
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Reliable and fast estimation of recombination
rates by convergence diagnosis and parallel
Markov Chain Monte Carlo
Guo, Jing; Jain, Ritika; Yang, Peng; Fan, Rui; Kwoh, Chee Keong; Zheng, Jie
2013
Guo, J., Jain, R., Yang, P., Fan, R., Kwoh, C. K., & Zheng, J. (2013). Reliable and Fast
Estimation of Recombination Rates by Convergence Diagnosis and Parallel Markov Chain
Monte Carlo. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 99, 1.
https://hdl.handle.net/10356/80080
https://doi.org/10.1109/TCBB.2013.133

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. Published version of this article is available at
http://dx.doi.org/10.1109/TCBB.2013.133.CPLDhat is an open source Java program.

Downloaded on 23 Aug 2022 06:26:29 SGT

1

Reliable and Fast Estimation of
Recombination Rates by Convergence

Diagnosis and Parallel Markov Chain Monte
Carlo

Jing Guo1, Ritika Jain1, Peng Yang1,3, Rui Fan1, Chee Keong Kwoh1, and Jie Zheng1,2∗

Abstract—Genetic recombination is an essential event during the process of meiosis resulting in an exchange of segments

between paired chromosomes. Measuring of recombination rate is crucial for understanding evolutionary inference. Experimental

methods are normally difficult and limited to small scale estimations. Thus statistical methods using population genetic data are

important for large-scale analysis. LDhat is one of a few available statistical methods for large-scale datasets. It is an extensively

used program using rjMCMC algorithm for prediction of recombination rates. Due to the complexity of rjMCMC scheme, LDhat

is a resource-consuming algorithm that may take quite a long time to generate results, especially for large-scale SNP data.

In addition, rjMCMC parameters should be manually defined in the original program that directly impact results. To address

these issues, we designed an improved algorithm based on LDhat implementing MCMC convergence diagnostic algorithms to

automatically predict values of parameters and monitor the mixing process. Then parallel computation methods were employed to

further accelerate the new program. The new algorithms have been tested on ten samples from HapMap phase 2 datasets. The

results were compared with previous code and showed nearly identical outputs, however our new methods achieved significant

acceleration proving that they are more efficient and reliable for the estimation of recombination rates. The stand-alone package

is freely available for download at http://www.ntu.edu.sg/home/zhengjie/software/CPLDhat/.

Index Terms—Recombination hotspot; reversible jump MCMC; convergence diagnosis; parallel computation; genome instability

✦

1 INTRODUCTION

M EIOTIC recombination occurs in the pairing of
homologous chromosomes in meiosis leading

to the generation of novel gene combinations. The
transfer of genes from parents into offspring by ge-
netic recombination during meiosis is a major engine
of genetic variation [1]. The meiotic recombination
events break down the genealogical history within a
genome which is critical for analyses of genetic vari-
ations [2]. The improper segregation of chromosomes
can lead to aneuploidy, a significant risk factor for
fetal loss and developmental disability in humans [3].
In addition, deleterious variations can be removed
from the gene pool by recombination.

The rate and location of meiotic recombination have
implications for understanding of recombination pro-
cess and its evolution. They vary markedly between
species and among individuals. The estimation of the
rate at which recombination occurs can theoretically
provide guidance for biologists to explore biological

1 School of Computer Engineering, Nanyang Technological University,
Singapore
2 Genome Institute of Singapore, A*STAR (Agency for Science, Technol-
ogy, and Research), Biopolis, Singapore 138672
3 Institute for Infocomm Research, Agency for Science, Technology &
Research
∗ Correspondence: zhengjie@ntu.edu.sg

problems, e.g. gene targeting, mutation mechanisms
[4]. Tracking distance between two genes on a chro-
mosome by recombination rate could detect the pres-
ence of certain disease-causing genes [5].

Obtaining accurate prediction of recombination
rates could be challenging and prohibitively expen-
sive through direct experimental methods. Sperm typ-
ing produces high-resolution estimates; however, this
procedure is complex, only applicable for male [6],
and limited to small scale prediction. Hence, indi-
rect statistical methods are useful. Patterns of genetic
variation among DNA sequences have been used to
analyze recombination rate [7]. Hudson [8] proposed
a composite-likelihood estimator of the population
recombination rate that combines the coalescent like-
lihoods of all pairwise comparisons for segregating
sites. McVean, et al. [9] extended Hudson‘s method
to allow for a finite-sites mutation model, and also
introduced a likelihood permutation test. Later the
heterogeneity implied by recombination hotspots is
incorporated to improve the accuracy [10]. Li [11] de-
veloped a method considering all loci simultaneously
rather than pairwise comparisons based on an approx-
imation to the conditional likelihood (implemented in
PHASE). Instead of approximate likelihood method,
Wang [12] proposed a full-likelihood Markov chain
Monte Carlo method (implemented in InferRho).

2

The algorithm of [10] has been implemented in the
program LDhat package. It has been extensively used
for detection and calculation of variable recombina-
tion rates in population genetic data via composite
likelihood method. A typical change point scheme of
reversible jump Markov chain Monte Carlo (rjMCMC)
algorithm [13] is employed to predict the interval con-
stant rates. The final recombination rate is composed
of the morphology of hotspots and background rate.
Due to the complexity of rjMCMC scheme, LDhat is
a time-consuming program that would take several
hours to generate results. In addition, the accuracy
of the outputs and execution time are determined by
parameters of rjMCMC which can only be manually
specified by users. The rjMCMC parameters consist
of a set of numbers, including transition times, ini-
tial samples discarded called ‘burn-in‘ and sampling
frequency. Insufficient running would cause unstable
status of the Markov Chain. Conversely, over calcula-
tion would waste extra resources.

