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Abstract—Our work evaluates the use of software-defined
networking (SDN) for reliable communication. Reliable com-
munication has become an important topic in many areas,
including energy communication networks or, more generally,
automation control networks. Electrical grids are developing into
smart grids, which depend heavily on reliability, robustness and
optimized resource usage. On the other side, the separation of
communication and network control proposed by SDN opens
new possibilities for reliable and flexible networks. In this work,
we show how OpenFlow, the leading SDN framework, could
be used to solve the problem of robust multicast better than
existing technologies used by substations. Our solution uses the
fast-failover groups feature of OpenFlow to provide one-link fault
tolerance with little packet loss and can provide routes that use
resources efficiently and are less likely to fail. Robust shortest
path routing and minimum spanning tree broadcast routing come
as special cases. We also show how this solution can be extended
to handle more link failures (even an arbitrary number of them)
or to provide more efficient routes.

Index Terms—Fault tolerant, Reliability, Software-Defined Net-
working, Multicast, Power Systems, Automation

I. INTRODUCTION

Electrical grids worldwide are developing into so-called
smart grids. Smart grids will need to rely heavily on modern
information and communication technologies to ensure reli-
ability, robustness and optimized resource usage. One center
piece for automation and communication in modern power
systems at substation level is the IEC 61850 standard [1]. Two
main communication protocols in the standard are GOOSE
(Generic Object Oriented Substation Event) and SV (Sampled
Values). For both protocols transfer time is strictly regulated by
IEC 61850 and extended packet loss can lead to critical system
conditions. Additionally, both message types are usually sent
as multicast traffic. These issues make efficient and reliable
delivery of messages a complex task.
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Software-Defined Networking proposes the separation of
control layer and data layer of the communication network
and uses one or more central controllers that instruct com-
paratively simple network devices how to forward packets in
the network. As the controller can have a complete and up-
to-date view of the entire network, policies can be globally
optimized and implemented in form of network applications
that run on top of the controller which automatically and
centrally deploys suitable forwarding rules in the network
devices. This new approach can offer multiple advantages over
existing solutions that are based on traditional technologies.
Potential advantages include centralized network management
and deployment of network configurations, simplified testing,
increased robustness, reliability and bandwidth through traffic
engineering and fast failover, and finally increased security
through traffic isolation and rerouting of traffic flows for
inspection purposes. Today, the main standard for SDN is the
OpenFlow specification [2].

Advantages related to auto-configuration and security in
substation environments using OpenFlow have been studied in
[3]. We concentrate on the efficient delivery of multicast traffic
and fault tolerance instead, two features that can be imple-
mented using the traffic engineering capabilities of OpenFlow
and so-called fast-failover groups. Because efficient multicast
is a difficult problem, very few current technologies implement
and use it, relying instead on less efficient techniques such as
flooding or multiple unicasts. Through the use of central con-
figuration and traffic engineering, software-defined networking
simplifies the implementation of efficient multicasting. And to
increase robustness, fast-failover groups are used. They are
supported since OpenFlow version 1.1 and are ordered lists
of actions which are associated with ports. Only the action
that is associated with the first active port is executed. In
the case that actions consist of simple send commands, an
incoming packet would thus be send out once through the first
active port. This is a simple, but very powerful local failover
mechanism without the need of controller intervention that
can be used to build network recovery solutions without re-
convergence phases which are typical of spanning-tree based
algorithms used in traditional networks. It has been shown [4]
that fast-failover groups can allow network recovery within
tens of milliseconds, being therefore equal or probably better



in performance than for example the Rapid Spanning Tree
Protocol, one of the most commonly used fault tolerance
mechanisms nowadays, which can have recovery times ranging
up to multiple seconds [5].

In this work we implement a robust multicast forwarding
solution for substation environments using OpenFlow. In the
following sections we describe i) the related work in the
area ii) our approach to implement efficient multicast and
fault tolerance in the network iii), our system’s building
blocks, from network description to final automatized switch
configuration, and iv) the simulation results of our system
in Mininet [6], a network simulator for OpenFlow networks.
Though the implementation described here only handles single
link faults, we also indicate how our approach can be expanded
to handle multiple link or node faults.

