard to the MTBF values, 60000s,
30000s and 15000s, respectively.

In our experimental set-up, we provided reliability by
backing-up the database 1:1, and the price for all values of the
MTBF would be $3.04. However, while 1:1 replication made
our proof-of-concept implementation feasible3, it does not
keep the required reliability at the specified level. To calculate
the theoretical price of each ViPXi with the proper reliability
support, we compute the number of back-up nodes required
to provide the reliability level of 99.99% as a function of the

2Amazon EC2: http://aws.amazon.com/ec2/
3The current Remus implementation for Xen 3.4 is limited to a 1:1

protection. This limitation also resulted in simpler allocation constraints than
that described in Section VI.

MTBF, computed according to [20]. For this scenario, the cost
of database protection with reliability level 99.99% increases
the ViPXi cost by about 6%, 10%, and 13% for MTBF 60000s,
30000s, and 15000s, respectively (see table IV). If we assume
that the back-up nodes are selected from a pool of nodes
reserved for this purpose by the physical substrate operator
with a long-term lease, then the price of reliability amounts to
an increase of 2%, 3%, and 4% for MTBF 60000s, 30000s,
and 15000s, respectively (again, see table IV).

Each workflow service has a pre- and post-processing stage
where the input data is copied to worker node and the results
are sent to the database. The more failures happen during these
two stages, the more the application makespan increases. In
table III, we present the data transfer time (in seconds) of this
scenario. The data transfer time increase dominates when there
are more failures detected on database node.

TABLE II
EXECUTION TIME AND % INCREASE OVER BASELINE FOR

CRITICAL DATABASE PROTECTION ONLY (COLUMN DB), AND FOR
COMPUTING NODES PROTECTION (COLUMN CN).

MTBF DB Increase CN Increase

∞ 1205s 1205s
60000s 1401s 16.26% 1208s 0.2%
30000s 1524s 26.47% 1225s 1.7%
15000s 1688s 40.08% 1244s 3.2%

TABLE III
TOTAL DATA TRANSFER TIME OF SIX APPLICATION SERVICES
RUNNING WITH CRITICAL DATABASE PROTECTION SCENARIO.

MTBF Total data transfer time

∞ 165.02s ± 44.30s
60000s 190.20s ± 96.75s
30000s 292.96s ± 115.38s
15000s 299.61s ± 128.26s

The second experiment analyzes the protection of workers
nodes. The MTBF varies in accordance with the failure model
presented above. After a MTBF, a random physical machine
will be crashed. The back-up virtual machine is automatically
started and continues running the same workflow task. As
presented in table II, the application makespan slightly in-
creases with regard to the number failures detected on the
infrastructure. The delay on the back-up node activation is
compensated by other parallel executions. Providing reliability
for workers nodes (99.9%) dramatically decreases the time to
complete the application, from execution time for the 15000s
MTBF of 1688s down to 1244s in Table II, a gain of almost
40%. Table V shows the price increase due to reliability for
the different values of the MTBF, assuming that the back-up
nodes are drawn from the same (short term lease) pool as the
rest of the virtual infrastructure, or from a long term lease
pool set aside by the physical substrate operator.

In both cases, database protection and workers protection,
the application ran normally, with faults being transparent to
the application provider.

http://aws.amazon.com/ec2/

TABLE IV
PRICE WITH RELIABILITY FOR DATABASE PROTECTION
(RELIABILITY LEVEL 99.9%) AND FRACTION OF PRICE

CORRESPONDING TO RELIABILITY WITH BACK-UP PROVISIONED
ON SHORT TERM LEASES OR LONG TERM LEASES.

Short term Long term

MTBF pFAIL nrb PG′ PB/PG′ PG′ PB/PG′

60000s 0.03 2 $3.13 6% $3.01 2%
30000s 0.06 3 $3.23 10% $3.04 3%
15000s 0.12 4 $3.33 13% $3.07 4%

TABLE V
PRICE OF RELIABILITY FOR COMPUTING NODE PROTECTION

(RELIABILITY LEVEL 99.9%) AND FRACTION OF PRICE
CORRESPONDING TO RELIABILITY WITH BACK-UP PROVISIONED

ON SHORT TERM LEASES OR LONG TERM LEASES.

