
Reliable and Real-time Communication in Industrial Wireless Mesh
Networks

Song Han, Xiuming Zhu, Aloysius K. Mok
University of Texas at Austin
{shan, xmzhu, mok}@cs.utexas.edu

Deji Chen, Mark Nixon
Emerson Process Management
{deji.chen, mark.nixon}@emerson.com

Abstract— Industrial wireless mesh networks are deployed in
harsh and noisy environments for process measurement and control
applications. Compared with wireless community networks, they
have more stringent requirements on communication reliability and
real-time performance. Missing or delaying of the process data by
the network may severely degrade the overall control performance.
In this paper, we abstract the primary reliability requirements in
typical wireless industrial process control applications and define
three types of reliable routing graphs for different communication
purposes. We present efficient algorithms to construct them and
describe the recovery mechanisms. Data link layer communication
schedules between devices are further generated based on these
graphs to achieve end-to-end real-time performance. We have built
a complete WirelessHART communication system and integrated
our solutions into its Network Manager. We demonstrate through
extensive experiment results that our algorithms can achieve highly
reliable routing, improved communication latency and stable real-
time communication in large-scale networks at the cost of modest
overheads in device configuration.

I. Introduction

Wireless process control has been increasingly recognized
as an important technology in the field of industrial process
management [1], [2], [3], [4], [5], [6], [7], [8]. Several industrial
organizations such as ISA [9], HART [10] and ZigBee [11] have
been actively pushing the application of wireless technologies in
industrial automation. However, compared with wireless commu-
nity networks, the industrial control environment is harsher and
noisier and thus has more stringent requirements on reliable and
real-time communication. Missing or delaying the process data
may severely degrade the quality of control. The shifting wireless
signal strength with time and location, the mobility of the control
devices and power limitation due to battery usage make the prob-
lem even worse. Accordingly, network management techniques
adapted for industrial wireless mesh are critical.

WirelessHART [12] is the first global wireless communica-
tion standard approved by IEC, and it is specifically designed
for process measurement and control applications. Unlike the
decentralized control adopted by wireless ad-hoc or peer-to-peer
networks, it advocates explicit and centralized network manage-
ment. The standard pushes the complexity of ensuring reliable
and real-time communication to a centralized Network Manager,
but it provides little guidance on how to meet the demanding
design goals. This paper attempts to bridge the gap and shall ex-
plore efficient approaches for forming a WirelessHART network,
managing reliable graph routing, allocating network resources
and constructing data link layer communication schedules.

In a typical WirelessHART network, each device has a desig-
nated sample rate to publish its process data to the Gateway
through multi-hop transmissions. In the other direction, the
Network Manager sends the control data back to the devices
periodically. To help relay different types of data, the standard
defines three types of communication graphs. The network shares
one broadcast graph for propagating common control messages

and one uplink graph for devices to publish process data. If
needed, each device further has a unique downlink graph from
the Network Manager for forwarding specific control messages
to itself. Although several research works have been devoted
on the design of data link layer scheduling in WirelessHART
networks [8], [13], [14], [15], how to satisfy the enforced strict
reliability requirements on the routing graphs and construct data
link layer communication schedules on top of them is still a
challenging problem and has not received sufficient attentions.

In this paper, we abstract the reliability requirements for packet
routing defined in WirelessHART standard. We present efficient
algorithms to construct these reliable graphs and describe the
recovery mechanisms. These algorithms are designed to maintain
the maximum number of reliable nodes in the graphs while
achieving good network latency. To improve the scalability of
the downlink graphs in large-scale networks, we further propose
an extension on the standard to replace the single downlink graph
with a sequence of ordered local graphs. These local graphs work
as reusable building blocks in constructing downlink graphs for
different destinations thus greatly reduce the overall overhead in
device configuration.

Based on these routing graphs, the data link layer communica-
tion schedule is further constructed. Our approach allows multiple
devices to compete for the retry links to the same device, and
split the traffic from one device among all its successors, thus
reduces the bandwidth allocation on each of them. By designing
the communication schedules on the successors so that their
combination has the same communication pattern as the original
device, the global communication schedule is then spliced into
sub-schedules and distributed to the corresponding devices. These
sub-schedules work together and guarantee that the periodic
process/control data between devices and the Gateway can be
forwarded through multi-hops in a timely manner.

We have conducted extensive experiments to evaluate the
performance of the proposed algorithms. We have also built a
complete WirelessHART communication system, and integrated
our network management solutions into the Network Manager.
We are deploying this system to a large-scale manufacturing
factory to achieve factory automation.

The remainder of this paper is organized as follows. Sec-
tion II briefly describes the WirelessHART network architecture.
Section II reviews the previous works on reliable routing and
real-time scheduling in WirelessHART networks. Section IV
presents the fundamental synchronization mechanism applied in
WirelessHART networks. The details of reliable graph routing
and communication schedule construction in WirelessHART are
described in Section V and Section VI. Section VII presents
our design and implementation of the complete WirelessHART
communication system. Section VIII summarizes our experiment
results. We conclude the paper and discuss the future works in
Section IX.

OSI Layer

Application

Presentation

Session

Transport

Network

Data Link

Physical

HART

Command Oriented. Predefined Data Types and

Application Procedures

Auto-Segmented transfer of large data sets, reliable

stream transport, Negotiated Segment sizes

Power-Optimized Redundant Path,

Mesh to the edge Network

A Binary, Byte Oriented, Token

Passing, Master/Slave Protocol

Secure, Time Synched TDMA/

CSMA, Frequency Agile with ARQ

Simultaneous Analog & Digital

Signaling 4-20mA Copper Wiring

2.4 GHz Wireless, 802.15.4 based

radios, 10dBm Tx Power

Wired FSK/PSK & RS 485 Wireless 2.4 GHz

Fig. 1. The architecture of HART communication protocol

II. WirelessHART Architecture

Traditional wireless standards for office and manufacturing
automation such as ZigBee [11] and Bluetooth [16] are not
designed to meet the stringent timing and security requirements
of industrial control. The WirelessHART standard is specifically
targeted to solve these problems and provide a complete solution
for real-time process control applications.

Figure 1 illustrates the architecture of the HART protocol
according to the OSI 7-layer communication model. As a part of
the HART protocol, the architecture of WirelessHART protocol
is shown on the right side of Fig. 1. At the bottom of its
communication stack, WirelessHART adopts IEEE 802.15.4-
2006 [17] as the physical layer. On top of that, WirelessHART
defines its own time-synchronized data link layer. Some notable
features of WirelessHART data link layer include strict 10 ms
timeslot, network-wide time synchronization, channel hopping,
channel blacklisting, and industry-standard AES-128 ciphers and
keys. The network layer supports self-organizing and self-healing
mesh networking techniques and uses source routing and graph
routing. In this way, messages can be routed around interferences
and obstacles and greatly improve the network performance in
noisy and harsh environments. WirelessHART distinguishes itself
from other public standards by maintaining a central Network
Manager. The Network Manager is responsible for maintaining
up-to-date routes and communication schedules for the network,
thus guaranteeing the reliable and real-time network communi-
cations.