To address the above issues, we propose an im-
proved algorithm for the prediction of recombination
ratse based on LDhat. Firstly we evaluated the perfor-
mances of LDhat identifying the bottleneck of running
time and testified the impact of rjMCMC parame-
ters on recombination profile and time complexity.
Secondly, to avoid manually setting the parameters
of rjMCMC, we incorporated algorithms for MCMC
convergence assessment to automatically predefine
those arguments. In addition, the chain convergent
status is monitored during iteration process until it
reaches the target distribution. Then we made use
of parallel computation methods in order to further
speed up the process of calculation.

In order to evaluate our new algorithm, we utilized
10 sets of test samples extracted from HapMap phase
2 data. We compared the recombination profiles, run-
ning time and iteration numbers of the original LD-
hat program and our improved methods. The result
showed that our methods achieved significant speed-
up without affecting the accuracy of outputs. The
parallel computation method resulted in even more
significant reduction of execution time with identical
outputs.

2 METHOD

In this section, we analyzed the LDhat program to
identify the most time-consuming part. In addition,
we evaluated the influence of parameters, i.e. iteration
number and SNP number, on output profiles. In allu-
sion to rjMCMC scheme, we proposed an improved
algorithm applying MCMC convergence diagnostic
methods and parallel computation.

2.1 LDhat program analysis

LDhat (specifically, the rhomap program) employs the
rjMCMC algorithm which incorporates genomic poly-
morphisms to estimate the pairwise constant rates

by composite likelihood. Composite likelihood[8] is
an approximation of the coalescent likelihood [14]
which is more easily implemented and based on in-
dependent pairwise single nucleotide polymorphisms
(SNPs) to esitmate the recombination rate ρ. Ac-
cording to the composite likelihood estimator, the
maximum-likelihood estimate of ρ can be obtained
as the maximum product of conditional-likelihood
functions of all independent pairs in n samples. These
two-locus conditional-likelihoods of a fix n samples
can be precalculated and stored for future researches.

However, the ad hoc estimator have underestimated
the effects of mutations to genetic variation assuming
infinite site model whereby mutation rate θ tends to
be negligible. To address this problem, McVean et
al. extended Hudson‘s work to provide an improved
estimation procedure incorporating mutation models
[10]. Suppose that the population mutation rate θ is
constant across the sequence, it is estimated by Wat-
terson algorithm [15]. Then pairwise segregating sites
with 2 alleles are classified into equivalent sets for
further likelihood calculation. The execution burden
depends on the number of segregating sites with an
order of n3

seq , where nseq is the number of haplotypes.
Assuming that pairs of SNPs are independent, given
the number of haplotypes, all of the possible combi-
nations of allelic states could be consulted from tab-
ulated files which contain precalculated likelihoods.
Then the likelihood of each pair of segregating sites
is estimated over a grid extracted from those files.

In addition to the contribution of background rate,
the morphology of hotspots that reveals the relation-
ship between recombination and genome features [16,
17] is incorporated into the pseudoposterior distribu-
tion of recombination rate. The rjMCMC algorithm is
implemented to determine the parameters of the mu-
tation model, i.e. change-points of SNPs, background
rate, hotspot locations, hotspot heat and hotspot scale.

The scheme of rjMCMC algorithm is a typical
change point problem [13] (Appendix Table A.1). Set
L as the position of the last SNP, and let k be the
number of change-points drawn from a Poisson dis-
tribution. The locations of change points are si, where
0 < s1 < s2 < ... < sk < L. The recombination rate is
given by a step function x(.) on [0, L].

In the algorithm of LDhat, the interval background
rate hj on the jth block [sj , sj+1] is initialized with the
prior as exponential distribution, denoted as P (hj) ∼
Exp(φ). And the prior on the kth hotspot rate is
defined as a truncated double-exponential curve, pre-
sented as fk ∝ λLaplace(µ, b), where b is the central
position of hotspot. Two parameters λ and µ are
defined for evaluating the heat and scale of hotspots.
The priors on both of them are in gamma distribution,
i.e. λ ∼ Γ(α1, β1), µ ∼ Γ(α2, β2). The hyperparameters
α1, β1, α2, β2 were obtained by Maximum Likelihood
estimation to fit a gamma distribution to empirical
hotspot datasets [10]. The contribution of a recombi-

3

nation hotspot to the final recombination rate depends
on its relative location to blocks.

The mutation model is designed as four indepen-
dent random transitions for background model: (a)
‘death‘ of a randomly chosen block, (b) ‘birth‘ of a
new block at a randomly chosen location in [0, L],
(c) a change of the height of a randomly chosen
block, and (d) a change of the position of a randomly
chosen block. In addition, there are five transitions
for hotspot model: (a) ‘delete‘ of a randomly chosen
hotspot, (b) ‘insert‘ of a new hotspot at a randomly
chosen location in [0, L], (c) a change of the heat of a
randomly chosen hotspot, (d) a change of the scale of
a randomly chosen hotspot, and (e) a change of the
position of a randomly chosen hotspot.

