
Reliable and efficient PUF-based key
generation using pattern matching

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

Citation (Sid) Paral, Zdenek, and Srinivas Devadas. “Reliable and Efficient
PUF-based Key Generation Using Pattern Matching.” 2011 IEEE
International Symposium on Hardware-Oriented Security and Trust
(HOST). 128–133.

As Published http://dx.doi.org/10.1109/HST.2011.5955010

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/72359

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/72359
http://creativecommons.org/licenses/by-nc-sa/3.0/


1

Reliable and Efficient PUF-Based Key Generation
Using Pattern Matching

Zdenek (Sid) Paral∗, and Srinivas Devadas†

∗Verayo, Inc., †Massachusetts Institute of Technology
∗sparal@verayo.com, †devadas@mit.edu

Abstract—We describe a novel and efficient method to reliably
provision and re-generate a finite and exact sequence of bits, for
use with cryptographic applications, e.g., as a key, by employing
one or more challengeable Physical Unclonable Function (PUF)
circuit elements. Our method reverses the conventional paradigm
of using public challenges to generate secret PUF responses;
it exposes response patterns and keeps secret the particular
challenges that generate response patterns.

The key is assembled from a series of small (initially chosen
or random), secret integers, each being an index into a string
of bits produced by the PUF circuit(s); a PUF unique pattern
at each respective index is then persistently stored between
provisioning and all subsequent key re-generations. To obtain
the secret integers again, a newly repeated PUF output string is
searched for highest-probability matches with the stored patterns.
This means that complex error correction logic such as BCH
decoders are not required. The method reveals only relatively
short PUF output data in public store, thwarting opportunities
for modeling attacks.

We provide experimental results using data obtained from PUF
ASICs, which show that keys can be efficiently and reliably gen-
erated using our scheme under extreme environmental variation.

I. INTRODUCTION

An important aspect of improving the level of trustworthi-
ness of semiconductor devices, semiconductor based systems,
and the semiconductor supply chain is enhancing physical
security. Not only do we want semiconductor devices to be
resistant to computational attacks, but also to physical attacks.
Physical Unclonable Functions (PUFs) [1] [2] are becoming a
useful tool in this regard.

Silicon PUFs generate signatures based on device manufac-
turing variations which are difficult to control or reproduce.
Given a fixed challenge as input, a PUF outputs a response
that is unique to the manufacturing instance of the PUF circuit.
These responses are similar, but not necessarily bit exact, when
regenerated on a given device using a given challenge, and
are expected to deviate more in Hamming distance from a
reference response as environmental parameters (for example,
temperature and voltage) deviate between provisioning and re-
generation. This is because circuit parameters, such as delays,
do not vary uniformly with temperature and voltage.

There are two broad classes of applications for PUFs [2] [3]
[4] [5] [6]. In certain classes of authentication applications,
the silicon device is authenticated if the regenerated response
is “close enough” in Hamming distance to the provisioned
response. Errors in PUF responses are forgiven up to a certain
threshold. In these authentication applications, challenges are

never repeated to prevent replay attacks. However, the PUF
has to be resistant to software model building attacks (e.g.,
learning attacks described in [7] [8]) in order to be secure.
Else, an adversary can create a software model or clone of
a particular PUF. A second class of applications is secret
key generation. In conventional usage of a PUF as a key
generator, only a fixed number of secret bits need to be
generated from the PUF. These bits can be used as symmetric
key bits or used as a random seed to generate a public/private
key pair in a secure processor [9]. However, in order for
the PUF outputs to be usable in cryptographic applications,
the noisy bits need to be error corrected, with the aid of
helper bits, commonly referred to as a syndrome. The greater
the environmental variation a PUF is subject to, the greater
the possible difference (noise) between a provisioned PUF
response and a re-generated response.

This conventional method of PUF key generation using
PUF response bits as secret keys has been explored in many
publications including [2] [10] [11] [12] [13]. Error correction
has to be secure, robust and efficient. The security concern is
the leakage of secret bits through the syndrome or helper bits.
Dodis et al give a general framework for secure error cor-
rection for biometric data in [14]. An Index-Based Syndrome
(IBS) coding scheme that is information-theoretically secure
is described and implemented in [13]. Robustness requires
that the number of corrected errors be equal to greater than
the maximum number of bit-errors from the widest range
of environmental variation expected. All of these proposed
schemes require fairly heavyweight error correction logic, e.g.,
a BCH decoder that is capable of correcting several bit-errors
in a 64-bit codeword.