II. EXISTENT WORK

In [7], we find a survey of existent algorithms used for fault-
tolerance in IEC 61850. Of these, the most well known is the
Rapid Spanning Tree Protocol (RSTP), which can achieve sub-
second fault tolerance for small networks. Unfortunately, this
is not always the case, and the so called convergence phase will
last more than a second in more complex topologies, which
is unacceptable in many situations in a substation, where high
availability is a must. To solve this issue, other algorithms have
been proposed. The Media Redundancy Protocol (MRP) is
sub-second in the worst case scenario, but can only handle ring
topologies (proprietary additions can extend this to multiple
rings). The Parallel Redundancy Protocol (PRP) and the High
Availability Seamless Redundancy (HSR) achieve, on the other
hand provide instant fault-tolerance, but at the cost of flooding
the network with redundant packets. Our solution differs of
these protocols by providing sub-second recovery, depending
basically on the speed of physical layer to identify faults, in
any topology without resorting to flooding. Besides, it provides
efficient multicast route calculation, which is not part of the
standard Ethernet technology.

There has already been some interest in fault-tolerant mul-
ticast form the OpenFlow/SND community. We cite here the
FatTire [8] project as an example of fault-tolerance using
OpenFlow’s fast-failover groups. They define a syntax for
route description and fault-tolerance level description and
then propose a compiler to transform these statements onto
an OpenFlow configuration. Their compilation involves the
calculation of a forwarding graph, which is similar to our
problem restatement approach for generic fault-tolerance. Un-
fortunately, the authors do not address the problem of multicast
in this paper. Robust multicast has already been treated for
OpenFlow 1.0 in [9]. Since version 1.0 does not support fast-
failover groups, the proposed approach is completely reactive
(i.e. the OpenFlow controller needs to act) and therefore is
much slower than a solution that uses fast-failover groups,
where fault management is done locally. Recently, a new work
using fast-failover groups to solve fault-tolerance appeared
[10]. This new approach can additionally deliver QoS to the

network, but resorts to optimization algorithms to calculate
the network configuration, which have a high computational
cost. Our approach, on the other hand, does not guarantees any
QoS, but uses only standard graph theory algorithms, which
are known to be efficient and scalable. As we will show later,
this allows us to build a scheme for unlimited fault-tolerance
with OpenFlow (given topology constraints, naturally). As a
last note on [10], the authors use OpenState, a non-standard
and up to now unimplemented extension to OpenFlow, while
we use the standard OpenFlow version 1.3, which already has
commercial implementations, even though with shortcomings
[4].

III. APPROACH TO MULTICASTING

The implementation of a fault-tolerant multicast forwarding
scheme is a twofold problem: one must first know how to
route packets correctly in the network and then have measures
in place for the case of failures. We discuss how to realize
efficient multicast forwarding using OpenFlow in this section
and how to integrate fault tolerance in our solution in the
next. The core problem in multicasting is to forward the
same information from a publisher to multiple subscribers.
Using naive approaches, multicast can be achieved by either
simply flooding the packet to all hosts in the network or by
cloning the packet at the source and then forward each clone
to one subscriber using some unicast technique. While the first
solution squanders the bandwidth of the whole network (and
possibly leads to security problems, as hosts receive informa-
tion not addressed to them), the second one saturates links
with identical copies of the same packet. The best solution is
therefore to clone the packets on the way to the subscribers
only when strictly necessary. This ensures that each link will
forward the same packet only once and that no host that is not
a subscriber receives it. To achieve an even more efficient use
of the resources, it can be tried to minimize the number of links
used for the multicast transmission. Minimizing the number of
links also makes the communication more robust to failures.
If failures in the network are identical and independent with
equal failure probability p, the probability of a failure in
the transmission to any subscriber is 1 − (1 − p)n, where
n is the number of links through which information flows.
Thus minimizing the number of used links also minimizes the
probability of failure for any p.

The problem of connecting groups of nodes in a graph using
the minimum number of links, or, more generally, using the
links that add up to a minimum weight, is known as the Steiner
tree problem. Unfortunately, this problem is long known to be
NP-hard [11]. However, there are efficient approximations with
polynomial runtimes available. A 2-approximation is described
in [12]. It generates a solution that uses at most twice the
number of minimally necessary links. The approximation is
based on calculating the distances between all pairs of nodes
in a multicast group (consisting of all subscribers and the
publisher) and constructing a complete graph whose nodes
are the multicast group members and whose edge weights



are the distances between them, the so-called closure graph
of the group. The approximate solution to the Steiner tree is
then obtained by calculating the minimum spanning tree in the
closure graph and mapping the selected edges into the paths
they represent in the original graph. Note that there are other
approximations that are faster or improve the quality of the
solutions (e.g. [13] or [14]), however the used 2-approximation
is simple to implement and already achieves valuable results1.
The result of a 2-approximation in our test topology is simlare
to the Fig. 2.