According to the rjMCMC algorithm, mutations oc-
cur during each transition. To compute the Metropo-
lis-Hastings acceptance ratio, the recombination map
composed of constant rates and a pseudo-likelihood
of the data in each transition have to be calculated
which take most of the execution time. For N itera-
tions, the complexity of LDhat program scales with an
order of N×lseq , where lseq is the number of SNPs. For
large scale matrix, the running time of LDhat is pro-
hibitively lengthy. Moreover, in order to get accurate
recombination rate profiles, an appropriate setting of
parameters, specifically the number of iterations, is
critical to guarantee that a Markov chain reaches its
equilibrium distribution.

Therefore, we evaluated the influences of parame-
ters on LDhat. Two-sample Kolmogorov-Smirnov test
[18] is employed to compare two outputs. The control
object x is attained from the results of the same
dataset with 11 million iterations, 1,000,000 burn-
in and 2000 sample. The accuracy of the predicted
recombination profile x

′

with n intervals is estimated
by Kolmogorov-Smirnov statistic, defined as

KSZ =

√

n

2
max
i |xi − x

′

i|, where i = 0, 1, 2...n−1 (1)

Given rejection level α = 0.05, the reference

KSZref = 1.36
√

2

lseq . Firstly, a test dataset is applied

to examine the impact of the number of iterations on
execution time and recombination profile. Then we
use a group of datasets with different sizes to analyse
the correlation between data size and running time
with the same number of iterations. The running time
shows approximately linear correlations between the
number of iterations and data sizes which is consistent
with the analysis on LDhat complexity. In addition,
the accuracy of outputs is highly correlated with the
two parameters.

Thus in the original LDhat program, a major limita-
tion is that the parameters have to be defined by users
without references. Estimation of the parameters of
MCMC, such as the iteration number and the number
of discarded initial samples, is a critical issue for the

application of LDhat. To address the issue, several
algorithms have been developed to determine how
many steps are needed to ensure the convergence
of Markov chains. However, due to the complexity
and specialization, direct prediction of parameters is
only theoretically described and thus impractical [19].
Hence a variety of empirical tools for the diagnosis
of MCMC convergence which are well designed and
implemented are used, e.g. Gelman and Rubin diag-
nostic method [20], Brook and Giudici‘s method [21],
Raftery and Lewis diagnostic algorithm [22].

In the next section, we presented our convergence
diagnostic method based on the framework of Raftery
and Lewis diagnostic algorithm [22], thereby solving
the above major issue of LDhat, as well as speeding
up large-scale estimation of recombination rates. For
standard Markov Chain Monte Carlo algorithms, the
dimension of the parameter vector is fixed, whilst in
rjMCMC scheme it has varying dimensions. Normal
convergence assessment algorithms cannot be applied
directly to outputs from an rjMCMC sampler. Castel-
loe and Zimmerman‘s method extends the work of
[20] by encompassing all of the parameter spaces and
monitoring several parameters simultaneously [23]
which is especially designed for rjMCMC situation.
Thus we employed the method of Castelloe and Zim-
merman in this paper to monitor the status of Markov
chain.

2.2 Convergence diagnostic methods

Here we propose an improved algorithm for the pre-
diction of meiotic recombination rates which makes
use of convergence diagnostic methods. The original
LDhat program not only takes large amount of time
on calculation, but also requires users to specify the
values of parameters which cannot ensure the conver-
gence of Markov chains. Thus our main purpose is
to control the process of rjMCMC iteration to monitor
the Markov chain convergent status and supervise the
adaptation of parameters in order to accelerate the
mixing process and ensure the accuracy. To achieve
these goals, the key point is to determine the ap-
propriate number of iterations for the convergence of
Markov chains.

Raftery and Lewis diagnostic algorithm and Castel-
loe and Zimmerman convergence assessment method
are adopted in our program. The former is widely
used to predict the number of iterations, burn-in and
sample parameters in MCMC applications, and the
latter cannot predict parameters, but it is dedicated
for rjMCMC convergence diagnosis. In our program,
the numbers of iterations and burn-in are determined
by Raftery and Lewis diagnostic algorithm for a given
level of precision. Castelloe and Zimmerman‘s conver-
gence assessment method runs periodically to check
if the chain has reached its target distribution.

Firstly, a pilot chain is run with initial iterations. Us-
ing the output sample, Raftery and Lewis diagnostic

4

algorithm will generate a new Markov chain to pre-
dict how many steps are needed for each parameter
to get equilibrium status and how long the burn-in
should be. A reliable factor I will be calculated as
well. Values of I must be greater than 1, but when
I > 5 it often indicates problems [22]. Since a bad
starting value or high posterior correlations may cause
unreliable results, the estimations are just used as
references of initiate settings. The set of parameters
satisfying the threshold with the maximum number
of iterations will be chosen as the input arguments.
Sometimes all of the reliable factors are larger than 5.
In that case, none of the results are reliable. The mini-
mal iteration number is selected as the initial values of
parameters. Castelloe and Zimmerman convergence
assessment method will check the status repeatedly
to rectify the values.

Castelloe and Zimmerman‘s algorithm needs mul-
tiple testing chains running for certain steps. It is
particularly designed for rjMCMC convergence diag-
nosis. Since the solution dimention of rjMCMC is not
fixed, different models with variant sizes of parameter
vectors are generated. Markov chains transit between
these models. Thus the evaluation of the variations
within each sample, testing chains, different models,
could reflect the convergent status of whole Markov
chains.

Let C be the number of chains required by Castel-
loe and Zimmerman’s method, T be the number of
sweeps in each chian and θ be a vector of parameters.
M is the number of distinct models visited by any
chain. Rcm stands for the number of times model m
occurrs in chain c. The total variance V̂ is estimated
by

V̂ =
1

CT − 1

C
∑

c=1

M
∑

m=1

Rcm
∑

r=1

(θr
cm − θ̄

.