We propose a very different method of secret key generation
using PUFs in this paper. Rather than using a fixed (and
possibly) public challenge, while keeping the response bits
secret, we reverse the paradigm and keep secret the particular
challenges that generate exposed response bits. The secret
key can be chosen at random. Roughly, our method works
as follows: A PUF beginning from a fixed public challenge
generates a string of response bits of length L. Choose a
secret integer I of bit-size log2(L) and treat it as an index
into the string L. Beginning with this index, expose a W -
length pattern (W < L) of PUF outputs and store it in public
non-volatile storage. This is the provisioning step. During key
re-generation, the PUF begins internally generating its output
string, and comparison logic compares the PUF output to the
stored pattern(s). If an approximate match with a number



	  
Key	  Generator	  

(provisioning)	  

	  

	  

Key	  

	  

Helper	  Data	  
Seed	  

	  

(a) PROVISIONING
	  

Key	  Generator	  

(re-‐generating)	  

	  

	  

Key	  Helper	  Data	  

(b) RE-GENERATION

Fig. 1. Key Provisioning and Re-Generation

of mismatches equal to or less than T is found, then the
associated index for the match is I with some probability. To
generate a K-bit secret, we can run the above scheme K

log2 L
times.

We note that the “error correction” in the above scheme only
requires comparison logic (similar to a PUF authentication
scheme) and is very efficient from a hardware standpoint. The
parameters L, W and T have to be chosen so the probability
of a collision (i.e., a different index being returned) and the
probability of no match (all patterns in the re-generated PUF
output have more than T mismatches) are negligible under
prescribed environmental variation. The security of the scheme
is based on the assumption that it is hard to construct a model
of PUF behavior given a limited number of challenge-response
relationships.

We describe our scheme and its various parameters in
Section II. Security considerations are the subject of Section
III. Related work is discussed in Section IV. Experimental
results using PUF chips are presented in Section V, and we
conclude the paper in Section VI.

II. PATTERN MATCHING KEY GENERATOR

A. Basics of Key Generation

Figure 1 describes the basics of key generation.
At provisioning time, the key generator takes an externally

provided (secret) Seed (entropy for the generated Key) and,
using its embedded PUF, encodes this Seed into (public)
Helper Data and a (secret) Key (Figure 1a). The Seed is only
input once and may be discarded; the Helper Data is (publicly)
stored for later use during Key re-generation; the (secret) Key
is discarded.

A key generator must reliably produce an earlier provisioned
Key, given the corresponding Helper Data. A PUF-based
key generator combines the Helper Data with its unique,
unclonable hardware function, so that only the presence of
both the hardware circuit and the Helper Data leads to the
correct Key, while the Helper Data alone does not reveal any
usable information about the Key.

B. Architecture

The architecture of the Pattern Matching Key Generator
(PMKG) is shown in Figure 2. Besides control logic, the
PMKG consists of the following components:

• Re-startable, Bi-modal Challenge Sequence Genera-
tor: This is usually a linear-feedback shift register (LFSR)
with an associated primitive polynomial. The sequence
generator has a single input that affects the generated
sequence.

• One or more Challengeable Physical Unclonable
Functions: We use an arbiter PUF originally introduced
in [15].

• PUF Output Blender: For security against modeling
attacks, we require multiple Arbiter PUF outputs to be
blended into a single bit. 4 bits are XOR’ed together
corresponding to a 4-XOR Arbiter PUF [3].

• Pattern Shift Register of length W .
• Tolerant Pattern Match Detector fires if the pattern in

the Pattern Shift Register is within the threshold T of the
selected pattern in the Persistent Pattern Store.

• Persistent Pattern Store and Pattern Selector: Patterns
for each round are stored in the Pattern Store during
provisioning.

• Additional Bi-modal Key Mixer(s): The key can be ob-
tained directly from the index of the challenge sequence
generator or after mixing.

• Volatile Key Store is an SRAM.

The various parameters in the PMKG are summarized in
Table I.