Fig. 2 shows a typical topology of a WirelessHART mesh
network. All WirelessHART nodes support the basic mesh node
functionalities, including routing capability. The basic node types
of a WirelessHART network are:
• Network Manager: It is responsible for configuring the

network, scheduling and managing communication among
WirelessHART devices. It is implemented in software that
resides in the Gateway or the Host.

• Gateway: It connects Host applications with field devices.
It is responsible for data caching and query processing.

• Access Point: It is attached to the Gateway and provides
redundant paths between the wireless network and the
Gateway.

• Router: It is deployed in the network to improve network
coverage and connectivity.

• Field Device: It is attached to the process plant and collects
data. It could be a sensor or an actuator.

• Handheld: It is a portable WirelessHART-enabled computer

Fig. 2. A typical topology of a WirelessHART mesh network

used to configure devices, run diagnostics, and perform
calibrations.

• Adapter: It is a bridge device between the wireless mesh
network and traditional wired HART devices.

III. RelatedWorks

In this section, we summarize previous works in the literature
on achieving reliable routing in wireless networks, and describe
recent works on link and channel scheduling in WirelessHART
networks to achieve end-to-end real-time communication.

A. Reliable Routing in Wireless Networks

The reliable graph routing defined in WirelessHART standard
is essentially a multipath routing approach which has been
extensively studied in wireless networks, and recognized as an
efficient approach for improving the routing reliability [18], [19],
[20], [21], [22], [23]. In [20], node-disjoint and braided multipath
schemes are proposed to provide energy efficiency and resilience
against node failures. SMR [21] is a multipath version of DSR.
It is designed to utilize multipath concurrently by splitting traffic
onto two maximally disjoint routes. AOMDV [22] is a multipath,
loop-free extension to AODV. It ensures that alternate paths at
every node are disjoint, therefore achieves path disjointness with-
out using source routing. AODVM [23] is another extension to
AODV for finding multiple node-disjoint paths. It also proposes
an infrastructure to include deployment of reliable nodes which
can route on multiple paths. This infrastructure can increase
the number of node-disjoint paths between the source and the
destination especially when they are far apart.

Most of these works focus on identifying multiple node or
edge-disjoint paths to improve the routing reliability. However,
to deal with much harsher and noisier industrial control envi-
ronments, the WirelessHART standard defines more stringent
requirements on routing reliability. Each intermediate node on
the routing graph must have at least two neighbors to forward
the traffic to the destination. For this reason, the works in the
literature cannot be directly applied in WirelessHART networks,
and new routing algorithms have to be designed.

Source

Destination

TsCCAOffset

TsCCA

TsRxTx

TsTxOffset

TsError

TsMaxPacket

TsRxAckDelay

TsAckWait

TsRxOffset
 TsRxOffset
 TsTxAckDelay
 TsAck

Fig. 3. Timing of a WirelessHART timeslot

B. Real-time Scheduling in WirelessHART Networks

Since the standard was ratified in 2007, several research
works have been devoted to the link scheduling and channel
assignment problems in WirelessHART networks to achieve end-
to-end real-time communication [13], [14], [15]. In [14], [15],
the convergecast scheduling problem is studied in linear network
topologies. They formulate the problem as a mixed integer
linear programming problem, and design algorithms based on
different assumptions on devices’ buffering capability. [13] con-
siders a more general WirelessHART network model including
arbitrary network topology and multi-path routing. It formulates
the sensor-to-actuator real-time flow scheduling problem and
proves that it is NP-hard. Based on a necessary condition for
schedulability in WirelessHART networks, it proposes an optimal
scheduling algorithm based on a branch-and-bound technique. A
practical scheduling policy called Conflict-aware Least Laxity
First algorithm is also proposed to achieve better scalability and
handle network dynamics.

However, all these aforementioned works assume that the
network layer routes have already been provided and focus on
data link layer scheduling. The relationship between the routes
and the data link layer schedules are not thoroughly studied.
In our work, we present a general framework for network
management in WirelessHART networks. We shall study how
to achieve reliable graph routing for different communication
paradigms in WirelessHART network and further construct a data
link layer communication schedule based on them. Our solution
can be easily integrated into the Network Manager, so that the
setup of an operational WirelessHART network is simple and
prompt.

IV. Time Synchronization inWirelessHART Networks

WirelessHART is a TDMA-based network protocol and every
communication in it is time-synchronized. The basic time unit
of communication activity is a fixed-length timeslot that is
commonly shared by all network devices. The timeslot provides
the time base for scheduling process data transmission. The
duration of a timeslot defined in WirelessHART is 10 ms which is
sufficient for sending or receiving one packet per channel and the
accompanying acknowledgement, including guard-band times for
network-wide synchronization. The specific timing requirement
inside a WirelessHART timeslot is depicted in Figure 3. Precise
time synchronization is critical to the operation of networks
based on time division multiplexing. Since all communication
happens in timeslots, the network devices must have the same
notion of when each timeslot begins and ends, with minimal
variation. Several mechanisms are applied in WirelessHART
for time synchronization. In a WirelessHART network, time
propagates outwards from the Gateway.

When a new device joins a WirelessHART network initially,
it has no idea what the current time is. For each incoming MAC
layer packet, the device records Ta, the time when the packet’s
first bit arrives. Because of the strict timeslot structure, the device
can derive the start of the next timeslot, T , from the packet’s
arrival time according to the following formula where TsTxOffset
is the offset in the slot to start the preamble transmission.

T = Ta + 10ms − TsTxOffset

Synchronization happens not only in the device join process,
but also during a node’s normal operation. A receiving node
always compares the start time of the incoming MAC layer packet
and the expected arrival time measured on its own clock. The
difference is the drift between their clocks. The receiver includes
the difference in the time adjustment field of the corresponding
ACK packet. Each node is designated a time source node.
Whenever a node receives an ACK from its time source, it
will adjust its clock based on the time adjustment field. If the
sender is the time source of the receiver, the receiver adjusts
its clock directly from the time difference value. Together, these
adjustments provide the network-wide time synchronization in
WirelessHART mesh networks.