..)(θ
r
cm − θ̄

.

..)
′

(2)

where θ̄
.
.. is the average of all samples. Variation

within chains, variation within models and variation
within models and chains are defined as

Wc =
1

C(T − 1)

C
∑

c=1

M
∑

m=1

Rcm
∑

r=1

(θr
cm−θ̄

.
c.)(θ

r
cm − θ̄

.
c.)

′

(3)

Wm =
1

CT −M

C
∑

c=1

M
∑

m=1

Rcm
∑

r=1

(θr
cm − θ̄

.

.m)(θr
cm − θ̄

.

.m)
′

(4)

WmWc =
1

C(T −M)

C
∑

c=1

M
∑

m=1

Rcm
∑

r=1

(θr
cm−θ̄

.
cm)(θr

cm − θ̄
.
cm)

′

(5)
The above four factors reflect the convergence in

different levels. The convergence assessment algo-
rithm is used to check whether they reach the stable

states. Four ratios in equations (6), (7), (8) and (9)
are created to evaluate the chain mixing status. When
MPSRF1 and MPSRF2 are settled close to 1, V̂ and
Wc, Wm and WmWc are all settled approximately to
a common value, indicating that it has achieved the
desired distribution of convergence.

PSRF1 =
max eigen V̂

max eigen Wc
(6)

PSRF2 =
max eigen Wm

max eigen WmWc
(7)

MPSRF1 = max eigen [Wc]
−1

V̂ (8)

MPSRF2 = max eigen [WmWc]
−1

Wm (9)

The convergence algorithm needs to calculate the
inverse matrixes and eigenvalues. The complexities of
them are about O(n3), where n is the dimension of the
matrix, equal to the number of parameters. When the
diagnosis algorithm is frequently called with a large
number n, it may take considerable time. To accelerate
the process, a new parameter addon is defined to
control this process. It is initially set to 2 and will be
added by 5% of the number of SNPs in each round
of convergence diagnosis. Then the iteration number
will be set to addon times the estimated value. Once
the C chains are diagnosed as convergent, the final
output is generated by combining the results of all
chains.

In our improved program for estimating recombi-
nation rates, a convergence diagnostic model is in-
voked to estimate MCMC parameters and monitor the
convergence process. The computational workflow is
shown in Fig. 1.

Fig. 1. Workflow of convergence diagnosis model.

Instead of manually setting values, an automatic
definition process of parameters is initially run, then a
convergence diagnosis procedure repeatedly to check
the status. Finally, the results from each chain are
combined to a final recombination profile. Since the

5

rjMCMC assessment method requires multiple chains
for diagnosis, the sequential scheme would make
this new method even more time-consuming than
running a single chain when the iteration loop is
fixed. However, in most cases the iteration number is
unknown to users, thus we cannot directly compare
our improved method with the original program with
the same number of iterations.

2.3 Parallel method

Due to the increasing availability of cheap computing
power, parallel computing has received impetus. It
has long been employed for scientific computing.
Next, we are concerned with parallel implementation
of MCMC in the context of accelerating our conver-
gence diagnostic method.

Current algorithms for parallelizing MCMC can
be classified into two main categories: one is paral-
lelization of a single chain, and the other is parallel
generation of multiple different chains [24]. Concep-
tually, parallel processing can be applied to almost
any problem. However, MCMC is not easy to run in
parallel owing to its serial nature. Due to the tight
synchronization requirements of MCMC, the single-
chain parallelization strategy requires considerable
modification of the serial algorithm [25]. While the to-
tal iterations could be divided by multiple processors
due to the independence nature of samples [25]. We
concentrate on introducing a parallel algorithm that
signicantly decreases the execution time on multiple
short Markov chains.

Assuming that each iteration takes roughly the
same time to compute, an iteration may be used as a
unit of time. Since the samples collected from MCMC
chains are independent, it is possible to allocate the
n required samples to N available processors, where
the same program is run on each processor.

For a long chain the burn-in only happens once,
whereas for several short chains, each must have a
respective burn-in, resulting in many wasted sam-
ples [25]. With increasing numbers of processors, the
performance of parallel computation becomes limited
owing to redundant burn-in. Thus the issue of burn-in
is of particular concern in a parallel computing envi-
ronment. Here we make each process with the same
burn-in phase identical with the sequential program.

We take advantage of parallel computation inte-
grating convergence diagnosis model. The scheme of
integrated method is nearly the same as convergence
diagnosis program except that the convergent diag-
nostic tasks are divided by N processors. Each of the
C diagnostic chains is run on N/C processors. The
algorithm for parallel simulation of a single Markov
chain can be described in Fig. 2.

The theoretical speed-up is proportioned to the
number of processors. However, due to the burn-in
overhead, if N processors run one chain with a burn-

Fig. 2. Parallel algorithm for a single Markov chain.

in of b and n total iterations, then b+ (n− b)/N iter-
ations are allocated for each chain. When neglecting
the communication time between processors and the
handling time on file combination, it gives an optimal
speed-up of

SpeedUp1(N) =
n

b+ n−b
N

(10)

Let n = 10b, then SpeedUp1(5) = 3.5714,
SpeedUp1(8) = 4.7059. However, when using 10 pro-
cessors, there is only 5-fold speed-up indicating that
the effect of parallel computation on large clusters
becomes limited. Theoretically, due to the burn-in, it
could reach a maximum of 10 times speed-up, when
N → ∞. Furthermore, effective utilization of multiple
processors is also limited due to the aggregation of
communication time.

