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ABSTRACT Traffic congestion detection systems help manage traffic in crowded cities by analyzing

videos of vehicles. Existing systems largely depend on texture and motion features. Such systems face

several challenges, including illumination changes caused by variations in weather conditions, complexity

of scenes, vehicle occlusion, and the ambiguity of stopped vehicles. To overcome these issues, this article

proposes a rapid and reliable traffic congestion detection method based on the modeling of video dynamics

using deep residual learning and motion trajectories. The proposed method efficiently uses both motion and

deep texture features to overcome the limitations of existing methods. Unlike other methods that simply

extract texture features from a single frame, we use an efficient representation learning method to capture

the latent structures in traffic videos by modeling the evolution of texture features. This representation yields

a noticeable improvement in detection results under various weather conditions. Regarding motion features,

we propose an algorithm to distinguish stopped vehicles and background objects, whereas most existing

motion-based approaches fail to address this issue. Both types of obtained features are used to construct

an ensemble classification model based on the support vector machine algorithm. Two benchmark datasets

are considered to demonstrate the robustness of the proposed method: the UCSD dataset and NU1 video

dataset. The proposed method achieves competitive results (97.64% accuracy) when compared to state-of-

the-art methods.

INDEX TERMS Congestion, deep learning, residual network, traffic surveillance system.

I. INTRODUCTION

Large cities contain millions of people that use different

means of transportation, including buses, taxies, motorcy-

cles, and bicycles. The transportation infrastructure in large

cities cannot accommodate continuous growth in the num-

ber of vehicles, which leads to traffic congestion. Addi-

tional sources of traffic congestion are weather conditions,

traffic demand, and traffic-influencing events, such as acci-

dents [1]. Traffic gridlock negatively affects the quality of

life, career opportunities, and safety of people. Additionally,

The associate editor coordinating the review of this manuscript and
approving it for publication was Huiyu Zhou.

stopping and starting vehicles in traffic gridlock consumes

more fuel than normal traffic operations, leading to additional

air pollution. Therefore, transport policy makers in several

large cities have exploited intelligent traffic management

systems (TMSs) to mitigate and prevent traffic congestion

and improve overall traffic efficiency. TMSs include auto-

mated traffic monitoring systems that analyze images/videos

captured by closed-circuit television cameras [2] to detect the

status of traffic (e.g., light, medium, or heavy) and measure

traffic flow.

Traffic congestion classification approaches can be

categorized according to the features they utilize as

motion-based [3] and texture-based methods [4], [5].
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However, the employment of either motion or texture features

alone in traffic congestion detection systems has a few short-

comings. For example, in the case of motion-based traffic

congestion classification methods, stopped vehicles may not

be tracked, meaning a heavy congestion traffic scene may be

misclassified as an empty road. In the case of texture-based

methods, a few vehicles in a scenemay be classified as having

low traffic congestion, even if they exhibit slow motion.

Additionally, most existing texture-based traffic classifica-

tion methods extract texture features from single frames and

do not model the evolution of textures in traffic videos.

Fig. 1 presents examples from a traffic video dataset provided

by the University of California San Diego (UCSD videos

dataset) [6] that contains three different traffic congestion

classes (light, medium, and heavy). In this figure, each video

is represented by two different frames. It is evident that not

only do the number of vehicles between the two frames

change, but there are also differences in vehicle motion

patterns (i.e., vehicle displacement between the two frames).

Additionally, all three videos have different illumination

conditions.

FIGURE 1. Examples of different traffic congestion statuses, weather
conditions, and illumination changes.

A reliable traffic congestion detection method should

rapidly provide accurate results under the presence of various

illumination conditions and traffic events. To fulfill these

requirements, this study proposes a reliable and rapid traffic

congestion classification method based on the modeling of

video dynamics using a deep residual network and motion

trajectories. The proposed method consists of three main

steps: (1) modeling the evolution of texture features in videos,

(2) extracting motion trajectories, and (3) constructing an

ensemble classifier using the support vector machine (SVM)

algorithm. To classify traffic congestion rapidly, the proposed

method handles frames in batches instead of analyzing an

entire video. In step (1), both deep convolutional neural

networks (CNNs) and handcrafted texture analysis methods

are assessed and compared. Existing methods either extract

features from a single frame or from an entire video. Few

studies have considered modeling the temporal information

within traffic videos. To enrich the extracted texture fea-

tures, we model the evolution of the texture features in each

batch of frames using a representation learning method called

learning-to-rank (LTR). The use of LTR helps capture the

latent structures in traffic videos and exploit the temporal

information embedded in traffic videos, which can signifi-

cantly improve detection accuracy congestion.

It should be noted that the powerful representational abil-

ity of deep residual networks and the adopted representa-

tion learning method yield a significant improvement in the

accuracy of classification results. In step (2), sparse corner

points in each batch of frames are extracted and tracked

to obtain motion trajectory features. Because the extracted

corner points lie in both vehicle and background regions,

existing methods use various algorithms to suppress corner

points in background regions. However, corner points in

regions of stopped vehicles are also suppressed because they

are considered as background corner points, which yields

inaccurate results. To address this issue, we propose an algo-

rithm for removing the corner points in background regions

while retaining the points corresponding to stopped vehicles.

Ultimately, the features obtained in steps (1) and (2) are

employed to construct an ensemble classifier based on an

SVM to classify traffic congestion into three classes of light,

medium, and heavy.