V. Reliable Graph Routing

In this section, we present the details how we define and
achieve the reliable routing in a typical wireless industrial mesh
network like WirelessHART. We first describe the primary rout-
ing approaches adopted in WirelessHART in Section V-A. Sec-
tion V-C abstracts the reliability requirements on packet routing,
defines three types of reliable graphs for different communication
purposes, and describes their properties. We discuss the difficul-
ties in achieving completely reliable routing in Section V-D. The
algorithmic details to construct these routing graphs are presented
in Section V-E, Section V-F, Section V-G and Section V-H. We
describe the recovery mechanisms in Section V-I.

A. Source Routing and Graph Routing

Two primary routing approaches are defined in the Wire-
lessHART standard: graph routing and source routing. When
using graph routing, a network device sends packets with a graph
id in the network layer header along a path to the destination.
All devices on the way to the destination must be pre-configured
with graph information that specifies the neighbors to which the
packets may be forwarded.

With source routing, to send a packet to its destination, the
source includes in the network layer header an ordered list of
devices through which the packet must travel. As the packet
is routed, each routing device utilizes the next network device
address from the packet header to determine the next hop to use.
Since packets may go to a destination without explicit setup of
intermediate devices, source routing requires knowledge of the
complete network topology.

Since the source routing approach only establishes a fixed
single path between the source and destination, any link or node
failure will cut off their communication. For this reason, source
routing is mostly used for diagnostics purposes in industrial
wireless networks. In this paper, we will focus on the graph
routing approach and investigate how to achieve reliable routing
in the network. Based on different communication purposes, there
are three types of routing graphs defined in a WirelessHART
network, and Figure 4 illustrates an example.

G

A
1
 A
2

2
1
 3

4
 5

G

A
1
 A
2

2
1
 3

4
 5

G

A
1
 A
2

2
1
 3

4
 5

G

A
1
 A
2

2
1
 3

4
 5

(
a
)
Original network topology
 (
b
)
Uplink graph

(
c
)
Broadcast graph
 (
d
)
Downlink graph to Dev
3
and Dev
4

G
 Gateway
 A
 Access Point
 i
 Device with specific ID i

Fig. 4. Three types of routing graphs

Uplink graph: It is a graph connecting all devices upward
to the Gateway. It is used to propagate devices’ process data
periodically to the Gateway. Different devices may have different
sample rates.
Broadcast graph: It is a graph connecting the Gateway down-
ward to all devices. It is used to broadcast common configuration
and control messages to the entire network.
Downlink graph: It is one per device. It is the graph from the
Gateway to each individual device. The unicast messages from
the Gateway and the Network Manager to each device traverse
through this graph.

Based on these graphs, the Network Manager can further
generate the corresponding sub-routes for each device. Only after
the routes are constructed and downloaded to every device, can
the network communication schedule be generated, which we
shall elaborate in Section VI. When devices initially join into the
network, they carry with them a list of neighbor entries including
the received signal strength information. The Network Manager
uses this information and the periodic health reports from the
devices to construct and maintain the global network topology.

B. Notations

This section summarizes the notations to be used throughout
the paper. Given the original network topology G(V, E), we use
g to denote the Gateway, VAP to denote the set of Access Points
and VD to denote the set of devices. We have {g}∪VAP∪VD = V .
For each node i ∈ VD∪VAP, we use e+i and e−i to denote its set of
outgoing edges and incoming edges. We use δ+i and δ−i to denote
its outgoing and incoming degree. GB(VB, EB) and GU(VU , EU)
are used to represent G’s reliable broadcast graph and uplink
graph. The reliable downlink graph for node v ∈ V is denoted by
Gv(Vv, Ev).

C. Reliability Requirements and Reliable Graphs

Compared with wireless community networks, industrial wire-
less mesh networks have a much higher demand on the routing
reliability to tolerate node and link failures. In this section, we
abstract the reliability requirements defined in WirelessHART
standard using the concept of (k,m)-reliability in packet routing.
Notice that here we assume that the Gateway and Access Points
are all connected through wire and reliable, so in the following

of the paper, the reliability requirements only apply to wireless
devices.

Definition V.1: Given a directed graph G(V, E), a node v ∈ V
satisfies the (k,m)-reliability if and only if δ−v ≥ k and δ+v ≥ m.
There is no constraint on δ−v or δ+v if k = 0 or m = 0.

Based on this definition, we now give the definitions of the
aforementioned three reliable routing graphs and present their
important properties.

Definition V.2: Given a directed graph G(V, E), a directed acyclic
graph GB(VB, EB) (VB = V and EB ⊆ E), is a reliable broadcast
graph if the (2, 0)-reliability holds on every node in V−{g}−VAP.

GB requires that each device has at least two parents from
which it can receive the broadcast messages. This significantly
increases the chance for the broadcast messages to be propagated
to the entire network. GB has the following property.

Property V.1: Each device in GB has at least two paths from g.
Proof: According to the definition of GB, ∀v, v ∈ V−{g}−VAP, it
has two different parent nodes. There are two cases on v’s parent
node u. In the first case, u is an Access Point. It is obvious that
there exists one path g → u → v. In the second case, u is a
device. We perform the same analysis on u and find its parents.
As GB is acyclic, this process can be repeated and terminates
when it reaches an Access Point. Thus there exists a path g →
· · · → u→ v. Because v has two different parent nodes, there are
at least two paths from g to v in GB. �

Different from the broadcast graph, the uplink graph is used
by the devices to forward their process data to the Gateway with
a required sample rate. It is considered reliable if and only if for
each device in the network except the Access Points, it has two
children to forward its packet to the Gateway. In cases where
the communication between the device and one of its children
is broken, the process data can still be delivered to the Gateway
through the alternative child.

Definition V.3: Given a directed graph G(V, E), a directed acyclic
graph GU(VU , EU) (VU = V and EU ⊆ E), is a reliable uplink
graph if the (0, 2)-reliability holds on every node in V−{g}−VAP.

Property V.2: Each device in GU has at least two paths to g.
Proof: The proof is similar to the proof for Property V.1.�

Property V.3: GB and GU both have no less than 2 Access Points.
Proof: Assume that there is only one Access Point p in GB. and
v is a node with an incoming edge from p in GB. As p is the
only Access Point, node u, the other parent node of v is a device.
We repeat this analysis on u and it is obvious that at least one of
u’s parents is still a device. This process will be repeated until
a cycle is formed because the number of devices in the network
is finite. This is a contradiction with the definition of GB. So GB

has no less than 2 Access Points. The proof for GU is similar. �

The broadcast graph and uplink graph are global graphs shared
by the entire network. However, to support the transmission
of configuration and control messages to a specific device v,
a unique downlink graph Gv(Vv, Ev) from the Gateway and
Network Manager to v is also required. Gv is defined to be
reliable only if (0, 2)-reliability holds on each intermediate node.