Based on a single chain parallel algorithm, the C
diagnostic chains are divided into multiple sub-tasks.
In Fig. 3, it shows the strategy of the parallel approach
employed in our program. Each processor runs inde-
pendent copies of the program with n/N iterations,
and generates individual output files. The length of
burn-in period keeps the same ratio with sequential
execution. These numerous files are then compiled
to obtain the final outputs of diagnostic chains for
convergence evaluation. The implementation of this
approach is done using OpenMPI programming lan-
guage for communicating messages between multi-
core processors.

Suppose that C parallel chains run on N processors
with consistent burn-in of b and n total iterations, then
n/C iterations and N/C processors are assigned to
each chain. This gives a speed-up of

SpeedUp2(N) =
n

b+ n/C−b
N/C

(11)

Empirically n = 10bC, C = 5 is a useful rule-of-
thumb. We can get SpeedUp2(5) = 5, SpeedUp2(10) =
9.09, SpeedUp2(20) = 15.38 with a maximum speed-
up of 50 theoretically.

Another issue we have addressed is the random
number generator. The correlation among random
number streams on separated processors should be
reduced by assigning identical random number seeds

6

Fig. 3. Parallel algorithm for multiple chains.

to each machine [26]. The original LDhat program
uses the default random number generator provided
by the C language. It can only be used by one pro-
cessor at a time. The other processors need to wait
for their turn to obtain the random number losing
the benefit of parallelization. Since each loop of the
program requires random number generation over ten
times, the over-all impact of improving the random
number generator can be very significant. A sophis-
ticated approach is to change the random number
generator to SIMD-Oriented Fast Mersenne Twister
(SFMT), which supports multicore parallel random
number generation and has been shown suitable for
use in Monte Carlo simulations [27]. Therefore we
replace the random number generator in order to
make it applicable for parallel computation.

3 RESULTS

To investigate the performance of the new method, we
conducted two comparison studies. Since the program
is used for fundamental genetics studies, it is impera-
tive that the optimization techniques used do not af-
fect the results. The new program should expedite the
calculation process meanwhile retaining the accuracy.
Not only the recombination rates but also the change
positions should be predicted within the acceptable
deviation. Hence we analyzed recombination profiles,
running time and iteration numbers to evaluate the
performance of the new method. We use LDhat to refer
to the original LDhat implementation, CLDhat to refer
to the convergence method, and PLDhat to refer to the
parallel approach.

Ten sets of test data with equal iterations are used
to evaluate the performance. They are drawn from hu-
man genomes with different numbers of haplotypes,
SNPs and sequence lengths (Table 1). In the first study,
we compared recombination profiles on outputs of 10
datasets by LDhat, CLDhat and PLDhat. In the second

TABLE 1

Test datasets

Datasets Haplotypes SNPs Length(kb)
Test1 48 61 9.730
Test2 180 100 38.771
Test3 120 110 35.449
Test4 50 251 504.492
Test5 120 401 796.496
Test6 70 520 1102.571
Test7 70 610 983.183
Test8 60 790 1385.201
Test9 60 850 1437.376

Test10 50 1000 2643.03

study, the execution time and the number of iterations
are compared to show the efficiency of our improved
programs.

The experiments were implemented on an IBM
cluster of 24 quan-CPU 2.53 GHz Intel Xeon Linux
Systems, connected to each other by 100Mbps Ether-
net connections.

3.1 LDhat analysis

Before the comparison studies, we analyzed the influ-
ence of parameters, i.e. the numbers of SNPs and iter-
ations, on execution time and recombination profiles.
Firstly, a test dataset with 61 SNPs is used to examine
the effect of iteration number on output profiles and
execution time. The iteration numbers are set 3000,
6000, 10000, 15000 and 18000 respectively. Assuming
that each mutation transition consumes the same time,
the iteration loop in Line 6 of LDhat pseudocode
(Appendix Fig. A.1) constructs the main component
of rjMCMC leading to a significant linear correlation
between iterations and execution time. The compari-
son results in Fig. 4a shows an approximately linear

7

Fig. 4. Execution time(a) and KSZ(b) analysis on

61SNP test dataset with different iterations. The red

line in (b) represents the reference KSZ value for the

datasets with an acceptance probability of 0.95.

relationship with r = 0.992. Thus controlling the
loop length is important for the speed-up of LDhat.
With increasing iterations, the KSZ value decreases
gradually (Fig. 4b) indicating that the Markov chain
is close to the target distribution. However, when the
iteration is set too small, e.g. less than 6000, in this
case, a deviation occurs in the output profile. On
the contrary, over calculation with a large number of
iterations would waste computational time without
gain of additional information.

We analyzed the correlation between the number
of SNPs and execution time, the number of SNPs and
recombination profile with a fixed iteration number
10000. As demonstrated above, the time complexity
of LDhat has a linear correlation with the number
of SNPs (Fig. 5a, r=0.999). The red line in Fig. 5b
shows the threshhold of KSZ values for different
SNPs with an acceptance value of 0.95. For small scale
datasets, the setting of 10000 iterations is enough for
the convergence of markov chains. When the number
of SNPs exceeds 400, more training is required to
make the chains reach the target distribution.

3.2 Comparison of recombination profiles

In the first study, we conduct experiments to compare
recombination profiles of LDhat, CLDhat and PLDhat
on the 10 datasets in Table 1. For all datasets, LDhat
is running for 11 million iterations, and the initial

Fig. 5. Execution time(a) and KSZ(b) analysis on differ-

ent size of test datasets with the same iterations. The

red line in (b) represents the reference KSZ value for

the individual dataset with an acceptance probability of

0.95.