Metric Symbol Example Note
Key size K 128

PUF count P 1
Blender ratio B 4 inp-bits/out-bit
Pattern width W 256
Round length L 1024
Round count R 16 R≥ K

N
Match threshold T 80 Tolerance
Secret index size N 10 N = log2(L)
Clocks per round CPR 5,120 CPR = (L+W )×B

P
Clocks total CT 81,920 CT = R×CPR
Entropy size E 160 K ≤ E = R×N

Total pat. size S 4,096 S = W ×R

TABLE I
ARCHITECTURAL PARAMETERS IN THE PATTERN MATCHING KEY

GENERATOR

The key generator works in rounds. A round is an instance
of generating O bits (O = L+W ) of continuous, blended PUF
data; there are L possible patterns of width W found in such
data. The position of a pattern is represented by its (zero-based
index) I, which is N bits wide for binary power round lengths
(L = 2N).

During provisioning, for each round, a secret index is
selected. Blended PUF output bits of length W beginning from
the appropriate index are loaded into non-volatile memory.
Multiple bits are blended by the PUF Blender, for example,
four PUF output bits (from a single or multiple PUFs) may be
XOR’ed together to generate a blended PUF output bit. This
blending is crucial to security and is discussed in Section III.



	  

Key	  

Seed	  

	  

(p
ro
vi
si
on
in
g)
	  

Challenge	  Sequencer	  

PUF	  
PUF	  
PUF	  
PUF	  

Pattern	  Shift	  Register	  

Tolerant	  Match	  
Detector	  

Pattern	  Selector	  

Persistent	  Store	  (public)	  

Pattern	  #1	  

Pattern	  #2	  

:	  

Additional	  

Key	  Mixer	  

Additional	  

Key	  Mixer	  

	  	  	  	  	  	  	  	  	  	  	  Key	  Mixer	  

Key	  Store	  (volatile)	  

Control	   Pattern	  #N	  

:	  

match	  

Bl
en
de
r	  

Fig. 2. Key Generator Architecture. This generator can be used to provision and re-generate a key.

Assume that the PMKG has been provisioned. During key
re-generation, the PMKG works in multiple rounds, each
consisting of a fixed-length challenge sequence. The challenge
sequence generator is a linear feedback shift register (LFSR)
with an associated primitive polynomial, and begins from a
fixed challenge. PUFs generate response bits based on the
applied challenge. The blended outputs are shifted into a
pattern shift register and the Tolerant Match Detector matches
the first pattern against the contents of the pattern shift register.
If the number of mismatches is ≤ T , the match signal is raised.
At the end of the round, the index of the challenge that caused
the match is loaded into the Volatile Key Store. If there is no
match in a round, we have a failure, see Section II-D. We note
that the PMKG takes exactly the same number of cycles and
performs exactly the same number of operations each round
to generate any key. Thus, it is less susceptible to differential
power or timing analysis [16].

The match signal triggers a change in the challenge se-
quencer schedule as described in the next section.

C. Bi-Modality
The match signal in Figure 2 is raised when the PUF has

generated a matching pattern. It is also used to “fork” the
challenge sequence. This has several advantages:

1) Security is enhanced (cf. Section III). Since the index
that is matched on is secret, each round makes the
actual challenge sequence less and less traceable to an
outsider/attacker, at a multiplicative rate of L per round.

2) It is consistent with running the challenge sequencer for
a fixed number of cycles each round.

3) Forking in the challenge sequencer is set up in such a
way that at the end of the round, the matching secret
index can be deterministically derived from the LFSR
contents.

We now elaborate on the forking functionality. Define
CS(c,a, f ) as the challenge sequencing function with the

starting challenge c, number of advancements a, and sequence-
forking flag f . The forking flag f is cleared at the beginning
of every round, and set upon finding a match between the
round’s pattern data and the current blended PUF data. The
challenge sequencing is therefore split into two parts, one
“before match” and “at and after match”. Note that the “before
match” part may be of zero length. If no match were found
(a fault condition), the resulting challenge value would be
composed as cr+1(no match) = CS(cr,L,0), for the sequence
that started with the challenge cr, advanced L times, with the
forking flag cleared during the whole round. Under non-faulty
conditions, a pattern match is made at some index Ir, setting
the forking flag f for the rest of the round. The resulting
challenge can be composed from the concatenated sequencing
operations, cr+1 = CS(crm,L− Ir,1), where crm = CS(cr, Ir,0).