Property V.4: Gv(Vv, Ev) contains at least one directed cycle.
Proof: Assume there is no cycle in Gv. Consider the node u
which has a direct edge to v in Gv. According to the definition

of Gv, intermediate node u has another non-v child w. Repeat
this analysis on w, and w also has a non-v child. This process
can be repeated and finally form a cycle. �

Property V.4 states the existence of directed cycles in Gv. To
guarantee the prompt delivery of the downlink messages, we
must avoid arbitrary cycles in Gv which will generate infinite
loops in packet forwarding. Thus in its definition, we restrict
that there is only one cycle of length 2 in Gv and require that
every node on the cycle must be the destination’s parent. Once
the packet reaches such nodes, it will be directly forwarded to
the destination which is required by the standard. This will avoid
any cyclic transmission and unnecessary delay.

Definition V.4: Given a directed graph G(V, E), a directed graph
Gv(Vv, Ev) (Vv ⊆ V and Ev ⊆ E), is a reliable downlink graph
from g to v if 1) v is the only sink and g is the only source in
Gv; 2) (0, 2)-reliability holds on each intermediate node in Gv;
and 3) there is only one cycle of length 2 in Gv, and each node
on the cycle has a direct edge to v.

D. Difficulties in Achieving Completely Reliable Graphs

The major barrier to construct reliable routing graphs is the
underlying network connectivity. Better network connectivity will
obviously lead to a higher chance for constructing completely
reliable graphs. In this section, we evaluate the relationship be-
tween the network connectivity and the success ratio to construct
these reliable graphs. In our experiments, we vary the network
connectivity by changing the edge success probability p and
Figure. 5 summarizes our results. We observe that with 150
devices in the experiments, the success ratio drops quickly along
with the decrease of p. When p is 0.8, the success ratio is around
80% for downlink graphs and above 95% for both GB and GU .
However, when p drops to 0.5, we can barely construct reliable
downlink graphs and the success ratios for GB and GU are only
around 40%.

Under the same experiment settings, Figure. 6 shows the
percentage of reliable nodes in the incomplete reliable graphs. We
observe that the percentage of reliable nodes in incomplete GU

and GB are always above 95% and this percentage for downlink
graphs is also larger than 75% even when the edge success
probability drops to 0.5. Figure. 7 further evaluates the impact
of the network density on the success ratio. We vary the size of
the network from 75 to 150 and fix the edge success probability
at 0.8. As expected, The results show that the network density
has a great impact on network connectivity, and lower network
density will lead to poor success ratio.

Based on these results, we conclude that the success ratio
for constructing reliable routing graphs is closely related to
the underlying network connectivity. In many scenarios, it is
impossible to achieve the completely reliable graphs. For this
reason, we shall allow violations of the reliability requirements
in the routing graphs and instead focus on designing algorithms
to construct graphs with the maximum number of reliable nodes.
In the following of the paper, we will still use GB, GU and Uv to
represent the broadcast graph, uplink graph and downlink graph
for node v even though they may not be completely reliable.

E. Constructing Reliable Broadcast Graph

In a broadcast graph, we say that a node i is reliable if and
only if δ−i ≥ 2. Let S B = {i | δ−i ≥ 2, i ∈ V}, and we want to max-
imize |S B| when we construct the reliable broadcast graph GB.
Furthermore, to reduce the energy consumption in propagating

Alg 1 Constructing Reliable Broadcast Graph GB(VB, EB)
1: // G(V, E) is the original graph
2: Initially VB = g ∪ VAP and EB contains all links from g to VAP.
3:
4: while VB , V do
5: Find S ′ ⊆ V − VB: ∀v ∈ S ′, v has at least two edges from VB
6: if S ′ , ∅ then
7: for all node v ∈ S ′ do
8: Sort its edges eu,v from VB according to h̄u
9: Choose the first two edges eu1 ,v and eu2 ,v

10: h̄v =
h̄u1+h̄u2

2 + 1
11: end for
12: Choose the node v with min h̄v
13: Add v to VB and add eu1 ,v and eu2 ,v to EB
14: else
15: Find S ′′ ⊆ V − VB: ∀v ∈ S ′′, v has one edge eu,v from VB
16: if S ′′ , ∅ then
17: for all node v ∈ S ′′ do
18: h̄v = h̄u + 1
19: Calculate nv, the # of its outgoing edges to V − VB
20: end for
21: Choose the node v with maximum nv, break tie using h̄v
22: end if
23: else
24: return FAIL;
25: end if
26: end while
27: return SUCCESS;

broadcast messages to the entire network and improve network
latency, we also hope to minimize the average number of hops
from the Gateway to each node. For node i, we denote its average
number of hops from the Gateway by h̄i and use Pi to represent
its parents in GB. We have:

h̄i =

∑
k∈Pi

h̄k

|Pi|
+ 1 (1)

We present a greedy algorithm (Alg. 1) to achieve these two
goals in constructing GB. In our approach, we maintain a set VB

to record the explored nodes and VB is initialized as {g} ∪ VAP.
The explored edges are maintained in EB which is initialized to
include the edges from g to each Access Point. In the algorithm,
we incrementally select one node v from V − VB. In each loop,
we first find S ′, the set of reliable nodes in V −VB (Line 5). For
each node v in S ′, we sort its incoming edges from VB according
to their averaged number of hops from the Gateway in ascending
order. We choose the first two edges and calculate h̄v according
to Eq. 1. We choose the node in S ′ with the minimum h̄v and
add it to VB. If there is no reliable node available in V − VB, we
will instead find S ′′, the set of nodes with exact one edge from
VB (Line 15). We choose the node in S ′′ with the maximum
number of outgoing edges to V − VB to maximize the chance
to find reliable nodes in the next round. This process continues
until all nodes in V are explored. Otherwise an error will be
reported (Line 24). This will trigger the Network Manager to
execute appropriate recovery actions. The worst-case complexity
of the algorithm is

|V |∑
k=|VAP |

(|E| + (|V | − k) · lg(|V | − k)) = O(|V |3)

F. Constructing Reliable Uplink Graph

The construction of a reliable uplink graph GU(VU , EU) is
similar to that of GB(VB, EB). Essentially, we only need to
reverse all edges in the original graph G(V, E), construct GB

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Su

cc
es

s
R

at
io

Edge Success Probability

 Uplink Graph
 Broadcast Graph
 Downlink Graph

Fig. 5. Success ratio vs. Edge success probability

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.75

0.80

0.85

0.90

0.95

1.00

Pe
rc

en
ta

ge
 o

f R
el

ia
bl

e
N

od
es

Edge Success Probability

Uplink Graph
 Broadcast Graph
 Downlink Graph

Fig. 6. Percentage of reliable nodes

0.0

0.2

0.4

0.6

0.8

1.0
Downlink GraphBroadcast Graph

Su
cc

es
s

R
at

io

 75 nodes 100 nodes 125 nodes 150 nodes

Uplink Graph

Fig. 7. Success ratio vs. Network density

and then reverse all its edges back. We define GR(V, ER) to
be the reversed graph of G(V, E), and the greedy algorithm to
construct GU(VU , EU) is summarized in Alg. 2 and its worst-
case complexity is O(|V |3).