1,000,000 samples are discarded as burn-in. Samples
of the chain are taken every 2,000 iterations after
the burn-in. Then the output recombination rates are
recorded as control groups to evaluate other methods.
By contrast, we don‘t have to specify the numbers of
iteration, burn-in and samples in the CLDhat method.
By convention, 5 chains are generated to check the
mixing status [28].

For PLDhat, the sequential procedure is divided
into 5 parallel tasks making use of 15 processors.
One processor operates as the master running the
Raftery and Lewis diagnostic algorithm to estimate
the parameters and control the process of convergence
assessment. Every 3 processors are applied to generate
a single chain with parameters received from master
processor.

Comparing the output graphs, the CLDhat and
PLDhat methods got almost the same figures as the
original program (Appendix Fig. A.1). Although the
peak values are slightly changed in some points, the
outputs showed high correlation coefficients among
the three methods. The error is acceptable by KS test
(see methods). Fig. 6 shows the KSZ of 10 datasets
for our improved methods with reference values in
red line. In most cases, the KSZ values of CLDhat
are smaller than PLDhat. This may be due to the loss
of accuracy in frequent ‘split-and-combine‘ process
during parallel computation. But for small datasets, it
converges more quickly with no need for frequently

8

Fig. 6. KSZ values on the 10 datasets by CLDhat and

PLDhat. The red line indicates reference values.

calling diagnosis and combination. Even so, both the
outputs of CLDhat and PLDhat are under the threshold
indicating the accuracy of our new methods.

Take Test 2 for instance. Fig. 7a shows the posterior
distribution of the number of hotspots. More than
50% of models contain 3 hotspots. Conditional on
values of hotspots k=3 and 4, Fig. 7b shows the
posterior densities of the step positions. The positions
of three hotspots are accurately identified. The density
estimates are obtained using a Gaussian kernel with
standard deviation.

3.3 Comparison of running time

In the second study, the total time consumed by LDhat
and the improved methods on the 10 datasets are
shown in Fig. 8a (details in Appendix Table A.2). The
execution time was tremendously decreased when
using our new methods. There are almost 80 times
speed-up in CLDhat. Using PLDhat on 15 processors,
we got 622 times acceleration. In Fig. 8b, it shows
the separate running time of each test data for LDhat,
CLDhat and PLDhat. As the number of SNPs increases,
our methods take a linear growth in time which is
consistent with previous analysis in section 2.1.

Unlike LDhat program, CLDhat method is a non-
parameter approach under rjMCMC scheme. It is a
more reliable and faster method. The mixing process
is automatically monitored and checked periodically
for convergence. So the MCMC chain could reach the
equilibrium distribution rapidly in moderate iteration.
In Table 2, the iteration numbers of test datasets by
CLDhat are significantly decreased compared with
LDhat leading to an expressively optimization of time
efficiency. The PLDhat approach has successfully ob-
tained more significant speed-up than CLDhat.

We replace the original random number generator
with SFMT for parallel computation. Since the pro-

Fig. 7. Posterior distribution of the number of hotspots

(a) and posterior density estimates of positions of

hotspots (b), conditional on the number of hotspots

k=3(solid curve) and k=4(broken curves).

gram frequently requests for random number gen-
eration and SFMT is an efficient and faster random
number generator, the replacement of original func-
tion reaches approximately 3 times speed-up (data not
shown). For large datasets, such as the calculation of
Test 7-10, they take more iterations for convergence
when the accelerating effect by parallel becomes more
apparent.

The parameter addon controls the span length of
each diagnosis round that correlates with the number
of SNPs which makes large datasets mix faster. Con-
versely, this jumping scheme is suboptimal for small
datasets.

4 DISCUSSION AND CONCLUSIONS

The main purpose of optimization of LDhat is to
decrease the time complexity and increase the accu-
racy and reliability of output recombination profiles.
Besides, there are no strategy to set the rjMCMC
parameters in the original LDhat program, such as

9

Fig. 8. Total running time(a) and seperate execution

time(b) on the 10 datasets by LDhat, CLDhat and

PLDhat.

TABLE 2

Iterations by CLDhat and PLDhat

Datasets CLDhat PLDhat
Test1 156109 22561
Test2 185691 23768
Test3 293663 33746
Test4 297257 68746
Test5 390294 108746
Test6 1525275 144821
Test7 2395086 158746
Test8 3215746 297466
Test9 3695314 396121

Test10 4721811 447752

the iteration number, burn-in length and sample fre-
quency. The bottleneck identified as the main loop in
the original LDhat program is normally suggested to
carried out a million iterations or more which may
result in over calculation or insufficient running.

In this paper, we exploited MCMC convergence

diagnostic algorithms and proposed two improved
methods based on LDhat. A major advantage of the
new methods is significant acceleration compared
with original program. In addition, the parameters
are automatically estimated by our algorithms and
only depend on input data. The mixing process is dy-
namic and monitored until the Markov chain reaches
its target distribution. This could avoid unnecessary
consumption of resources while also guarantees the
accuracy of outputs.

Although the running time of the convergence
method is tremendously decreased compared to the
original program, it was further improved by im-
plementation of parallel computation method due to
the sequential scheme of the generation process of
diagnostic chains. Hence we developed a parallel
algorithm to allocate separate tasks to individual pro-
cessors running a single chain in parallel. It achieves
significant speed-up.