Alternatively, the challenge sequence could be split into
three parts, one “before match”, one “at match”, and one “after
match”, whereby the flag is only set in the single-advancement
“at match” phase.

D. Failures and Reliability

The PUF output data are not fully repeatable, which is
usually exaggerated by the blending function (e.g., XOR),
and there is no guarantee that this key generator can always
converge to the same key, despite and/or because of the
forgiving nature of the noise-tolerant pattern matching logic.
We have two possible failure conditions: pattern misses and
pattern collisions.

a) Pattern miss: A miss occurs if the PUF generated
data contains so much noise that it differs too much from
the pattern block and the match detector does not fire at all
during a round, which is detectable by the control logic at
the end of each round. Misses are false negatives. Frequent
misses indicate that the threshold T is set too low and should
be increased.



b) Pattern collision: A collision occurs if the PUF gen-
erated data happens to come too close to matching a pattern
block originated by a different secret index within the round.
Collisions are false positives. A collision results in an incorrect
recapture of the secret index and subsequent catastrophic
divergence from the provisioned challenge schedule in case of
the bi-modal challenge sequence generator. Unlike the pattern
miss, it is undetectable at the control level. If collisions occur,
it means that the threshold T is set too high.

The best defense against the above failures lies in choosing a
sufficiently wide pattern (W ), so that the probabilities of misses
and collisions decrease to miniscule levels with appropriate
choice of T . This is the approach we take in Section V.

In implementations where wide patterns can be traded for
time, partial (miss) and full (collision) retrials with error
detection can be employed. For example, a one way (hash)
function slaved to the challenge sequencer produces a digest
that is compared with a hash value stored at provisioning time;
a match indicates a high probability of correct key generation.
A narrow pattern retrial approach needs additional logical
support at provisioning time, as the index choices must be
discriminated for stability, and rejected if found unable to
perform within an acceptable number of re-tries.

III. SECURITY CONSIDERATIONS

A. Modeling Attacks

We are exposing response data of the PUF. In authentication
applications, it is assumed that even given unlimited challenge-
response pairs (CRPs), the adversary is unable to create the
model of the underlying PUF or successfully predict the
response for a hithherto unseen challenge. A circuit for which
it is impossible to create a software model is called a Strong
PUF. Recent work [8] has determined that several architectures
that were previously considered Strong PUFs can be cloned via
machine learning attacks.1 One architecture that is currently
resistant to machine learning attacks is a k-XOR n-stage
Arbiter PUF with k > 6 and n = 64. The number of CRPs
required to successfully attack k-XOR PUFs grows rapidly
with k. For a 4-XOR Arbiter PUF with error-inflicted CRPs
on a randomly-generated PUF structure (i.e., not a hardware
PUF), over 30,000 CRPs are required, and for a 5-XOR 128-
stage PUF structure over 100,000 CRPs are required. (Note
that we cannot arbitrarily increase k in PUF designs, since the
noise levels increase with k.)

In a PMKG, CRPs are not exposed directly, but the adver-
sary knows all the details of the PMKG architecture includ-
ing the beginning fixed challenge. The number of exposed
response bits is the total pattern size, which can be assumed
to be 4096 (cf. Table I). This is much smaller than the number
of CRPs required for modeling, moreover, there is ambiguity
in what challenges resulted in particular responses. We have
two means of increasing the complexity seen by the adversary.

For small additional area, the number of PUFs P can be
increased and the effective response size that is exposed per
PUF can thus be reduced by a factor of P.

1This is similar to how cryptographic primitives are attacked and sometimes
broken.

The second way is to not expose the challenge sequence
schedule to the adversary. As described in Section II-C, the oc-
currence of a match at a particular index affects the challenge
schedule in the subsequent round. Since the matching index
is secret, constructing possible CRPs becomes more and more
difficult with each passing round. This increases the ambiguity
in the CRPs available to the adversary.

B. Provisioning Mode Security

We assume that the chip is provisioned with a secret and
then the provisioning mode is disabled, for example, through
an irreversible “fuse” operation. This is often assumed when
PUFs are used to generate a fixed-length response that is used
as a key (e.g., ring oscillator bits [3] or SRAM bits [17]).