IV. APPROACH TO FAULT TOLERANCE

A. Reactive, Proactive and Hybrid Approaches

Fault tolerance in OpenFlow can be achieved in two ways:
reactively or proactively. In a reactive fault tolerance scheme,
the OpenFlow controller is responsible for recalculating the
configuration rules only when a fault occurs. The main advan-
tage of this scheme is that it is possible to achieve strong fault
tolerance because the solution can continuously reconfigure
the network in the case of multiple faults. However, this
technique can also be too slow for real-time applications, as
it requires the switches to transmit an OpenFlow message
warning the controller of the fault and the controller to
recalculate the forwarding rules and send them to the switches.
These are time consuming operations and in the meantime the
switches could be dropping or delaying packets. The strategy
adopted in [9] is an example of a (mainly) reactive fault
tolerance.

In a proactive fault tolerance scheme, the controller preemp-
tively installs all rules and groups necessary for managing a
fault. This is possible due to the fast-failover groups introduced
in version 1.1 which allow an OpenFlow switch to change
its forwarding behavior by itself when a port goes down.
Since the detection of a port down event is very simple and
performed directly in the switch, this approach has very low
reaction times. Its main disadvantage is that it achieves fault
tolerance against multiple faults only at the price of higher
resource usage in the switches as all possible relevant failure
scenarios need to be considered and all possible reactions
pre-installed, most of which will never be executed. Thus,
it is difficult to scale this approach to big networks while
maintaining high levels of fault tolerance. One of the first
works to take advantage of fast-failover groups is FatTire [8].

A hybrid approach to fault tolerance would be the best in
terms of robustness and rational use of switch resources. We
propose making the network proactively tolerant to one fault,
so that failover times are very low and there is very little
packet loss on disconnection, but we also propose that the
network be able to reconfigure itself to the new topology after
the failure. This is similar to the approach described in [9] ,
however we take advantage of local fault recovery which does

1It bounds probability of failure for a route to the double of the optimal.
Besides, the 2–approximation is exact for unicast and broadcast. Also , it is
very good for a small number of nodes (see [12]).

not require communication with the controller during failover.
With such a hybrid approach, the network is not only tolerant
to a fault with extremely low reaction times, but it is also able
to restore bandwidth efficiency and fault tolerance after a fault.
Of course, the algorithm controlling the network must run
fast enough to avoid that a second failure happens before the
network is reconfigured. If this situation is possible, it would
be recommended to make the network proactively tolerant
towards up to two faults, something that can be achieved
with small extensions to the described solutions (basically by
reapplying the algorithms, see below), though at a greater cost
in switch resources. Note that we have so far only implemented
the proactive part in this work, leaving the reactive part for
future work.

B. Fault-Tolerant OpenFlow Group Structures

Our approach to proactive fault-tolerance is based on re-
stating the multicast problem for each possible link failure,
a method that the authors of [8] applied in a similar way to
unicast routing. We start with the initial problem of creating
a multicast tree from one publisher to a group of subscribers,
given a certain topology (see Sec. III). The solution to the
problem is a set of links in the network that will be used to
carry traffic. However, if a link in this set fails, the solution to
the problem is not valid anymore. At the point of failure the
original problem is restated and a new multicast tree is built
from the switch affected by the failure (the new publisher) to
the affected subscribers (new subscribers group) without using
the affected link (the new topology). If this problem has been
solved for each link in the original multicast tree, a one-link
fault-tolerant multicast route has been created. Note that the
problem restatement can be repeated recursively until either
the desired fault tolerance level is achieved or the routing
problems become unsolvable as it exhausts the backup pos-
sibilities. At this point, the maximum fault-tolerance for that
topology has been reached. This approach to fault tolerance
can be summarized in a tree, where each node represents a
problem statement and each edge represents a possible one-
link failure. However, an important optimization can be made,
noting that that different cuts of links can actually result in
the same problem statement. This allows the reuse of already
encountered solution and reduces the problem restatement tree
to a problem restatement DAG.