Alg 2 Constructing Reliable Uplink Graph GU(VU , EU)
1: // G(V, E) is the original graph, GR(V, ER) is the reversed graph
2: Construct GR(V, ER)
3: Construct GB(VB, EB) from GR(V, ER) by applying Alg. 1
4:
5: if VB = V then
6: // Construct GU by reversing all edges in GB
7: GU (VU , EU) = GR

B(VB, ER
B)

8: else
9: // the network topology is disconnected

10: return FAIL;
11: end if
12: return SUCCESS;

G. Constructing Reliable Downlink Graph

The construction of the reliable downlink graph Gv(Vv, Ev)
for a given node v in G(V, E) only involves part of the nodes
in G(V, E) and it is more complicated because of the existence
of cycles as shown in Property V.4. Furthermore, according to
Definition V.4, we want to have exactly one cycle in Gv of
length 2 and restrict it to be between the two parents of v. Our
optimization goals in constructing Gv are similar to that of GB and
GU . We hope to maximize the number of nodes in the network to
have reliable downlink graphs and for each downlink graph, we
want to minimize its average number of hops from the Gateway.

Alg. 3 summarizes the framework of our approach. In the
algorithm, we construct the reliable downlink graph for each
node in the network. For the Access Point, its downlink graph
consists of the Gateway g, itself and the edge from g to itself.
We maintain S , a set of nodes whose reliable downlink graphs
have already been constructed (Line 1). We incrementally find an
eligible node v in V − S to construct Gv where three constraints
in Table I are applied and v has the minimum h̄v as calculated
in Line 17. Constraint C1 and C2 are to satisfy the reliability
requirements in Gv and Constraint C3 is to make sure that we
can remove the internal cycles in the constructed Gv. If such an
eligible node cannot be found, we will instead choose the node
that has two parents from S with the minimum average latency
to the Gateway (Line 20). If every node in V − S only has one
parent from S , we choose the one with the minimum average
latency (Line 27 - 37).

C1: v has at least two parents u1 and u2 in S
C2: u1 and u2 form a directed cycle
C3: u2 (u1) has at least one parent from the cycle in Gu1 (Gu2)

TABLE I
Three constraints in constructing reliable downlink graphs

Alg. 4 describes how we construct Gv based on its parents
(u1 and u2)’ reliable downlink graphs Gu1 and Gu2 . We first
merge Gu1 ,Gu2 , v and edges among u1, u2 and v together (Line
4). We maintain S , the set of explored nodes in Gv and initialize
it as {g, v, u1, u2}. We construct Gv in a bottom-up manner by
incrementally selecting a node i ∈ Vv−S which has two outgoing
edges to S in G and has the minimum h̄i (Line 6-30). This process
continues until either all nodes in Vv are explored or VAP has two
outgoing edges to S (Line 7 - 10). Finally, we remove all nodes
in Vv − S and their corresponding edges from Gv (Line 32 - 34).
If there is no node available to have two outgoing edges to S in
G, we choose the node with the minimum h̄i (Line 20 - 29).

H. Constructing Scalable Reliable Downlink Graph

The algorithms proposed in Section V-G strictly comply to
the WirelessHART standard and construct one downlink graph
for each individual node. However, this approach is not scalable.
When a device is multi-hop away from the Gateway, its downlink
graph has to traverse multiple intermediate devices but cannot
reuse their downlink graph information. This will introduce
unnecessarily high configuration overhead in the network. To
achieve reliable downlink graph routing in large-scale wireless
networks, in this section we propose to extend the current
downlink route from a single graph to a sequence of ordered local
graphs, and we call this approach Sequential Reliable Downlink
Routing (SRDR). Instead of constructing a completely new graph
from Gateway to device v, SRDR lets each node only keep
a small local graph to maintain the reliable routing from its
parents. The reliable downlink graph to a given node can be
constructed by assembling the intermediate nodes’ local graphs
together based on a given order. These local graphs can be taken
as building blocks in constructing downlink graphs for different
destinations, thus existing device configurations can be reused.
This will significantly reduce the overall configuration overhead
and improve the downlink routing scalability.

Extension: To support sequential reliable downlink routing, we
need two extensions in the current WirelessHART standard. First,
as depicted in Figure 8, we use the reserved bits (Bits 4-3) of the
control byte in the network layer header to indicate, when set,
the presence of the sequential downlink routing fields, and we

Alg 3 Constructing Reliable Downlink Graphs in G(V, E)
1: Let S be the set of nodes with downlink graphs constructed
2: Initially S = g ∪ VAP and Gg = ({g},∅)
3: Initially for each AP i in S , set Gi = ({g ∪ i}, {eg,i})
4:
5: while S , V do
6: Find S ′ ⊆ V − S : ∀v ∈ S ′, v has at least two edges from S
7: // S r is the reliable node set in S ′, initially S r = ∅
8: if S ′ , ∅ then
9: for all node v ∈ S ′ do

10: for all edge pair (eu1 ,v, eu2 ,v) from S do
11: if C 1 ∧ C 2 ∧ C 3 then
12: S r = S r ∪ {v}
13: end if
14: h̄u1 ,u2 = (h̄u1 + h̄u2)/2
15: end for
16: Choose the edge pair (eu1 ,v, eu2 ,v) with min h̄u1 ,u2
17: h̄v = h̄u1 ,u2 + 1
18: end for
19: if S r , ∅ then
20: Add node v in S r with min h̄v to S
21: else
22: Add node v in S ′ with min h̄v to S
23: end if
24: // construct Gv: h̄u1 ,u2 is the min among all edge pairs to v
25: ConstructDG(G, Gu1 , Gu2 , v);
26: else
27: Find S ′′ ⊆ V − S : ∀v ∈ S ′′, v has one edge eu,v from S
28: if S ′′ , ∅ then
29: for all node v ∈ S ′′ do
30: h̄v = h̄u + 1
31: Calculate nv, the # of v’s outgoing edges to V − S
32: end for
33: Add v to S with maximum nv, break tie using h̄v
34: ConstructDG(G, Gu1 , null, v);
35: else
36: return FAIL;
37: end if
38: end if
39: end while
40: return SUCCESS;

7
 6
 5
 4
 3
 2
 1
 0

Control Byte

7
:
Destination Address
6
:
Source Address

5
:
reserved

1
:
1
st

source route

4
:
1
st

sequential graph route

2
:
Proxy route
0
:
2
nd

source route

3
:
2
nd

sequential graph route

Control
 TTL

ASN

Snippet

Graph

ID

Dest

Addr

Source

Addr

Proxy

Route

Sequential Graph Route or

Source Route

Network Layer Header

Payload

Expended Routing Information

Fig. 8. The extension of the network layer header in WirelessHART to support
sequential reliable downlink routing

use the source routing option field to store the ordered graph list;
Second, the routing module is enhanced to support SRDR. When
the packet arrives at the intermediate node, the routing module
will retrieve the earliest graph ID in the graph list and verify if
the current node is the sink of this specific graph. If it is, we
remove this graph ID from the graph list and route this packet
on the next earliest graph. This process continues until we reach
the final destination or the routing fails. In the latter case, we
will remove this graph ID and try the next earliest graph ID if
it has the corresponding edges. Otherwise, alarm messages will
be sent to the Network Manager and appropriate actions shall be
taken.