Short term Long term

MTBF pFAIL nrb PG′ PB/PG′ PG′ PB/PG′

60000s 0.03 5 $3.42 16.1% $3.10 5.3%
30000s 0.06 8 $3.71 25.8% $3.19 8.4%
15000s 0.12 12 $4.09 38.7% $3.32 12.6%

We also performed the experiments using the task resubmis-
sion mechanism (application level) to compare with the ViPXi
reliability service. In general, after a failure occurs on a worker
node, a new worker node must be provisioned, and the task
executed on the failed node has to be relaunched on the new
worker node. We minimize the activation time of a back-up
node to zero by reserving, deploying and configuring back-up
nodes prior to the execution of the Bronze Standard. Hence,
the only difference from the previous experiments is the time
needed to rework the tasks on the failed worker nodes.

The number of back-up nodes for task resubmission mech-
anism is set to be the same as that in the previous scenario
(i.e., 5, 8, and 12 for MTBF of 60000s, 30000s, 15000s,
respectively) so that the cost and amount of resources used are
equivalent. Our experimental results show that the application
makespan increases significantly in comparing with the vir-
tual infrastructure reliability service, +13.08%, +19.67% and
+22.19% with respect to 60000s, 30000s and 15000s of the
MTBF, as presented in table VI. The makespan gap would
have been more if back-up nodes were not pre-allocated and
configured. We do not present results otherwise since the time
required for reservation, deployment and configuration may
vary with the configuration and total utilization of the grid.

TABLE VI
APPLICATION MAKESPAN WITH RESUBMISSION MECHANISM AND

PERCENTAGE INCREASED WHEN COMPARED WITH VIPXI
RELIABILITY SERVICE.

MTBF Reliability Resubmission Increase

60000s 1208s 1366s +13.08%
30000s 1225s 1466s +19.67%
15000s 1244s 1520s +22.19%

VIII. RELATED WORK

Providing reliability on virtualized environments is an issue
that has been studied in the recent years. Within virtual nodes,
hypervisors such as Xen provides the capability to store live
snapshots of the virtual machines to reliable storage, which
can be resumed on other physical nodes if failures occur.
Remus [17] and Kemari [18] improves on static snapshots by
periodically updating live snapshots to replica nodes that are
on standby. To checkpoint the entire virtual infrastructure as a
whole, VNsnap [16] has been developed. VNsnap captures the
entire virtual infrastructure’s execution, communication and
storage states, which can be resumed in other sites to recover
from failures. From another perspective, proactive migration
of virtual machines to other healthy nodes is considered [34]
upon early warnings of impending failures.

Fault tolerance is provided some contexts, such as data
centers [35], [36]. However, it is achieved through specific
engineering of the network nodes and links overprovisioned
for redundancy.

The allocation of virtual infrastructures has been already
explored in previous works. Some algorithms focus on prob-
lem formulation considering nodes requirements together with
network configuration [29], [27], [28]. In Emulab, a network
is modeled characterizing the bandwidth capacity of each link,
and the substrate nodes are not shared among multiples virtual
infrastructures. Ricci et al. [37] developed the software assign,
which explores the resources homogeneity of Emulab and
introduces the definition of vclasses and pclasses (equivalence
classes) that limits the search space of an allocation. While
our framework requires a resource allocation mechanism, none
of the above took into account reliability for embedding the
virtual resource request onto the physical topology.

[20] provides mechanisms to pool back-up nodes to achieve
some desired level of reliability. However, it is mostly a
theoretical work and does not provide any vertical integration
from the user specification to the physical substrate allocation.

In [38], Menth et al. focus on providing link reliability in
wide-area network, by considering the most likely link failure
combinations, and providing back-up links for these failures.
This is distinct from this work, where reliability is applied to
links but also node failures within a virtual infrastructure.

IX. CONCLUSIONS

We have presented a framework that introduces transpar-
ent reliability support into virtualized infrastructures. The
transparency allows virtual infrastructure users to focus on
application development and scale reliability requirements
at deployment. The physical substrate operator can provide
reliability as a service, and implement reliability transparently
from the point of view of the service operator.

Our framework contains a specification language which
describes the reliability parameters in a flexible and expres-
sive manner; an algorithm to translate virtual infrastructure
specifications to physical resources; an resource mapping
algorithm to allocate them; and a synchronization mechanism
that preserves virtual machine states in cases of physical node

failures. To provide an easier evolutionary path to implement
the framework, some of these components are built upon tried-
and-true existing technologies.