In an actual implementation, however, one must still trans-
late this graph into an actual switch configuration. This is
composed by a flow entry to identify the packet traffic type and
an associated OpenFlow group structure. This group structure
is a DAG of all groups and fast failover groups that correspond
to the decisional process implied by the problem restatement
DAG. Figure 1 shows a complex example of such group
structure in the switch’s group table.

From a concrete implementation point of view packets
cannot be forwarded just based on source address, destination
address and switch ingress port number as this would lead
to ambiguities. Two packets can have the same source, the



same destination and the same ingress port and yet be on
different multicast routes (e.g. original route and backup
route). Thus our approach requires the packets to have some
kind of memory to identify the exact tree in which they are
being forwarded. Currently, we use VLAN tags to carry this
information. At the ingress point of the OpenFlow network an
initial VLAN tag is assigned to incoming packets. In case of a
of a fault, a new VLAN tag needs to be assigned to the packet
to ensure that it will be routed along a different multicast tree.
For this reason VLAN tags that are already contained in the
packet before they enter the OpenFlow network need to be
removed at the OpenFlow network ingress point and restored
at the egress point to make the process transparent to devices
outside of the OpenFlow network.

V. VERIFICATION

To demonstrate our solution, we chose two topology test-
cases: one topology that closely resembles a real substation
[7], but provides more redundancy (see Fig. 2) and a fat-tree
topology, which is a standard testcase for fault-tolerance (see
Fig. 3). The first topology consists of multiple rings attached to
an internal backbone ring. Each outer ring represents a bay in
the substation with IEDs (hosts) connected to switches. For the
sake of simplicity, only one host was attached to each switch.
In practice either many IEDs are attached to a single switch
or the IEDs themselves are connected in a ring, eliminating
the need of switches inside the bay area. This is possible as
IEDs can have more than one network interface, allowing them
to perform switching. In future even OpenFlow-enabled IEDs
are conceivable. For our tests we set up a sample multicast
group, send out multicast messages to be routed in the test
network and check if all subscribers successfully receive the
messages sent by the publisher. One sample multicast group is
highlighted in Fig. 2. This group consists of a larger number
of hosts that span the entire network thus involving both bay
and inter-bay traffic. We then disconnect selected links in the
network that are part of the constructed multicast tree and
verify that messages are still successfully delivered. In Fig. 2

Fig. 1. Example for an OpenFlow group structure that sends out packets
(port), clones packets (all) and activates alternative routes for packets (ff)

and is installed in switches by our solution.

TABLE I. Relevant figures for network resource consumption for the
multicast routing problem in Fig. 2. From left to right, number of elements
in the group, number of VLAN tags used, number of groups and number of

flows used in average, maximum number of groups and flows in a switch
and lastly number of links used for the main (faultless) solution.

n VLANs ngrp nflw max ngrp max nflw links
2 2 0,03 0,17 1 2 3
3 8 0,22 1,14 3 7 10
4 14 0,58 2,97 3 13 17
5 20 0,94 5,53 3 19 24
6 24 1,11 5,72 5 13 29
7 27 1,25 6,44 6 13 33

the alternative multicast route used by our solution to deliver
packets after a link fault is shown.

We also measured figures relating to consumed resources
in the network, namely, number of flows and groups used
per switch (average and maximum) as well as number of
VLAN tags used and number of links used for the main
(faultless) route. Besides, we did so for a varying number of
members in the multicast group. Instead of using only the
full group for measurement, we added the members one by
one in anti-clockwise manner, starting by h12 and repeated
the testes for each case. With this, we show qualitatively how
our solution drains resources for different number of groups
members. The results for these measurements are shown in
table I. We also performed the same testing on the fat-tree
topology adding hosts in numerical order until the group
spanned all of them. The results for these measurements are
shown in table II. Analyzing these two tables, we perceive
that our approach is perfectly scalable for bigger networks
and do not consume much resources, except for VLAN tags.
This bottleneck can be solved by using MPLS tags instead of
VLAN tags, which have a bigger range and are also part of the
OpenFlow specification. Unfortunately, real implementations,
such as the HP2029 switch, tend to not implement support to
them.

There are two reasons why we do not include any mea-
surements of time efficiency of our solution. First, we could
not run our configuration in a real network, for we lacked
the resources for that. Mininet [6] uses the loopback interface
and virtualized switches for simulation and therefore may
not accurately model layer 1 physical link fault detection,
which does contribute to packet loss, which is small but
non-negligible in our scenario. Second, our tests ran static
configurations, and therefore depend solely on the OpenFlow
implementation’s efficiency in identifying a link-down. This
subject has already been treated elsewhere. For example,
[4] analyses packet loss in a simple scenario involving fast-
failover groups.