The key contributions of this article can be summarized as

follows:

• We propose a rapid and reliable traffic congestion detec-

tionmethod that can overcome the limitations of existing

approaches.

• We present a feasible method for modeling the dynamics

of traffic videos based on representation learning and

deep residual learning.

• We propose an algorithm for distinguishing the motion

features of stopped vehicles from background objects.

Most existing motion-based traffic congestion detection

approaches do not thoroughly address this issue.

• We present comprehensive analysis of the performance

of different deep learning models and handcrafted tex-

ture analysis methods for traffic congestion detection.

• We achieve the state-of-the-art traffic congestion detec-

tion results on two benchmark datasets with a processing

time of less than 16 ms.

The remainder of this article is organized as follows.

Section 2 discusses related methods. Section 3 presents the

proposed method. Section 4 presents the experimental results

and discussion. Section 5 concludes this article and discusses

future research directions.

II. RELATED WORK

In general, traffic congestion detection methods can be classi-

fied into vehicle-based or holistic methods. Here, we discuss

the strengths and weaknesses of both categories.

Vehicle-based methods: The typical pipeline of a

vehicle-based method consists of vehicle detection, track-

ing, extraction of trajectories, and training of a classifier

to distinguish traffic congestion classes (light, medium, or

heavy) [7]–[9].
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In a study performed by Kim et al., the differences between

successive frames and various adaptive thresholding methods

were used to detect moving objects [7]. Wavelet coefficients

were extracted from moving objects and then fed into a

neural network to detect and track vehicles. In the training

phase described in [9], a codebook was generated based

on scale-invariant feature transforms (SIFTs) [10]. In the

detection stage, vehicles were detected using the generated

codebook.

Vehicle occlusion is one of the major challenges faced by

visual traffic congestion detection methods. To address this

issue, Huang and Barth [8] proposed two distinct solutions

for low and high occlusion. For low occlusion, local features

were adopted in the vehicle detection and tracking steps. For

high occlusion, color probabilities and local features were

used to detach occlusion areas from a scene and track each

vehicle individually.

Additionally, the numbers of vehicles moving on a road

have been utilized in many automated methods as indicators

of traffic flow. These approaches assume that the number

of vehicles passing a predefined line per minute represents

the traffic flow. In such approaches, vehicles are detected,

tracked, and then counted. For example, the low-rank decom-

position method was applied to input video frames in [11] to

locate low-rank components that describe background objects

and spare outliers representing foreground objects (vehicles

moving on roads and noise). The extracted vehicles were then

tracked using a Kalman filter.

Deep neural networks (DNNs) have been extensively

employed in numerous artificial intelligence applications,

including object detection, image segmentation, and classi-

fication [12]. Singh and Jain [13] employed various deep-

learning-based object detection models to achieve accurate

counts of vehicles and analyze traffic patterns. They tested

a region-based CNN (R-CNN), fast R-CNN, and faster

R-CNN. The fast R-CNN and faster R-CNN models are

modified versions of the R-CNN with lower computational

costs. The faster R-CNN replaces the selective search used

in the R-CNN and fast R-CNN with a region proposal net-

work. Abdelwahab [14] proposed an efficient and fast method

for vehicle counting without employing any vehicle-tracking

algorithms. To reduce processing time, the author proposed

creating a background model for restricted regions of inter-

est (ROIs) in video frames instead of using entire frames.

Moving vehicles were recognized as foreground objects when

they passed through a narrow ROI. Then, the foreground

objects were used to calculate the number of vehicles. The

vehicle-based methods discussed above rely heavily on the

efficiency of the employed vehicle detection and tracking

algorithms. This dependency can become a hindrance in the

case of crowded scenes or poor weather conditions, where

vehicle detection and segmentation are challenging tasks.

Holistic approaches: Unlike vehicle-based methods,

holistic approaches use spatio-temporal features extracted

from videos to produce global representations of

a particular scene instead of handling individual

vehicles [3]–[5], [15], [16]. Porikli and Li [15] exploited

the motion vectors and discrete cosine transform coef-

ficients embedded in the MPEG compressed domain as

spatio-temporal features. The main shortcoming of this

method is that it can only be applied to MPEG videos.

Asmaa et al. [16] proposed microscopic and macroscopic

methods for estimating traffic density. In their microscopic

method, three motion features of traffic flow, velocity, and

the rate of road occupancy were computed after detecting

and tracking vehicles. In their macroscopic method, video

frames were split into small blocks. For each frame, a block-

search algorithm was used to obtain the best-matched block

in the subsequent frames. After obtaining motion vectors,

two macroscopic features called mean flow velocity and

density were calculated. This macroscopic method yielded

the highest accuracy. However, the computational cost of the

block-matching algorithm is very high, making this method

unsuitable for real-time traffic monitoring.

Riaz and Khan [3] employed motion features obtained by

tracking sparse corners in traffic videos to describe traffic

flows. Before computing motion features, motion vectors

containing low displacements or directions extracted from

the main directions of vehicles were excluded. Four motion

features were computed for each video: the mean and stan-

dard deviation of velocity values, average length of motion

vectors, and number of motion vectors. The main shortcom-

ings of this method are twofold. First, the mean velocity of

the motion vectors is calculated for an entire video without

considering variations in traffic flow. Second, this method

excludes the motion vectors of stopped vehicles, resulting in

inaccurate traffic congestion estimates.