Alg. 5 summarizes the framework of SRDR. In the algorithm,
given the original graph G, we construct the reliable downlink

Alg 4 ConstructDG (G(V, E), Gu1 (Vu1 , Eu1), Gu2 (Vu2 , Eu2), v)
1: Let S contain explored nodes in Gv(Vv, Ev): S = {g, v, u1, u2}
2:
3: // Construct Gv: Merging Gu1 , Gu2 , v, and edges among v, u1, u2
4: Gv(Vv, Ev) = Gv(Vu1 ∪ Vu2 ∪ {v}, Eu1 ∪ Eu2 ∪ {eu1 ,v, eu2 ,v, eu1 ,u2 , eu2 ,u1 })
5:
6: while S , Vv do
7: if VAP has two outgoing edges to S in G then
8: S = S ∪ VAP
9: break;

10: end if
11: for all node i ∈ Vv − S do
12: Sort i’s outgoing edges to S in descending order of h̄i
13: end for
14:
15: Find S ′ ⊆ Vv − S : ∀v ∈ S ′, v has at least two edges to S
16: if S ′ , ∅ then
17: Add node i with min h̄i to S
18: Add first two edges from i to S to Gv if they don’t exist
19: Remove all other edges from Ev
20: else
21: Find S ′′ ⊆ Vv − S : ∀v ∈ S ′′, v has one edge to S
22: if S ′′ , ∅ then
23: Add i with min h̄i to S
24: Add the edge from i to S to Gv if it doesn’t exist
25: else
26: return FAIL;
27: end if
28: end if
29: end while
30:
31: for all node i ∈ Vv − S do
32: Remove i from Vv and corresponding edges from Ev
33: end for
34: return SUCCESS;

G

A
1
 A
2

2
1
 3

4
 5

(
a
)
Original network topology

(
b
)
Downlink graph
:
g
2

Sequential route for Dev
2
:
g
2

G

A
1
 A
2

2
1
 3

4
 5

(
c
)
Downlink graph
:
g
3

Sequential route for Dev
3
:
g
3

G

A
1
 A
2

2
1
 3

4
 5

(
d
)
Downlink graph
:
g
1

Sequential route for Dev
1
:
g
2
,
g
1

G

A
1
 A
2

2
1
 3

4
 5

(
e
)
Downlink graph
:
g
4

Sequential route for Dev
4
:
g
2
,
g
1
,
g
4

G

A
1
 A
2

2
1
 3

4
 5

(
f
)
Downlink graph
:
g
5

Sequential route for Dev
5
:
g
2
,
g
5

G

A
1
 A
2

2
1
 3

4
 5

(
b
)

Fig. 9. Examples of the sequential reliable downlink routes

(
b
)
Downlink graph
:
g
5

Sequential route for Dev
5
:
g
2
,
g
5

G

A
1
 A
2

2
1
 3

4
 5

(
c
)
Standard downlink graph for Dev
5

G

A
1
 A
2

2
1
 3

4
 5

(
a
)
Downlink graph for Dev
2

G

A
1
 A
2

2
1
 3

4
 5

Fig. 10. Standard approach vs. Sequential reliable downlink routing (SRDR)

C1: v has at least two parents u1, u2, and they form a cycle.
C2: u1 is u2’s parent in u2’s local downlink graph.
C3: u2 (u1) has at least one parent from the cycle in Gu1 (Gu2)

TABLE II
Three constraints in constructing scalable reliable downlink graphs

route (an ordered graph list) for each node in the network. For the
Access Point, its downlink route contains only one local graph
which consists of the Gateway g, itself and the edge between
them. We maintain S , a set of nodes whose downlink routes
have already been constructed (Line 1). We incrementally find an
eligible node v in V −S to construct its downlink route Rv where
three constraints in Table II are applied and v has the minimum
h̄v as calculated in Lines 14-26. Constraint C1 is to find v’s local
downlink graph gv = ({u1 ∪ u2 ∪ v}, {eu1,u2 , eu2,u1 , eu1,v, eu2,v}); If
constraint C2 is satisfied, v’s downlink route Rv can be simply
derived as Rv = Ru2 → gv; Constraint C3 presents another way
to construct the reliable downlink route for v if u1 and u2 are
independent. If an extra edge e can be found from the cycle in
Gu1 to u2 or from the cycle in Gu2 to u1, it will be added into
gv, and Rv can be derived as Ru1 → gv or Ru2 → gv. If such an
eligible node cannot be found, we will instead choose the node
that has two parents from S with the minimum average latency
to the Gateway (Line 18). If every node in V − S has only one
parent from S , the one with minimum average latency will be
chosen (Line 28 - 40). Alg. 6 gives the details how we construct
Rv.
Example V.1: Figure 9 illustrates an example for constructing the
reliable downlink routes for devices in a WirelessHART network.
Figure 9(a) gives the original topology of the network. We first
include node 2 and node 3 into the explored node set S . The
dotted lines in Figure 9(b) and Figure 9(c) show their local
downlink graphs. When adding node 1 into S , as A1 and node 2
are already in S and they satisfy the constraints C1 ∧ C2, R1 is
derived as g2 → g1. We have the similar operations when adding
node 4 into S and R4 = g2 → g1 → g4. However, when we add
node 5 into S , node 2 and node 3 are independent. As we have
a link between A1 and node 3, constraints C1 ∧ C3 are satisfied.
The dotted links in Figure 9(f) shows g5, and the downlink route
of node 5, R5 is g2 → g5.