The outputs of the above two methods were com-
pared with the original LDhat program which showed
similar output graphs. Since the results were gen-
erated through strict convergence assessment pro-
cedure, our methods achieved low values of KSZ
(i.e. high accuracy) in much less iterations presenting
extraordinarily similar recombination rate profiles.

Therefore our improved programs provide efficient
and accurate methods for recombination rate
prediction. Especially the parallel program provides
a practicable, time saving and effective method.
The improved methods, CLDhat and PLDhat,
including the original LDhat (rhomap) program are
implemented in a stand-alone package written in
Java which is freely available for download at web site
http://www.ntu.edu.sg/home/zhengjie/software/C-
PLDhat/. It could run in both Linux and Windows
OS.

APPENDIX A

Table A.1. Pseudocode of reversible jump MCMC
algorithm in LDhat.
Table A.2. Execution time on 10 datasets by LDhat,
CLDhat and PLDhat.
Fig. A.1. Comparison of recombination profiles for 10
datasets by LDhat, CLDhat and PLDhat.

ACKNOWLEDGMENTS

This project is supported in part by Singapore Min-
istry of Education (MOE) AcRF Tier 1 Grant RG32/11.

REFERENCES

[1] E. Shabanova, Patterns of genetic recombination and variation in
the human genome ,Universitt zu Kln, 2009.

[2] J. C. Avise, Phylogeography: the history and formation of
species: Harvard University Press, 2000.

[3] B. L. Dumont, and B. A. Payseur, Genetic analysis of genome-scale
recombination rate evolution in house mice ,PLoS genetics, vol. 7,
no. 6, pp. e1002116, 2011.

10

[4] U. Mller, Ten years of gene targeting: targeted mouse mutants, from
vector design to phenotype analysis ,Mechanisms of development,
vol. 82, no. 1, pp. 3-21, 1999.

[5] N. J. Risch, Searching for genetic determinants in the new millen-
nium ,Nature, vol. 405, no. 6788, pp. 847-856, 2000.

[6] R. Hubert, M. MacDonald, J. Gusella, and N. Arnheim, High
resolution localization of recombination hot spots using sperm typing
,Nature genetics, vol. 7, no. 3, pp. 420-424, 1994.

[7] R. A. Gibbs, J. W. Belmont, P. Hardenbol, T. D. Willis, F. Yu,
H. Yang, L.-Y. Ch’ang, W. Huang, B. Liu, and Y. Shen, The
international HapMap project ,Nature, vol. 426, no. 6968, pp. 789-
796, 2003.

[8] R. R. Hudson, Two-locus sampling distributions and their applica-
tion ,Genetics, vol. 159, no. 4, pp. 1805-1817, 2001.

[9] G. McVean, P. Awadalla, and P. Fearnhead, A coalescent-based
method for detecting and estimating recombination from gene se-
quences ,Genetics, vol. 160, no. 3, pp. 1231-1241, 2002.

[10] A. Auton, and G. McVean, Recombination rate estimation in the
presence of hotspots ,Genome research, vol. 17, no. 8, pp. 1219-
1227, 2007.

[11] N. Li, and M. Stephens, Modeling linkage disequilibrium and iden-
tifying recombination hotspots using single-nucleotide polymorphism
data ,Genetics, vol. 165, no. 4, pp. 2213-2233, 2003.

[12] Y. Wang, and B. Rannala, Bayesian inference of fine-scale re-
combination rates using population genomic data ,Philosophical
Transactions of the Royal Society B: Biological Sciences, vol.
363, no. 1512, pp. 3921-3930, 2008.

[13] P. J. Green, Reversible jump Markov chain Monte Carlo computa-
tion and Bayesian model determination ,Biometrika, vol. 82, no. 4,
pp. 711-732, 1995.

[14] P. Beerli, and J. Felsenstein, Maximum-likelihood estimation of
migration rates and effective population numbers in two populations
using a coalescent approach ,Genetics, vol. 152, no. 2, pp. 763-773,
1999.

[15] G. Watterson, W. J. Ewens, T. Hall, and A. Morgan, The
chromosome inversion problem ,Journal of Theoretical Biology, vol.
99, no. 1, pp. 1-7, 1982.

[16] A. J. Jeffreys, A. Ritchie, and R. Neumann, High resolution
analysis of haplotype diversity and meiotic crossover in the human
TAP2 recombination hotspot ,Human Molecular Genetics, vol. 9,
no. 5, pp. 725-733, 2000.

[17] M. I. Jensen-Seaman, T. S. Furey, B. A. Payseur, Y. Lu, K.
M. Roskin, C.-F. Chen, M. A. Thomas, D. Haussler, and H. J.
Jacob, Comparative recombination rates in the rat, mouse, and human
genomes ,Genome research, vol. 14, no. 4, pp. 528-538, 2004.

[18] H. W. Lilliefors, On the Kolmogorov-Smirnov test for normality
with mean and variance unknown, Journal of the American Sta-
tistical Association, vol. 62, no. 318, pp. 399-402, 1967.

[19] M. Plummer, N. Best, K. Cowles, and K. Vines, CODA: Con-
vergence diagnosis and output analysis for MCMC ,R news, vol. 6,
no. 1, pp. 7-11, 2006.

[20] A. Gelman, and D. B. Rubin, Inference from iterative simulation
using multiple sequences ,Statistical science, pp. 457-472, 1992.