Several recent studies, including [4], [5], [17], [18], have

employed DNNs for traffic monitoring. Luo et al. [4]

used texture features to classify traffic congestion in videos

without considering motion information. Two different tex-

ture analysis methods were evaluated: codebook descrip-

tors and texture features extracted by CNNs. In the case

of the codebook-based features, SIFT features were used

to compute four visual codebook descriptors: vectors of

locally aggregated descriptors, improved Fisher vectors,

locality-constrained linear coding, and bags of visual words.

In the case of the CNN-based features, the last fully connected

layer in a pre-trained CNN was used to generate a feature

vector with a length of 4096 for each frame in an input video.

Three traffic congestion classification approaches based

on deep CNN models were proposed in [5]. In the first

approach, a CNN was employed as a feature extractor and

a support vector regression algorithm was used to map the

traffic congestion of a scene to a value in [0, 1]. In the second

approach, a CNN network was used to classify each pixel

into three semantic classes: background, road, and vehicle.

To that end, a patch was extracted around each pixel, meaning

the computational complexity of this approach is extremely

high. In the third approach, patch classification was used

instead of pixel-wise classification. In each patch, the per-

centages of background, road, and vehicles were calculated
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as regression values. This approach also has a high compu-

tational cost because it considers hundreds of patches per

frame. Additionally, these three approaches were used for still

images without considering the temporal (motion) informa-

tion in traffic videos. Wang et al. [19] fine-tuned a pre-trained

deep residual neural network to detect traffic congestion.

They constructed a traffic image dataset to validate their

model for different illumination conditions, weather condi-

tions, and traffic scenarios. Based on this regional dataset,

they achieved an accuracy of 95%. Sun et al. [20] proposed a

systematic method to classify congestion based on an atten-

tion module and deep supervised inception network. For a

large dataset of low-frame-rate videos gathered from a traffic

surveillance system, they achieved an accuracy of 95.77%.

Zhang et al. [21] proposed a congestion prediction model

using CNNs and a long short-term memory neural network.

Raw snapshots of traffic congestion maps were represented

as a series of matrices to train their model. This method does

not directly consider vehicles or the visual characteristics of

roads. Therefore, it may not provide a realistic estimation of

traffic congestion.

As discussed above, existing traffic congestion classifica-

tion methods tend to achieve poor results in the presence

of illumination changes, poor weather conditions, and var-

ious traffic events, such as accidents and stopped vehicles.

Although some existing methods yield promising results,

their computational costs are very high (e.g., [5]). The main

goal of this study was to develop a reliable and rapid traffic

congestion classification method that can provide accurate

results under the aforementioned conditions with a very short

execution time (i.e., low computational cost). To this end, this

article proposes a novel traffic congestion detection method

that models video dynamics using a deep residual network

and motion trajectories.

III. PROPOSED METHOD

Fig. 2 presents the framework of the proposed traffic conges-

tion classification method. In the training phase of the pro-

posed method, we train two SVM models called SVM-1 and

SVM-2 that classify the traffic congestion in each input video

as low, medium, or heavy. Based on training videos and the

corresponding ground-truth (GT) results (actual class label

of each video), we extract texture features from N frames

and use the LTR method to generate a compact feature rep-

resentation to train SVM-1. We also extract motion features

from training videos in parallel and combine them to train

SVM-2. After training SVM-1 and SVM-2, we aggregate

their results to derive the final classification results for traffic

congestion in input videos. In the testing phase, both texture

andmotion features are extracted from test videos and fed into

SVM-1 and SVM-2 to obtain traffic congestion prediction

scores. An aggregation function is used to determine the final

traffic congestion class. The proposedmethod provides traffic

congestion classes for every N frames of an input video.

Because the main objective of the proposed method is

to achieve reliable traffic congestion classification results,

FIGURE 2. Framework of the proposed method.

we propose the use of robust texture and motion fea-

tures extracted from traffic videos. Unlike related methods

that extract global features from each frame, the proposed

approach extracts local motion and texture features from

batches of frames. To this end, each frame is split into m× n

blocks, a feature vector fi is extracted from each block, and

then all feature vectors are concatenated into a single feature

vector. Extracting local features can reduce the effects of

illumination changes and the ambiguity of certain videos

caused by poor weather conditions.

Our secondary objective is to achieve a very short pro-

cessing time such that the proposed approach can be inte-

grated with real-time applications. Consequently, congestion

classification results are calculated for batches of N frames,

where N can be selected according to the framerate of an

input video. After obtaining the feature vectors for a batch

of frames, the LTR technique is applied to the N texture

features to produce a single feature vector that models the

temporal evolution of traffic congestion. SVM models are

trained separately using texture and motion features. In the

testing phase, the scores of both models are aggregated to

obtain final predictions for traffic statuses.We detail each step

of the proposed approach below.

A. TEXTURE FEATURES

Texture features (appearance features) are used to analyze

traffic congestion. To select a texture analysis method that

properly represents traffic congestion in videos, both deep

CNN models and handcrafted texture analysis methods were

evaluated and compared. For each texture analysis method,

a vector of length 1 × L was computed for each frame.