The next example compares the standard approach in Wire-
lessHART with sequential reliable downlink routing (SRDR).
Example V.2: Figure 10 compares SRDR with the standard
approach in WirelessHART. The downlink graphs for node 2
under both approaches are the same (Figure 10(a)). The downlink
route for node 5 in our approach is R5 = g2 → g5, and g5 is
shown in Figure 10(b). In SRDR, the downlink routing from
the Gateway to node 5 can leverage the local routing graph in
intermediate node (node 2) while only a local graph in node
5 is needed. However, the standard approach has to construct
a completely new graph from the Gateway to node 5 which is
shown in Figure 10(c). Comparing Figure 10(b) and Figure 10(c),
the standard approach requires 3 extra links to achieve the reliable
downlink routing. This overhead will increase dramatically when
the destination is far away from the Gateway.

Optimization: In the basic SRDR, the routing is performed
strictly according to the sequence in the ordered graph list.
However, as each node can keep graph information to multiple
destinations, we can take advantage of the “shortcut” to further
improve the network latency. We call this approach SRDR-OPT.
When a packet arrives at an intermediate node i, instead of using

Alg 5 Constructing Sequential Reliable Downlink Routes
1: Let S be the set of explored nodes with downlink route constructed
2: Initially S = g ∪ VAP
3: Initially for each AP i in S , set Gi = ({g ∪ i}, {eg,i}) and Ri = Gi
4:
5: while S , V do
6: Find S ′ ⊆ V − S : ∀v ∈ S ′, v has at least two edges from S
7: // S r is the reliable node set in S ′, initially S r = ∅
8: if S ′ , ∅ then
9: for all node v ∈ S ′ do

10: for all edge pair (eu1 ,v, eu2 ,v) from S do
11: h̄u1 ,u2 = (h̄u1 + h̄u2)/2
12: end for
13: Find Pv, set of edge pairs of v satisfying C1 ∧ (C2 ∪ C3)
14: if Pv , ∅ then
15: S r = S r ∪ {v}
16: Choose (eu1 ,v, eu2 ,v) from Pv with min h̄u1 ,u2
17: else
18: Choose (eu1 ,v, eu2 ,v) from S with min h̄u1 ,u2
19: end if
20: h̄v = h̄u1 ,u2 + 1
21: end for
22: if S r , ∅ then
23: Add v in S r with min h̄v to S
24: else
25: Add v in S ′ with min h̄v to S
26: end if
27: ConstructDG(G, u1, u2, v);
28: else
29: Find S ′′ ⊆ V − S and ∀v ∈ S ′′, v has one edge eu,v from S
30: if S ′′ , ∅ then
31: for all node v ∈ S ′′ do
32: h̄v = h̄u + 1
33: end for
34: Add v to S with min h̄v
35: Gv = ({u ∪ v}, {eu,v})
36: Rv = Ru → Gv
37: else
38: return FAIL;
39: end if
40: end if
41: end while
42: return SUCCESS;

the earliest graph ID, SRDR-OPT searches the ordered graph list
backward and finds the first graph ID that is stored in its routing
table. The packet then will take the “shortcut” and be forwarded
on this graph. If this forwarding is successful, at the destination
of this selected graph, all the preceding graph IDs in the ordered
graph list including the current ID will be removed. Otherwise,
node i will choose the next available graph ID backward in the
ordered graph list and repeat this process. The following example
shows the advantage of SRDR-OPT.
Example V.3: In Figure 11, we are routing packets from node s
to node 4 and R4 is g2 → g3 → g4. In node 2, it contains the
routing information for both graph g3 and g4. It contains edges
2 → 3 and 2 → 1 on g3 and edges 2 → 4 and 2 → 3 on
g4. When a packet arrives at node 2 with an ordered graph list
g3 → g4 in the network layer header (g2 is removed at node 2),
node 2 will take the “shortcut” and try to forward the packet on
graph g4 to node 4. Only if both edges on graph g4 are broken,
node 2 will forward the packet on graph g3 and try the edge
2 → 1 instead. Under this worse-case scenario, the packet will
forwarded to node 4 through s→ 2→ 1→ 3→ 4.

I. Maintaining Reliable Routing Graphs with Network Dynamics

The algorithms presented in the previous subsections construct
the reliable routing graphs in ideal scenarios where network

Alg 6 ConstructDG (G, u1, u2, v)
1: Let Eδ be the set of edges among u1, u2 and v
2: if u1, u2 satisfy C1 ∧ C2 then
3: Gv = G({u1, u2, v}, Eδ)
4: if u1 is u2’s parent in Gu2 then
5: Rv = Ru2 → Gv
6: else
7: Rv = Ru1 → Gv
8: end if
9: else if u1, u2 satisfy C1 ∧ C3 then

10: if u1 has an edge e from u2’s parents in Gu2 then
11: Gv = G({u1, u2, v}, Eδ ∪ e)
12: Rv = Ru2 → Gv
13: end if
14: if u2 has an edge e from u1’s parents in Gu1 ∧ (hu2 < hu1) then
15: Gv = G({u1, u2, v}, Eδ ∪ e)
16: Rv = Ru1 → Gv
17: end if
18: else
19: if eu1 ,u2 and eu2 ,u1 both exist then
20: Gv = G({u1, u2, v}, Eδ)
21: Rv = (hu1 < hu2) ? Ru1 → Gv : Ru2 → Gv
22: else if there is neither eu1 ,u2 nor eu2 ,u1 then
23: Gv = (hu1 < hu2) ? G({u1, v}, {eu1 ,v}) : G({u2, v}, {eu2 ,v})
24: Rv = (hu1 < hu2) ? Ru1 → Gv : Ru2 → Gv
25: else if eu1 ,u2 exists then
26: Gv = G({u1, u2, v}, Eδ)
27: Rv = Ru1 → Gv
28: else
29: Gv = G({u1, u2, v}, Eδ)
30: Rv = Ru2 → Gv
31: end if
32: end if

S
 2
 4

1
 3

g
2
 g
3
 g
4

S
 2

1

g
2

2
 4

3

g
4

2

1
 3

g
3

Fig. 11. An example of the SRDR optimization

devices work properly after joining the network. Although the
industrial wireless mesh is usually quite stable after deployment,
network devices may experience various failures and need to
be reset. Wireless links can also be blocked by interference
and become temporarily or permanently unavailable. All these
scenarios require the Network Manager to recover the routing
graphs to maintain the reliability requirements. Furthermore,
corresponding adjustments on the communication schedules are
also necessary along with these routing graph modifications.

In WirelessHART networks, network abnormalities and statis-
tics are reported to the Network Manager through a set of network
maintenance commands. These commands are summarized in
Table III. Command 779 summaries the communication statistics
of a specific device; Command 780 and 787 report the signal
strengths of a device’s neighbors; Command 788, 789 and 790 are
triggered once a path failure or routing failure is detected in the
network. These commands are carried in normal messages and
published to the Network Manager. Based on this information,
the Network Manager will update the network topology, adjust
the routing graphs and communication schedules if necessary to
reach a good balance between the reliability and recovery cost.