VI. FUTURE WORK

Our work is only one part of a more comprehensive solution.
Ideally parameters like latency and bandwidth must also be
considered when constructing fault-tolerant multicast trees, for
GOOSE and SV messages must arrive within strict time inter-
vals, and SV often has high bandwidth requirements. So far



Fig. 2. Shows the network behavior when link t2-t1 fails. The multicast
message starts from h11 on the main tree (dashed bold edges). When it hits

the faulty link, the switch forwards the packet to a different tree (bold
edges) which delivers message to all its destinations [?].

Fig. 3. Shows two-level eight-host fat-tree topology used as the second
testcase. The hosts are added to the group anti-clockwise, starting from h1.

our code relies on the minimization of edges to limit latency
and offers no mechanism to prevent links from congesting.
(Note that this is not the case when using traditional technolo-
gies either.) Fortunately, only moderate changes are necessary
to take these two factors into account. The authors of [15]
show how to generate approximations for the delay constrained
Steiner tree problem. It can be difficult to determine link
delay at local level for the approximation, but a simplified,
conservative model can be used to make routing decisions.
Determination of link delay for the approximation becomes
even more difficult when taking network dynamics into ac-

TABLE II. Relevant figures for network resource consumption for the
multicast routing problem in Fig. 3. From left to right, number of elements
in the group, number of VLAN tags used, number of groups and number of

flows used in average, maximum number of groups and flows in a switch
and lastly number of links used for the main (faultless) solution.

n VLANs ngrp nflw max ngrp max nflw links
2 3 0,10 0,40 1 3 4
3 7 0,35 1,30 3 5 9
4 9 0,65 1,85 3 7 12
5 9 0,80 2,25 4 6 13
6 10 1,05 2,70 4 6 15
7 14 1,40 4,05 5 9 20
8 16 1,80 4,85 5 11 23

count and the dependency of delay on network load. But as a
simple though possibly suboptimal solution the delay model
could also at the same time be used to avoid link congestion
in the network. By assigning a higher delay rating to crowded
links, the delay constrained version of the approximation will
naturally avoid those links. If the link capacity has been fully
used up, the delay is set to infinity to prevent the algorithm
from further using the link. Another area of improvement is
adding reactive behavior to the solution as outlined in Sec.IV.
It allows greater fault tolerance at no additional resource
usage in the switches. One challenge with network device
reconfigurations during operation is to ensure consistency of
updates, i.e. updating switch configurations in such a way that
switches do not have contradictory configurations and that no
packets are lost at any time. A solution for this issue has been
developed in [8]. Because we use VLAN tags to identify our
routes, we can use the simpler per-packet consistency model
proposed in that article to make safe configuration transitions.
Finally, we have restricted ourselves exclusively to link failures
so far and switch failures need to be investigated in future.
Implementing switch fault tolerance using our solution is not
difficult as a switch failure can be modelled as multiple link
failures. If a multicast tree is build that aims at avoiding links
that are connected to the failed switch, we obtain a solution
that is tolerant both to link and switch failures. However, this
simple approach may yield suboptimal solutions in some cases
as avoiding a switch entirely in the case of a link failure
introduces unnecessary constraints for the solution.

VII. CONCLUSION

Our work shows that software-defined networking based
on OpenFlow can be used to build efficient solutions to
handle fault-tolerant multicast in substation environments. One
open question that remains is how suitable current OpenFlow
implementations are for use in productive networks. To date,
many OpenFlow switches are implemented in software only,
like the CPqD software switch [16], and are often only used
for prototyping purposes, or the OpenFlow specification is
only partially implemented in hardware, like in the case of HP
2920 switches, and the devices are not sufficiently mature yet
[4]. However, based on our results we believe when first full
hardware implementations of OpenFlow switches suitable for
productive use become available, software-defined networking



will be a strong competitor against current communication
technologies in substation environments and beyond.

To the best of our knowledge, the only paper to date using a
similar approach is [17]. In difference to their solution, we do
not explicitly reuse paths in our solution as this might increase
the probability of encountering additional link-failures in an
affected area and we propose a method for a hybrid approach
to recovery from link-failures based on a mixture of proactive
and reactive behavior to ensure both low recovery times from
faults and continuity of fault tolerance over time.
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