The features of every batch of N frames (N×L) are fed into

the LTRmethod [22], which produces a compact and descrip-

tive feature vector with a size of 1×L. It should be noted that

VOLUME 8, 2020 182183



M. A. Abdelwahab et al.: Reliable and Rapid Traffic Congestion Detection Approach

the used LTR method does not require ground-truth results

to learn compact representations for batches of frames (unsu-

pervised method). The obtained compact feature vectors are

inputted into an SVM classifier to differentiate between three

congestion classes: light, medium, and heavy. The texture

features employed in our experiments can be categorized

as handcrafted and deep CNN features. We describe these

features in detail below.

1) DEEP-CNN-BASED FEATURES

Unlike handcrafted features, which are sensitive to illumi-

nation changes and noise, a deep CNN can generate robust

texture features for each frame without manual supervi-

sion. In this study, several pre-trained CNN models were

considered for feature extraction, namely VGG19 [23],

GoogleNet [24], inceptionv3 [25], and ResNet101 [26].

VGG19 [23] contains a total of 47 layers with several suc-

cessive convolution layers, and each layer is followed by a

rectified linear unit layer. The architecture of GoogleNet [24]

consists of several paths with 22 weight layers—meaning

processing is conducted in parallel, rather than sequentially.

The basic block in GoogleNet is the ‘‘inception module,’’

where the processing of many convolution kernels is per-

formed in parallel. Inceptionv3 [25] has a small number of

parameters and excellent computational efficiency. There-

fore, it can facilitate complexity similar to that of VGGNet,

but with more deep layers. It should be noted that if the depths

of the VGG19, GoogleNet, and inceptionv3 models are

increased, accuracy becomes saturated and then decreases.

Unlike these methods, in ResNet, the input for one layer is

passed directly or through skip connections to another layer

(called identity mapping). The skip connections employed

in ResNet help enhance the performance of CNNs with a

large number of layers. Additionally, ResNet can reduce the

effects of the vanishing gradient problem. Additional details

can be found in [26]. In recent years, ResNet has enhanced

the performance of various computer vision applications,

including semantic segmentation, object detection, and image

classification, based on the powerful representational ability

of deep residual networks.

All pre-trained models considered in our experiments are

available in Matlab2019a. These models were originally

trained to classify images with dimensions of 224 × 224

pixels. However, they can be exploited as feature extractors

for images with arbitrary dimensions. For each CNN model,

texture features were extracted from the final layer with a

dimension of 1 × L for each frame, where L depends on the

CNN model.

2) HANDCRAFTED TEXTURE FEATURES

Three commonly used texture analysis methods were consid-

ered in this study: histogram of oriented gradients (HOG)

[27], local binary patterns (LBP) [28], and local direc-

tional number patterns (LDN) [29]. Handcrafted features are

extracted locally instead of calculating global features for an

entire frame. For texture analysis methods, an input frame is

split into m× n blocks and a feature vector is extracted from

each block. The final texture vector, which has a length of L

(L = m × n), is constructed by concatenating the extracted

vectors from all blocks.

3) LEARNING A COMPACT REPRESENTATION

The LTR method was adopted to generate a compact descrip-

tion of texture features in each batch of frames [30], [31].

Assume that we have a sequence of frames, where each

frame at time t is described by a vector Ft ∈ R
D. In this

case, the entire sequence can be represented by X =

[F1,F2, . . . ,FN ], where N is the number of frames. The LTR

method is used to model the relative ranks of frames (i.e., F2
comes after F1, which can be written as F2 ≻ F1). LTR learns

the orders of smoothed versions of feature vectors to alleviate

the effects of sudden changes in extracted texture features

caused by illumination changes. We define a sequence Z =

[z1, z2, . . . , zN ], where zt is the result of processing the fea-

ture vectors from time 1 to time t (F1 → Ft ) using the

time-varying mean method as follows:

δt =
1

t

t
∑

i=1

Fi. (1)

The next formula is utilized to produce zt , which is the

normalized version of δt .

zt =
δt

‖δt‖
. (2)

Given the smoothed vectors, LTR learns their ranks (i.e., zn ≻

zn−1 ≻ zn−2 ≻ · · · ≻ z1) and linear LTR learns pairwise

linear functions τ (zt ; χ ), where χ ∈ R
D. The ranking score

of zt is computed as τ (zt ; χ ) = χT .zt . The LTR method

optimizes the parameters χ of τ (zt ; χ ) using the objective

function in Equation (3) with the constraint ∀ti, tj zti ≻

ztj ⇐⇒ χT .zti ≻ χT , ztj as follows [22]:

argmin
χ

1

2
‖χ‖2 + κ

∑

∀i,j,zi≻zj

ǫij,

s.t. χT (zti − ztj ) ≥ 1 − ǫij,

ǫij ≥ 0, (3)

where κ is the regularization parameter and ǫ is the margin of

tolerance. The constraint of the objective function encourages

the ranking score (prediction score) of the difference between

the feature vectors of two infrared images zti and ztj acquired

at times ti and tj, respectively, to be greater than 1 − ǫij.