The same strategy can be employed with the PMKG as
well. Note that the PMKG is both an encoder as well as a
decoder and is used for provisioning as well as re-generation.
In this case, an arbitrary Seed is input to the PMKG and
we use a forkable schedule to further enhance security. The
number of response bits exposed is R×W and, further, it
is difficult for the adversary to compute challenge-response
pairs. Forking during provisioning works the same as in re-
generation regarding when the “forking flag” is set/cleared
(either from the point of match to the end of round, or for one
clock at match); only the condition setting it changes. During
provisioning the comparisons are made on a running index
counter versus the secret index of the current round; during
re-generation, the comparisons are made on the response
string versus the syndrome pattern for the current round. The
challenge schedule must be identical during both provisioning
and re-generations, including the “dead runs” from the match
points to the ends of each round to thwart timing attacks.

IV. RELATED WORK

A. Physical Unclonable Functions (PUFs)

Pappu [1] described Physical One-Way Functions imple-
mented using microstructures and coherent radiation and de-
scribed an authentication application requiring external mea-
surement equipment. Gassend et al [2] coined the term Physi-
cal Unclonable Function, presented the first silicon PUF with
integrated measurement circuitry, and showed how PUFs could
be used for authentication as well as cryptographic appli-
cations. Many other silicon realizations of PUFs have been
proposed (e.g., [17], [5], [4], [6]). For a more comprehensive
review of PUF literature, see [18].

It has been shown that some proposed PUFs can be modeled
or reverse-engineered (e.g., [7], [19]) precluding their use
in unlimited authentication applications. State-of-the-art in
numerical modeling attacks on PUFs (e.g., [8]) was discussed
in Section III.

B. Error Correction

In a typical error correction setting for PUF, during an
initialization phase, the PUF is evaluated for a set of chal-
lenges. Then a syndrome is computed based on the responses.
The syndrome or helper data is public information which is



later sent to the PUF along with the challenges to perform
correction on response bits. Equivalently, the syndrome can be
stored locally on chip. Perhaps the earliest work that pointed
out the requirement of error correction for cryptographic keys
and used it on PUF responses was [10]. The work employed
2D Hamming codes for error correction. Later, a more realistic
use of Bose-Chaudhuri-Hochquenghen (BCH) codes for error
correction on PUF responses was proposed [9], [20]; however,
the implementation cost and hardware overhead of this code
is very high.

The use of repetition codes along with conventional syn-
drome generation using XOR masking was proposed for PUFs
in [11]. Another error reduction technique proposed in [21]
uses a longest increasing subsequence algorithm (LISA) to
group ring oscillators on FPGAs such that resulting responses
from comparing the frequency of ring oscillators within the
same group does not change with temperature. [22] demon-
strates the use of majority voting on delay-based PUF re-
sponses implemented on an FPGA to achieve noise reduction.
The work in [4] applies the helper data algorithm described in
[14], [11] to butterfly PUF responses, and further demonstrates
classification of challenges into groups with different level of
robustness. The responses to challenges in groups with higher
level of robustness are less likely to be affected by noise and
environmental variations. Assuming 0.78 bits of entropy for
each PUF output bit, the algorithm requires 1500 PUF bits
to derive a 128-bit uniformly distributed random key with a
failure rate of 10−6.

[12] describes the use of conventional soft-decision de-
coders. While a hard-decision decoder operates on typically
0 or 1 in a binary code, the inputs to a soft-decision decoder
may take on a whole range of values in-between. Because of
this extra information which indicates the reliability of each
input data point, soft-decision coding yields a higher coding
gain than their hard-decision counterparts.

Since the syndrome is public information, the adversary
can derive bias information from the syndrome to tighten the
search space to find the secret key. Information leakage via
syndrome is a critical aspect of the error correction and has
been addressed in [13]. This work further introduced index-
based syndrome coding (IBS). IBS leaks less information that
conventional syndrome coding methods such as code-offset
construction using linear codes [14] or other variants that use
bitwise XOR masking [11]. IBS generates pointers to values
in a PUF output sequence so that the syndrome is not a direct
linear function of PUF output bits and parity bits. In addition
when IBS is used with PUFs with real-value outputs, it has a
coding gain associated with soft-decision coding. IBS reduces
the error correcting code implementation complexity by about
16× to 64×. Error correction performed on responses acquired
from ring oscillator PUFs implemented on Virtex-5 FPGAs
under temperature variation from -55oC to 125oC at 1.0V ±
10% show an error rate below 1 ppm.