We implemented the framework on top of the HIPerNet
framework, deployed over the Grid’5000 infrastructure, and
demonstrated that it effectively supports reliability and enables
the transparent execution of fault-sensitive distributed applica-
tions. In particular, our implementation points to a reduced
completion time for the application for a slight increase of the
resource cost.

Further work includes the implementation of a n : k
reliability ratio within our testbed, in order to fully benefit
from the virtualization of reliability. This also involves im-
plementing the sharing of redundant node across different
virtual infrastructures in order to minimize the number of
such redundant nodes, as described in Section V. For the
cost benefit, we presented a simple yet promising back-of-
the-envelope analysis. We would like to refine the model to
better distinguish the economical trade-offs for each of the
stakeholders: service customer, service provider and virtual
infrastructure provider, in particular when the virtual infras-
tructure is hosted across different administrative domains.

ACKNOWLEDGMENTS

This work has been funded by the ANR CIS HIPCAL grant,
the FP-7 SAIL project, the French ministry of Education and
Research, INRIA, CNRS, via ACI GRID’s Grid’5000 project
and Aladdin ADT. The authors would like to thank Romaric
Guillier for his help in the development of HIPerNet.

REFERENCES

[1] F. Anhalt, G. Koslovski, and P. Vicat-Blanc Primet, “Specifying and pro-
visioning Virtual Infrastructures with HIPerNET,” Int. J. Netw. Manag.,
vol. 20, no. 3, pp. 129–148, May/Jun. 2010.

[2] “GENI System Overview,” The GENI Project Office, September 2008.
[3] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M.

Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-
Yehuda, W. Emmerich, and F. Galan, “The reservoir model and archi-
tecture for open federated cloud computing,” IBM J. Res. Dev., 2009.

[4] G. Koslovski, T. Truong Huu, J. Montagnat, and P. Vicat-Blanc Primet,
“Executing distributed applications on virtualized infrastructures speci-
fied with the VXDL language and managed by the HIPerNET frame-
work,” in Proc. ICST CLOUDCOMP, Oct. 2009.

[5] F. Cappello, P. Primet et al., “Grid’5000: A Large Scale and Highly
Reconfigurable Grid Experimental Testbed,” in Proc. IEEE Grid, Nov.
2005.

[6] “Common Information Model (CIM) Standards.” [Online]. Available:
http://www.dmtf.org/standards/cim/

[7] J. van der Ham, P. Grosso, R. van der Pol, A. Toonk, and C. de Laat,
“Using the network description language in optical networks,” in Proc.
IFIP/IEEE IM, May 2007.

[8] “Network Mark-up Language Working Group (NML-WG),” 2007.
[Online]. Available: https://forge.gridforum.org/projects/nml-wg

[9] “Open Virtualization Format Specification (OVF).” 2009. [On-
line]. Available: http://www.dmtf.org/standards/published documents/
DSP0243 1.0.0.pdf

[10] F. Galán, A. Sampaio, L. Rodero-Merino, I. Loy, V. Gil, and L. M. Va-
quero, “Service specification in cloud environments based on extensions
to open standards,” in Proc. ICST COMSWARE, Jun. 2009.

[11] “Open Cloud Computing Interface Working Group (OCCI-WG),” 2009.
[Online]. Available: http://forge.gridforum.org/sf/projects/occi-wg

[12] T. Truong Huu and J. Montagnat, “Virtual resources allocation for
workflow-based applications distribution on a cloud infrastructure,” in
Proc. Cloud’10, May 2010.

[13] G. Koslovski, P. Vicat-Blanc Primet, and A. S. Charão, “VXDL: Virtual
Resources and Interconnection Networks Description Language,” in
GridNets 2008, Oct. 2008.

[14] D. Lingrand, J. Montagnat, and T. Glatard, “Modeling user submission
strategies on production grids,” in Proc. ACM HPDC, Jun. 2009.

[15] D. Lingrand, J. Montagnat, J. Martyniak, and D. Colling, “Analyzing
the EGEE production grid workload: application to jobs submission
optimization,” in Proc. JSSPP Workshop, May 2009.

[16] A. Kangarlou, P. Eugster, and D. Xu, “VNsnap: Taking Snapshots of
Virtual Networked Environments with Minimal Downtime,” in Proc.
IEEE/IFIP DSN, Jun. 2009.