The margin of tolerance should be greater than or equal to

zero. In other words, if zti occurs after ztj , then the ranking

score of zti should be greater than that of ztj . In our model,

traffic congestion evolution information is encoded in the

parameters χ , which can be viewed as the principled, data-

driven, temporal pooling of the evolution of traffic congestion

in videos. Therefore, the parameters χ are used in our method

to describe the evolution of traffic.
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B. MOTION TRAJECTORIES

Fig. 3 illustrates the steps for extracting motion features

from traffic videos. We extract corner points from the first

frame, use the Kanade-Lucas-Tomasi tracker [32] to track

such points in subsequent frames, and eventually obtain point

trajectories. The average velocity of moving vehicles is com-

puted for every N frames to realize rapid traffic congestion

classification. It should be noted that motion features are

dependent on pixel coordinate displacement. Therefore, dis-

tant vehicles appear to move very slowly and close vehicles

appear to move very fast in a 2-D image plane. To reduce the

effects of this discrepancy, we extract motion features from a

fixed ROI, as shown in Fig. 4. Within an ROI, the differences

between the speeds of vehicles are negligible.

FIGURE 3. Extracting motion features while maintaining the trajectories
of stopped vehicles.

FIGURE 4. Extracting motion features from an ROI.

The number of moving vehicles varies over time based

on the entry of new vehicles and departure of old vehi-

cles. For this reason, new corner points are extracted every

N frames [33], and the new points and previous points are

both tracked to obtain trajectories Tnew and Told , respectively.

The trajectories of fixed corner points, such as those on back-

ground objects, or corner points with low displacement, such

as those on trees, are discarded. To detect such fixed corner

points, the overall displacement for all points is calculated

over N frames. Then, the corner points with path lengths less

than a predefined threshold (trajectory length < 2 pixels over

five frames) are excluded.

1) PRESERVING THE FEATURES OF STOPPED VEHICLES

To prevent excluding corner points corresponding to stopped

vehicles, we only filter new corner point trajectories Tnew
from the fixed points (Fig 3). Therefore, the previous trajecto-

ries Told (corner points tracked in the previous N frames) are

not filtered because these trajectories represent moving vehi-

cles in the previous N frames and one or more vehicles may

have stopped in the current N frames. Therefore, we can over-

come one of the main drawbacks of most motion-based traffic

congestion classification methods, where stopped vehicles

are typically classified as empty roads.

Fig. 5 presents frame number 7871 of the Nile University

traffic video (NU1) [34]. We present the corner points before

and after removing fixed points. In this example, we focus on

two regions: one region contains a stopped vehicle that was

moving in the previous batch of frames and has stopped, and

the other region is part of the background. One can see that

the proposed background-point-removal technique retains the

corner points of the stopped vehicle while eliminating the

other fixed corner points.

FIGURE 5. Example of excluding the corner points in the background
while retaining the corner points of stopped vehicles. The top frame
presents all corner points, and the bottom frame presents the corner
points after excluding the points in the background.

2) EXTRACTING MOTION FEATURES

To construct a motion feature vector, the displacement mag-

nitude si for each corner point between consecutive frames

can be computed easily as

si =

√

(x2 − x1)2 + (y2 − y1)2, (4)

where (x1, y1) and (x2, y2) are the corner point coordinates in

two consecutive frames. To mitigate errors in point tracking,

VOLUME 8, 2020 182185



M. A. Abdelwahab et al.: Reliable and Rapid Traffic Congestion Detection Approach

we exclude corner points with displacements greater than a

predefined threshold Smax (very high displacements). In this

study, Smax was set to 10.

As explained previously, features are extracted locally for

each block, meaning each frame is divided into m×n blocks.

The average displacement µk for all corner points in block k

over N frames is calculated as follows:

µk =
1

MN

N
∑

i=1

M
∑

j=1

sij, (5)

whereM is the number of corner points in the block and N is

the number of frames. If a block k does not contain any corner

points corresponding to vehicles, meaning it represents an

empty road, then µk is set to a high value (2 × Smax). The

goal of setting this value is to consider blocks that represent

very light traffic and distinguish them from other blocks

that represent extremely heavy (i.e., jammed) traffic, which

has µk = 0. After obtaining the µk values for all blocks,

we concatenate them into a single feature vector for N frames

as

µ = [µ1, µ2, . . . , µmn]. (6)

In the training phase, the motion feature vectors (µ)s of

the training videos and their traffic class labels are fed into an

SVM model, as shown in Fig. 2 (right).

C. AGGREGATING THE PREDICTIONS OF CLASSIFIERS

In the literature, several traffic congestion detection methods

have used SVMs and achieved good results (e.g., [4], [35]).

SVMs can be used for both linearly separable and nonlin-

early separable data based on a kernel trick [36]. Therefore,

we employed this trick in our model. An SVM classifier

identifies a hyperplane as a decision surface to discriminate

between positive and negative instances according to a max-

imum margin. For a labeled training set of the form (xi, yi),

i = 1, 2, . . . , k , xi ǫ R
n are the feature values of instance i, yi

ǫ[−1, 1] is the label of the current sample, n is the number of

features, and k is the number of instances. An SVM classifier

solves the following optimization problem:

‖ω‖2ω + C

k
∑

i=1

ξi where yi(ω
T (xi) + b0) ≥ (1 − ξi), ξi ≥ 0.

(7)

As indicated in the expression of SVM optimization, the soft

margin parameter C can be used to determine the size of the

margin required to avoid misclassifying each training image.