All of the above works corresponded to using PUF response
bits as secret key bits; here we use indices into sets of PUF
challenges as the secret key bits, and the PUF response is
exposed. Our security assumption is that we are using a PUF
with the properties defined in [2] (and what has later been

termed a Strong PUF [23] in the literature). If necessary,
we can weaken this assumption to limit the adversary to
only knowing a relatively small set of PUF response bits (cf.
Section III).

V. EVALUATION USING ASIC DATA

We evaluate our PMKG on data obtained from [24] that
includes 4-XOR and higher Arbiter PUFs. We focus on 4-
XOR Arbiters in our experiments.

We first provide results on inter-chip and intra-chip variation
of ten 4-XOR Arbiter chips in Figure 3. The PUF chips
were provisioned at 25oC and response re-generation was
done between -25oC and +85oC in an TestEquity HalfCUBE
(Model 105A) Oven with switching between -25oC, +25oC,
and +85oC. We note that the PUF is receiving power from an
RFID reader and therefore there is voltage variation across
provisioning and re-generation, but it cannot be quantified
precisely. Figure 3a shows that the inter-chip variation is very
close to 50%, and the average intra-chip variation is 5%.
Figure 3b gives the false positive and false negative rates for
various thresholds. If we choose a threshold of 80, the false
positive and negative rates are both less than 1 part per billion
(the point where the curves intersect is below 0.001 ppm).

We next provide results on key provisioning and re-
generation. Five 4-XOR Arbiter chips were provisioned at
25oC and response re-generation was done between -25oC and
+85oC with switching between -25oC, +25oC, and +85oC. We
used four settings for W and T as shown in Table II. For each
of the four settings of W and T , keys were re-generated over
18,500 times across the temperature range.

Table II shows the number of trials required for successful
key re-generation for the different settings. If key re-generation
fails, either because of a pattern miss (false negative) or a
pattern collision (false positive) in any of the rounds, we retry
to a maximum of 20 trials. For example, W = 96, T = 24
resulted in only 14,003 out of 18,540 successful key re-
generations in the first trial, and in 94 cases, 19 trails were not
enough. On the other hand, W = 256, T = 80 was successful
in the very first trial 100% of the time. This is consistent with
Figure 3b.

Our results indicate that we require W ≥ 128, and the
specific choice will depend on the trading off key generation
time (including possible retries) for total pattern size.

VI. CONCLUSIONS

We have presented a viable method of PUF-based key
generation that is notable for low clock latency and hard-
ware requirements: only a PUF, registers, bit-comparison, and
threshold computation logic are required. The generation of
keys can be made faster and the security level raised by
increasing the number of PUFs. In order for the exposed
responses to not be a security hazard we had to use a 4-XOR
arbiter PUF. Future work will focus on the development of
new delay PUF structures that are hard to model and have
less intrinsic noise than a 4-XOR arbiter PUF.



0% 

1% 

2% 

3% 

4% 

5% 

6% 

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 

O
cc

ur
en

ce
 d

en
si

ty
 

Code distance [bits] 

PUF Response: Code Distance Densities 
256 bit responses, RFID MUX PUF 4-way XOR @ -25...+85°C, Provisioned @ +25°C 

Intra-chip 

Inter-chip 

(a) VARIATION

0.001 

0.01 

0.1 

1 

10 

100 

1000 

10000 

100000 

1000000 

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 

Fa
ls

e 
po

st
iv

es
/n

eg
at

iv
es

 [
pp

m
] 

Detection tolerance [bits] 

PUF Single Challenge/Response Error Probabilities [ppm] 
256 bit responses, RFID MUX PUF 4-way XOR @ -25...+85°C, Provisioned @ +25°C 

False Negative 

False Positive 

(b) FALSE POSITIVES AND NEGATIVES

Fig. 3. (a) Intra-chip and Inter-chip variation for 4-XOR Arbiter PUFs. (b) False Positive and False Negative Rates.

Settings Total Trials
W, T Keygen 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-19 20
96, 24 18535 14003 2500 865 355 231 126 85 66 36 38 37 23 17 13 7 39 94

128, 30 18535 18347 140 22 11 7 3 1 1 2 1
192, 54 18537 18534 3
256, 80 18540 18540

TABLE II
KEY RE-GENERATION RESULTS. KEYS WERE PROVISIONED AT 25oC AND RE-GENERATED BETWEEN −25oC AND +85oC.