[17] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: high availability via asynchronous virtual machine
replication,” in Proc. USENIX NSDI, Apr. 2008.

[18] Y. Tamura, K. Sato, S. Kihara, and S. Moriai, “Kemari: VM Synchro-
nization for Fault Tolerance,” in USENIX ’08 Poster Session, Jun. 2008.

[19] G. Koslovski and P. Vicat-Blanc Primet, “VXDL Parser APPcode:
IDDN.FR.001.260009.000. S.P.2009.000.10800,” 2009.

[20] W.-L. Yeow, C. Westphal, and U. C. Kozat, “Designing and embedding
reliable virtual infrastructures,” in Proc. VISA Workshop, Sep. 2010.

[21] F. Harary and J. P. Hayes, “Node fault tolerance in graphs,” Networks,
vol. 27, no. 1, pp. 19–23, 1996.

[22] S. Dutt and N. R. Mahapatra, “Node-covering, error-correcting codes
and multiprocessors with very high average fault tolerance,” IEEE Trans.
Comput., vol. 46, no. 9, pp. 997–1015, 1997.

[23] M. Ajtai, N. Alon, J. Bruck, R. Cypher, C. Ho, M. Naor, and E. Sze-
meredi, “Fault tolerant graphs, perfect hash functions and disjoint paths,”
in Proc. IEEE FOCS, Oct. 1992.

[24] N. M. M. K. Chowdhury and R. Boutaba, “Network virtualization: State
of the art and research challenges,” IEEE Commun. Mag., Jul. 2009.

[25] J. Lischka and H. Karl, “A virtual network mapping algorithm based on
subgraph isomorphism detection,” in Proc. VISA Workshop, Aug. 2009.

[26] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph
isomorphism algorithm for matching large graphs,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 26, no. 10, pp. 1367–1372, Oct. 2004.

[27] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” SIG-
COMM Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29, Apr. 2008.

[28] N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual
network embedding with coordinated node and link mapping,” in Proc.
IEEE INFOCOM, Apr. 2009.

[29] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in Proc. IEEE INFOCOM,
Apr. 2006.

[30] P. Vicat-Blanc Primet, J.-P. Gelas, O. Mornard, G. Koslovski, V. Roca,
L. Giraud, J. Montagnat, and T. T. Huu, “A scalable security model
for enabling dynamic virtual private execution infrastructures on the
internet,” in Proc. IEEE CCGrid, May 2009.

[31] T. Glatard, X. Pennec, and J. Montagnat, “Performance evaluation of
grid-enabled registration algorithms using bronze-standards,” in Proc.
MICCAI, Oct. 2006.

[32] T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec, “Flexible and
efficient workflow deployement of data-intensive applications on grids
with MOTEUR,” Int. J. High Perform. C., Aug. 2008.

[33] D. Atwood and J. G. Miner, “Reducing data center cost
with an air economizer,” Intel White Paper, Tech. Rep.,
2008. [Online]. Available: http://www.intel.com/it/pdf/Reducing Data
Center Cost with an Air Economizer.pdf

[34] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive
Fault Tolerance for HPC with Xen Virtualization,” in Proc. ACM ICS,
Jun. 2008.

[35] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, V. Subramanya, and A. Vahdat, “Portland: A scalable fault-
tolerant layer 2 data center network fabric,” in ACM SIGCOMM ’09,
2009.

[36] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “BCube: A high performance, server-centric network architecture
for modular data centers,” in ACM SIGCOMM ’09, 2009.

[37] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the network testbed
mapping problem,” SIGCOMM Computer Comm. Rev., 2003.

[38] M. Menth, M. Duelli, R. Martin, and J. Milbrandt, “Resilience analysis
of packet-switched communication networks,” IEEE/ACM Trans. Netw.,
Dec. 2009.

http://www.dmtf.org/standards/cim/
https://forge.gridforum.org/projects/nml-wg
http://www.dmtf.org/standards/published_documents/DSP0243_1.0.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0243_1.0.0.pdf
http://forge.gridforum.org/sf/projects/occi-wg
http://www.intel.com/it/pdf/Reducing_Data_Center_Cost_with_an_Air_Economizer.pdf
http://www.intel.com/it/pdf/Reducing_Data_Center_Cost_with_an_Air_Economizer.pdf