The weight vector ω is normal to the separating hyperplane,

the parameter ξ is the degree of flexibility of the algorithm

for fitting the data, and b0 is the bias. In a nonlinear SVM,

training data are mapped into a higher-dimensional space

using a kernel function as follows:

K (xi, xj) = (8T (xi).8(xj)). (8)

In this study, we adopted the linear kernel K (xi, xj) = xi.xj
for the texture features and the radial basis function (RBF)

kernel for the motion features. The RBF can be expressed as

follows:

K (xi, xj) = exp− (γ ‖ xi − xj ‖22), (9)

where γ=1/2σ 2, ‖xi-xj‖
2
2 computes the squared Euclidean

distance between any two feature vectors xi and xj, and σ

is a control parameter for the RBF.

The goal of the proposed hybrid classifier is to integrate

the descriptive power of motion and texture features to obtain

reliable congestion classification results. To determine the

congestion class of a batch of N frames, separate SVM

classifiers are trained for texture and motion features. Given

the posterior probabilities of the two classifiers ρi, i =

1, 2, . . . ,U , the N input frames, denoted as Q, are labelled

with a class αi (light, medium, or heavy) using a sum rule as

follows:

assign Q → αj if (1 − U )P
(

αj
)

+

U
∑

i=1

P
(

αj|ρi
)

=
q

max
k=1

[

(1 − U )P (αk) +

U
∑

i=1

P (αk |ρi)

]

, (10)

where P
(

αj
)

is the a posteriori probability of αj, U is the

number of classifiers, and q is the number of classes. In our

method, U = 2 and q = 3.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Most publicly available traffic classification datasets consist

of still images, and there are only a few traffic congestion

datasets containing videos and corresponding ground-truth

labels. We did not consider still image datasets for evaluating

our method because it depends on both motion trajectories

and texture features. Two benchmark traffic congestion detec-

tion datasets were used in this study: the UCSD dataset [6]

and the long NU1 video [34]. First, the UCSD dataset was

considered to compare the performance of the proposed

method to those of state-of-the-art traffic congestion classifi-

cation methods. The NU1 video (45 minutes) was considered

to assess the performance of the proposed method on long

videos of poor quality.

A. EXPERIMENTS ON THE UCSD DATASET

In this section, the UCSD dataset (254 videos) [6] is used

to evaluate the proposed method. The videos in this dataset

were recorded on a highway during the day under various

conditions, including clear, overcast, and rainy weather.

Accuracy of texture features: We begin by classifying

traffic congestion based solely on texture features. To select

the most suitable texture features, various texture analy-

sis methods are exploited, including handcrafted features

(HOG, LBP, and LDN), and CNN-based features (VGG19,

GoogleNet, Inceptionv3, and ResNet101). The number of

frames was not equal for all videos, so the first 40 frames

were extracted from each video. In this experiment, for the

sake of comparison to related methods, offline classification
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TABLE 1. Different texture features and corresponding accuracy values for individual and combined frames exploiting the LTR method.

was conducted, meaning a classification decision was only

computed once for each video.

In this study, we compared two approaches: i) extracting

texture features from individual frames and ii) extracting

texture features from a batch of frames (N frames). First,

texture features were extracted from individual frames, such

as frame 11, frame 21, or frame 31, in each video. Next,

the extracted feature vectors were utilized to represent the

entire video sequence in the training and testing phases.

Second, we used the LTR method to generate compact rep-

resentations of the features extracted from N frames for each

video. Different numbers of frames (N) were tested (30, 10,

and 5 frames). In both cases, after extracting texture features,

an SVM model was trained based on the extracted features.

In the testing phase, the trained model was used to classify

test videos into light, medium, and heavy categories. For the

sake of fair comparison, we used the same evaluation criteria

discussed in [6] based on four-fold cross validation. Addition-

ally, the same video indices were used in our experiments.

Table 1 presents the obtained accuracy values for the ana-

lyzed texture analysis methods. One can see that the accura-

cies obtained for the individual frames vary from one frame

to another. For example, VGG19 obtains its best accuracy

(94.49%) for Frame 21, whereas ResNet101 achieves its

best accuracy (93.70%) for Frame 31. In the case of the

LTR method, we studied the tradeoff between the number of

frames considered for congestion classification and accuracy.

In Table 1, we present the classification accuracy results for

traffic congestion classes (heavy, medium, and light) based

on 5, 10, and 30 frames using the LTR method. One can see

that the use of 30 frames with ResNet101 yields an accuracy

of 73.41% while the use of 10 frames yields an accuracy

of 87.57%. When we classify traffic congestion based on

batches of five frames, we achieve the highest accuracy

(95.28%) using texture features.

A confusion matrix is presented in Table 2. One can see

that five heavy traffic videos are misclassified as medium

traffic videos. In our experiments, we evaluated the perfor-

mance of the compact representations generated by forward

LTR (LTRforw) and reverse LTR (LTRrev) techniques. In the

case of LTRforw, the compact representation of features is

computed from the first frame to the last frame in a sequence,

whereas in the case of LTRrev, the representation is computed

from the last frame to the first frame. With ResNet101,

TABLE 2. Confusion matrix for using ResNet101 features with the LTR
method for five frames. The average accuracy is 95.28%.

LTRforw and LTRrev yield accuracy values of 95.28% and

95.10%, respectively. Both forward and backward representa-

tions yield comparable accuracy values. The concatenation of

LTRforw and LTRrev also yields an accuracy of 95.28%. Addi-

tionally, we compared the performance of LTR to two state-

of-the-art temporal pooling methods called max-pooling and

average-pooling. These pooling methods were also applied

to the features extracted from each frame with the goal of

generating a compact description for an entire input sequence.