REFERENCES

[1] R. Pappu, “Physical one-way functions,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 2001.

[2] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” in Computer and Communication Security Confer-
ence, 2002.

[3] G. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Design Automation Con-
ference (DAC), 2007, pp. 9–14.

[4] S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls, “Ex-
tended abstract: The butterfly PUF protecting IP on every FPGA,” in
Hardware-Oriented Security and Trust (HOST), 2008, pp. 67–70.

[5] D. Holcomb, W. Burleson, and K. Fu, “Initial SRAM state as a
fingerprint and source of true random numbers for RFID tags,” in
Proceedings of the Conference on RFID Security, 2007.

[6] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure
PUF,” in International Conference on Computer Aided Design (ICCAD),
2008, pp. 670–673.

[7] D. Lim, “Extracting Secret Keys from Integrated Circuits,” Master’s
thesis, Massachusetts Institute of Technology, may 2004.

[8] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmid-
huber, “Modeling attacks on physical unclonable functions,” in ACM
Conference on Computer and Communications Security (CCS), 2010,
pp. 237–249.

[9] G. E. Suh, “AEGIS: A Single-Chip Secure Processor,” Ph.D. disserta-
tion, Massachusetts Institute of Technology, Aug 2005.

[10] B. Gassend, “Physical Random Functions,” Master’s thesis, Mas-
sachusetts Institute of Technology, Jan. 2003.

[11] C. Bösch, J. Guajardo, A. Sadeghi, J. Shokrollahi, and P. Tuyls, “Effi-
cient helper data key extractor on FPGAs,” in Cryptographic Hardware
and Embedded Systems (CHES), 2008, pp. 181–197.

[12] R. Maes, P. Tuyls, and I. Verbauwhede, “Low-overhead implementation
of a soft decision helper data algorithm for SRAM PUFs,” in Crypto-
graphic Hardware and Embedded Systems (CHES), 2009, pp. 332–347.

[13] M.-D. M. Yu and S. Devadas, “Secure and robust error correction for
physical unclonable functions,” IEEE Design and Test of Computers,
vol. 27, pp. 48–65, 2010.

[14] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data,” in Advances in
Cryptology - Eurocrypt, 2004.

[15] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Delay-Based
Circuit Authentication and Applications,” in Symposium on Applied
Computing (SAC), 2003.

[16] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” Lecture
Notes in Computer Science, vol. 1666, pp. 388–397, 1999. [Online].
Available: citeseer.nj.nec.com/kocher99differential.html

[17] Y. Su, J. Holleman, and B. Otis, “A 1.6pJ/bit 96 (percent) stable chip
ID generating circuit using process variations,” in IEEE International
Solid-State Circuits Conference (ISSCC), 2007, pp. 200–201.

[18] A. Sadeghi and D. Naccache, Eds., Towards Hardware-Intrinsic Secu-
rity: Foundations and Practice. Springer, 2010.

[19] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Testing techniques for
hardware security,” in International Test Conference (ITC), 2008, pp.
1–10.

[20] G. Suh, C. O’Donnell, and S. Devadas, “AEGIS: a Single-Chip secure
processor,” IEEE Design & Test of Computers, vol. 24, no. 6, pp. 570–
580, 2007.

[21] C. Yin and G. Qu, “LISA: maximizing RO PUF’s secret extraction,” in
Hardware-Oriented Security and Trust (HOST), 2010, pp. 100–105.

[22] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA PUF using
programmable delay lines,” in IEEE Workshop on Information Forensics
and Security, 2010, p. in press.

[23] J. Guajardo, S. Kumar, G. Schrijen, and P. Tuyls, “FPGA intrinsic
PUFs and their use for IP protection,” in Cryptographic Hardware and
Embedded Systems (CHES), 2007, pp. 63–80.

[24] S. Devadas, E. Suh, S. Paral, R. Sowell, T. Ziola, and V. Khandelwal,
“Design and Implementation of PUF-Based ”Unclonable” RFID ICs for
Anti-Counterfeiting and Security Applications,” in Proceedings of 2008
IEEE International Conference on RFID (RFID 2008), May 2008, pp.
58–64.