[21] S. Brooks, and P. Giudici, Markov chain Monte Carlo convergence
assessment via two-way analysis of variance ,Journal of Computa-
tional and Graphical Statistics, vol. 9, no. 2, pp. 266-285, 2000.

[22] A. E. Raftery, and S. Lewis, How many iterations in the Gibbs
sampler ,Bayesian statistics, vol. 4, no. 2, pp. 763-773, 1992.

[23] J. M. Castelloe, and D. L. Zimmerman, Convergence assessment
for reversible jump MCMC samplers ,Department of Statistics and
Actuarial Science, University of Iowa, Technical Report, vol.
313, 2002.

[24] J. Ye, A. M. Wallace, A. Al Zain, and J. Thompson, Parallel
Bayesian inference of range and reflectance from LaDAR profiles
,Journal of Parallel and Distributed Computing, 2012.

[25] D. J. Wilkinson, Parallel bayesian computation ,STATISTICS
TEXTBOOKS AND MONOGRAPHS, vol. 184, pp. 477, 2006.

[26] A. Brockwell, Parallel Markov chain Monte Carlo simulation by
pre-fetching ,Journal of Computational and Graphical Statistics,
vol. 15, no. 1, pp. 246-261, 2006.

[27] M. Saito, and M. Matsumoto, SIMD-oriented fast Mersenne
Twister: a 128-bit pseudorandom number generator, Monte Carlo
and Quasi-Monte Carlo Methods 2006, pp. 607-622: Springer,
2008.

[28] M. K. Cowles, and B. P. Carlin, Markov chain Monte Carlo
convergence diagnostics: a comparative review, Journal of the Amer-
ican Statistical Association, vol. 91, no. 434, pp. 883-904, 1996.

11

APPENDIX A

TABLE A.1

Pseudocode of Reversible Jump MCMC Algorithm in LDhat.

Input: (mydata,mylikelihood,Nits, Nburn, Nsample), where mydata → lseq is the number of SNPs, mylikelihood → lij
contains the composite likelihood of data, Nits, Nburn, Nsample stand for the numbers of iteration, burn-in and sample.
1: Set the current model indicator as M = (Mblock,Mhotspot)
2: Initialize Nblock = lseq − 1, hj ∼ Exp(φ), where j ∈ [0, Nblock − 1]
3: Initialize Nhotspot = 0, fk ∼ λLaplas(µ, b), where k ∈ [0, Nhotspot − 1]
4: Set interval rate rmap[j] = hj + fk , where fk is the contribution from hotspot in [sj , sj+1]
5: Estimate the log likelihood ratio and update lij
6: For i = 0 to Nits then
7: ∆ block model
8: Draw a uniform random variable u ∼ U(0, 1)
9: if u < bk then
10: Do death move

11: M
′

block
= Mblock − 1

12: Procedure Metropolis-hasting sampling (M,M ‘)
13: Update rmap and lij
14: Compute the acceptance probability α(M,M ‘)
15: Draw a uniform random variable u ∼ U(0, 1)
16: if i < α then
17: Accept the proposal state and set (M,M ‘)
18: else
19: Remain in current state
20: end if
21: Metropolis-hasting sampling (Mblock,M

‘
block

)
22: else if u < bk + dk then
23: Do birth move

24: M
′

block
= Mblock + 1

25: Metropolis-hasting sampling (Mblock,M
‘
block

)
26: end if
27: Do height change move

28: M
′

block
= Mblock

29: Metropolis-hasting sampling (Mblock,M
‘
block

)
30: Do position change move

31: M
′

block
= Mblock

32: Metropolis-hasting sampling (Mblock,M
‘
block

)

33: ∆ hotspot model
34: if i > Nburn/4 then
35: Draw a uniform random variable u ∼ U(0, 1)
36: if u < h bk then
37: Do delete move

38: M
′

hotspot
= Mhotspot − 1

39: Metropolis-hasting sampling (Mhotspot,M
‘
hotspot

)

40: else if u < h bk + h dk then
41: Do insert move

42: M
′

hotspot
= Mhotspot + 1

43: Metropolis-hasting sampling (Mhotspot,M
‘
hotspot

)

44: end if
45: Do heat change move

46: M
′

hotspot
= Mhotspot

47: Metropolis-hasting sampling (Mhotspot,M
‘
hotspot

)

48: Do position change move

49: M
′

hotspot
= Mhotspot

50: Metropolis-hasting sampling (Mhotspot,M
‘
hotspot

)

51: Do scale change move

52: M
′

hotspot
= Mhotspot

53: Metropolis-hasting sampling (Mhotspot,M
‘
hotspot

)

54: if i > Nburn and i%Nsample == 0 then
55: Save the current rmap
56: end if
57: end if
58:end for

12

TABLE A.2

Execution time(second) on the 10 datasets by LDhat, CLDhat and PLDhat
∗.

Datasets LDhat CLDhat PLDhat ratio(CLDhat/PLDhat)
Test1 5450.75 14.716 4.16 3.5
Test2 7034.23 33.076 19.246 2.2
Test3 7435.58 42.304 22.61 1.5
Test4 16749.4 64.646 28.87 2.2
Test5 27033.9 81.928 34.61 2.4
Test6 31664.5 281.322 74.22 3.8
Test7 38172.7 466.916 82.71 5.6
Test8 46151.5 671.952 91.85 7.3
Test9 54725.6 848.074 117.4 7.2

Test10 67595.6 1221.232 137.18 8.9
∗ Parallel program is running on 15 processors.

13

Fig. A.1. Recombination rate profiles comparison for the 10 datasets by LDhat, CLDhat and PLDhat.