We obtained accuracy values of 94.42% and 94.56% with

max-pooling and average-pooling, respectively, which are

lower than the accuracy achieved with LTR.

Accuracy of motion trajectory features: Corner points

are extracted and tracked across video frames to derive point

trajectories. The proposed algorithm for removing back-

ground points while retaining vehicle points is applied to the

trajectories. In each frame, the ROI is divided into 4 × 4

blocks, and the average velocity of the points is computed

in each block. In this experiment, classification decisions

were only calculated once, meaning the average velocity

was calculated for an entire frame. The resulting accuracy

when employing the proposed motion features was 95.67%.

The confusion matrix for using motion features is presented

in Table 3. One can see that 4 heavy traffic videos are mis-

classified as medium traffic videos.

TABLE 3. Confusion matrix for using the proposed motion features. The
average accuracy is 95.67%.

Accuracy of the proposed method: Table 4 compares

the accuracy of the proposed method to those of several
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FIGURE 6. Performance of the proposed method with the UCSD dataset.

TABLE 4. Comparison of the performances of several methods with the
UCSD dataset.

state-of-the-art methods. From the table, it is observed that

our method yields the best accuracy. The confusion matrix

for the proposed method is presented in Table 5. One can

see that the numbers of misclassified heavy and light traffic

videos drop to two and one, respectively. Only six traffic

videos are misclassified in total. These results demonstrate

that the proposed hybrid method outperforms texture- and

motion-based methods alone.

It is important to note that the UCSD videos were cap-

tured during the daytime under various conditions, such as

clear, overcast, and rainy weather. Fig. 6 presents the results

for samples from the UCSD dataset under various condi-

tions. The classification results for the motion, texture, and

hybrid classifiers are presented for each sample and com-

pared to the GT. Examples of total agreement between the
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FIGURE 7. Performance of the proposed method on the NU1 video. The first row presents frame examples that are consistent for both motion and texture
classifiers. In the second row, examples of misclassifications for one of the two classifiers are presented. The proposed hybrid classifier re-corrects the
final decisions.

TABLE 5. Confusion matrix for the proposed hybrid method with an
average accuracy of 97.64%.

three classifiers and the GT are presented in the first

row. In the second row, examples of inconsistent decisions

between themotion and texture classifiers are presentedwhile

the proposed method yields the correct result. In the third

row, three video samples (from six videos) are presented as

misclassification results.

It is worth noting that we studied the combination of both

texture and motion features (i.e., feature-level fusion) and

the use of only one SVM classifier. However, the obtained

accuracy was less than that achieved by the aggregation

of separate SVM classifiers. This is because using sepa-

rate feature classifiers (texture and motion) allows us to

classify videos from different perspectives. For example,

a motion-based classifier discriminates between traffic

videos from the perspective of vehicle motions, whereas

a texture-based classifier distinguishes different traffic videos

according to vehicle density. Additionally, we tested the per-

formance of different machine learning classification algo-

rithms in our experiments, including k-nearest neighbors,

bagging, and decision tree classifiers. These methods yielded

accuracy rates of less than 93% and 95% for texture and

motion features, respectively. Therefore, our experimental

results demonstrate that the use of separatemotion and texture

features for training SVM classifiers and the aggregation of

their predictions yields enhanced performance.

B. EXPERIMENTS ON THE NU1 VIDEO

In this experiment, we considered the NU1 video to assess the

capability of the proposed method to obtain fast and accurate

traffic congestion classification results for long videos of

poor quality. The NU1 video consists of 40826 frames with

a duration of 45 min. The NU1 video was recorded on a

highway, where the height of the installed camera was six

meters. In this video, 3337 vehicles were counted. In addition

to the poor quality of this video, another difficulty is that
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FIGURE 8. Examples of traffic videos with poor illumination. The first row presents video examples from the UCSD dataset in which illumination is
affected by rain or overcast weather. In the second row, shadow variation samples from the NU1 video are presented.

vehicles do not follow any lanes or fixed patterns. The traffic

congestion in this video varies between low, normal, and

heavy.

No new training was performed because we used the SVM

classifiers trained using the UCSD dataset in the previous

experiments. For every five frames in the NU1 video, motion

and texture features were extracted. The ResNet101 network

was used for extracting texture vectors, and LTR was used

to combine the ResNet101 features from every five frames

into compact vectors. Next, the motion and texture features

were inputted into the pre-trained SVM classifiers to predict

traffic congestion. First, we present qualitative analysis of

the classification results. Fig. 7 presents some samples of

traffic classification results. Underneath each sample, clas-

sifications based on motion trajectories, texture features, and

the proposed method are presented. The results of the pro-

posed method are more accurate than those of texture or

motion features alone and closely match the actual traffic

congestion levels. Although the SVM model was trained on

the UCSD dataset, which contains different scenes compared

to the NU1 dataset, the obtained results are accurate because

the proposed method models video dynamics based on deep

residual learning and motion trajectories.

Additionally, we randomly selected ten batches of N

frames, N = 5 from the NU1 video and had computer vision

researchers assign labels to each group describing the sta-

tuses of traffic congestion (low, medium, or heavy). We also

used the proposed model to predict the statuses of traffic

congestion for the same ten batches. We used Cohen’s kappa

coefficient to measure the agreement between the results of

the experts and those of the proposed classifier. We found

that κ = 0.849, indicating strong agreement between the

results.

C. ROBUSTNESS OF THE PROPOSED APPROACH TO

ILLUMINATION CHANGES

In this section, we focus on analyzing the robustness of the

proposed method to illumination changes. Fig. 8 presents

examples of poor illumination in the videos considered in our

experiments. The video samples in the first row are from the

UCSD dataset. The illumination in these videos is heavily

influenced by poor weather (rainy or overcast). Despite the

low quality of these videos, the proposed approach success-

fully classifies all these videos. In the second row of Fig. 8,

the sample frames come from the NU1 video. In these video

frames, the shadows change significantly, leading to large

illumination variations between frames. Additionally, occlu-

sion of various parts of vehicles occurs in some frames based

on the presence of shadows, as shown in frame 40490 (Fig. 8,

row 2, right). The proposed approach can also classify traffic

congestion in these video frames accurately.

Table 6 presents analysis of the classification results

obtained for the UCSD videos for three weather conditions

(rainy, overcast, and clear). In the UCSD dataset, there are

51 videos with clear weather, 125 videos with overcast

weather, and 78 videos with rainy weather. The number of

misclassified videos and classification accuracy are provided

for each weather condition. One can see that the proposed

method achieves accuracy rates greater than 96% for all three

weather conditions. The proposed method misclassifies two

videos with clear weather, three videos with overcast weather,

and one video with rainy weather. This analysis indicates
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TABLE 6. Analysis of the classification results for UCSD videos according
to weather conditions.

that both weather conditions and the difficulty of a scene

itself (e.g., number of vehicles and occlusion) may affect the

classification of traffic videos.

All experiments were conducted using MATLAB 2019a

running on a 64 bit Ubuntu operating system with a 3.4 GHz

Intel Core-i7 CPU, 16 GB of RAM, and an Nvidia GTX 1070

GPU with 8 GB of video RAM. The average CPU times for

extracting CNN features, motion features, LTR, and SVM are

8.1, 1.8, 0.23, and 5.7 ms, respectively. The total CPU time

required for the proposed method is less than 16 ms per frame

for classifying traffic congestion.

The processing times for the aforementioned steps of

the proposed method for all three traffic conditions (heavy,

medium, and light) and weather conditions (rainy, overcast,

and clear)were checked. We found that the average process-

ing time does not change significantly with traffic or weather

conditions for any step. The processing time of the proposed

method is lower than those of the SegCNN models reported

in [5] (59 ms). Therefore, the proposed method can be used

to detect traffic congestion in real time.

The main advantages of the proposed method can be sum-

marized as follows. 1) It provides accurate traffic conges-

tion classification results under different weather conditions

(accuracy of 97.64%). 2) Its processing time is very short

(less than 16 ms). 3) It can be integrated with expert sys-

tems to discover key congestion points for urban traffic and

enhance the efficiency of transportation networks. 4) The

structure and weights of the proposedmodel trained on public

datasets can be transferred for local re-training (i.e., videos

collected from a particular region in the world). After fine

tuning the learning process, a re-trained model with an estab-

lished local dataset can detect traffic congestion with high

accuracy.

In this study, the proposed method was tested on two

datasets with fixed scenes. The performance of the proposed

method can be assessed in future studies using additional

traffic congestion datasets with varying scenes.

V. CONCLUSION

In this article, a rapid and reliable traffic congestion classifi-

cation approachwas proposed based on themodeling of video

dynamics using a deep residual network and motion trajecto-

ries. Unlike existing texture-based traffic congestion classifi-

cation approaches, the proposedmethod uses the LTRmethod

to capture the latent structures of traffic videos instead of sim-

ply extracting texture features from individual frames. This

yields a compact and accurate description for every batch of

frames. In our study, we assessed the performance of various

deep CNNs and handcrafted texture analysis methods for

the feature extraction task. We found that extracting features

using the ResNet101 model yields the highest accuracy based

on its powerful representational ability. Regarding motion

features, we introduced a practical algorithm for discriminat-

ing the motion features of stopped vehicles from those of the

background; most existing motion-based traffic congestion

classification approaches cannot overcome this challenge.

Experimental results demonstrated that the proposed

method provides reliable and rapid traffic congestion detec-

tion results. We found that obtaining traffic congestion results

for batches of five frames yields accurate results with a very

short processing time (16 ms), meaning the proposed method

is sufficient for traffic analytics. We determined that the use

of the proposed motion-based or texture-based methods sep-

arately yields classification accuracies greater than 95% for

the UCSD dataset, but the proposed hybrid method achieves

an accuracy of 97.64%. Additionally, the traffic classifica-

tion model trained on the UCSD dataset was assessed on a

long video (NU1 dataset) with large variations in shadow

intensity. The obtained results confirm the reliability and

robustness of the proposed method. Overall, the proposed

method can achieve accurate traffic congestion classification

results under different weather conditions rapidly, meaning it

can be used for real-time applications.

Future work will focus on assessing the performance of

the proposed method on additional traffic congestion datasets

with varying scenes. This comprehensive assessment should

help us further improve the performance of the proposed

method. In addition, we will employ different aggregation

techniques to integrate texture andmotion features to improve

the accuracy of traffic congestion classification results

further.
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