Our current heuristics to recover GB consists of two steps.
We first find G′B(V ′B, E

′
B) , the sub graph of GB where all nodes

in V ′B are reliable after the topology changes. In the second
step, we replace GB with G′B and repeat Alg. 1 to incrementally
add nodes to GB. This process repeats until either all the nodes
are included in GB or disconnected nodes are identified. The
mechanism to reconstruct GU is similar to that of GB. Designing
efficient algorithms to reconstruct Gv to each node v is more
challenging and will be addressed in our future works.

VI. Communication Schedule and ChannelManagement
Typical wireless industrial process control applications take the

approach that devices specify their requirements in communica-
tion bandwidth and the Network Manager allocates necessary
resources such as timeslots, to maintain the periodic sensing-
control loop between the Network Manger and devices. In the
sensing phase, the devices publish their process data to the
Gateway through the uplink graph based on their specific sample
rates; In the control phase, the Network Manager generates
control messages and sends them back to each individual de-
vice on its downlink graph. The Network Manager maintains
a global communication schedule for transmitting these process
and control data and distributes the sub-schedule to each effected
device.

The construction of the communication schedule is subject to
several practical constraints in WirelessHART networks:
• The maximum number of concurrent active channels is 16.
• Each device can only be scheduled to TX/RX once in a slot.
• Multiple devices can compete to transmit to the same device

simultaneously (in shared timeslot).
• On a multi-hop path, early hops must be scheduled first.
• The practical sample rates are defined as 2n sec (−2 ≤ n ≤ 9)

from 250 ms (2−2 sec) to 8 min and 32 sec (29 sec).
Our design philosophy for constructing the communication

schedule is to spread out the channel usage in the network as
much as possible and to apply the Fastest Sample Rate First
policy (FSRF) to schedule the devices’ periodic publishing and
control data.

We use the concept of superframe to group a sequence of
consecutive timeslots and represent the communication pattern
for a given sample rate. We define two types of superframes: data
superframe and management superframe. The data superframe is
used to support data transmissions between the devices and the
Gateway while the management superframe is used to support
exchanging network management messages. The number of
data superframes is decided by the number of different sample
rates existing in the network. Notice that there can be multiple
devices having the same sample rate, thus a data superframe will
represent the periodic behavior of multiple devices.

We maintain a global matrix M to keep track of the current
slot/channel usage in the network. Each entry in the matrix,Mi, j

represents the slot usage at timeslot i on channel j, and it has four
types: unused, exclusive, shared and reserved. An unused entry
can be allocated to any pair of devices if there is no communica-
tion conflict; An exclusive entry is one occupied by two devices
for dedicated communication; Reserved entries are managed by
the Gateway or the Network Manager for maintenance purposes;
Finally a shared entry allows multiple devices to compete for
transmitting to the same device simultaneously. For instance, in
our system, we allow 5 simultaneous transmissions on a shared
timeslot. We also maintain several other important data structures
for constructing the communication schedule. They include one

Command Functionality
Command 779 Report device communication statistics
Command 780 Report neighbor health list
Command 787 Report neighbor signal levels
Command 788 Path down alarm
Command 789 Source route failure alarm
Command 790 Graph route failure alarm

TABLE III
Summary of network maintenance commands

data superframe Fi per sample rate ri and a global management
superframe Fm. Here we use li to denote the length of Fi. For
each node v, we maintain a schedule Sv to record its own
slot/channel usage. The length of M and Sv are both equal
to the maximum length among the existing superframes. These
schedules will be distributed to the devices to achieve end-to-end
real-time communication.

Alg 7 Constructing Data Communication Schedule
1: Sort device sample rates in ascending order: r1 < r2 < . . . < rk.
2: Identify the set of nodes with each sample rate: N1,N2, . . . ,Nk.
3: Initialize the schedule for each node as ∅
4:
5: for all ri from r1 to rk do
6: Generate the data superframe Fi
7: for all node v ∈ Ni do
8: // Schedule primary and retry links for publishing data
9: ScheduleLinks(v, g, GU , Fi, 0, Exclusive);

10: ScheduleLinks(v, g, GU , Fi,
li
4 , Shared);

11:
12: // Schedule primary and retry links for control data
13: ScheduleLinks(g, v, Gv, Fi,

li
2 , Exclusive);

14: ScheduleLinks(g, v, Gv, Fi,
3li
4 , Shared);

15:
16: if all link assignments are successfully then
17: continue;
18: else
19: // Defer bandwidth request from node v
20: return FAIL;
21: end if
22: end for
23: end for
24: return SUCCESS;

We present the framework of constructing the data communi-
cation schedule in Alg. 7. The construction of the management
schedule follows the same approach and is omitted here. In
the algorithm, we apply the (FSRF) policy in scheduling data
transmissions. The construction is based on the reliable graphs
we introduced in Section V. For each device v, in its sensing
phase, it allocates the primary and retry links along the uplink
graph GU to the Gateway (Line 9 - 10); In the control phase, the
Network Manager sends the control messages back and allocates
the primary and retry links along the downlink graph Gv (Line 13
- 14). The ScheduleLinks(u, v, G, F , t, o) function is described in
Alg. 8. It allocates every link on the paths from u to v on graph
G one by one in a depth-first manner. It allocates the earliest
available timeslot ti from t for each link and updates M, F and
each effected node’s schedule accordingly. If we cannot find a
slot in [t, lF] to accommodate all the allocations, the Network
Manager will defer the bandwidth request from the corresponding
device until enough bandwidth resources are available (Line 19
- 20 in Alg. 7).

Notice that a device v is typically multi-hop away from the
Gateway, and it has multiple paths to the Gateway due to the
property of reliable graph routing. However, if we allocate the

required communication bandwidth for device v on each hop
along all its paths to the Gateway, most of the allocated links will
be wasted because in each end-to-end transmission, only one path
will be picked. This will severely degrade the schedulability of
the network schedule. To address this problem, as shown in Alg. 8
(Line 17 - 33), when the device has two successors to forward the
messages, we reduce the transmission rate between v and each
of its successors to half of the original sample rate, and schedule
the links on the corresponding superframe F ′(lF ′ = 2 · lF). We
determine the timeslot offset of these links in F ′ to make sure
that their combinations will form a communication pattern the
same as the original sample rate.

Alg 8 ScheduleLinks(u, v, G, F , t, o)
1: // u and v are the source and destination of the communication
2: // G is the routing graph and F is the superframe
3: // t is the earliest slot to be allocated and o is the link option
4:
5: Identify data superframe F ′ with lF ′ = 2lF
6: for all node i ∈ Successor(u) do
7: Identify the schedule Su and Si for node u and i
8: if i is the only successor of u then
9: Identify the earliest slot from t with a channel c to:

10: Allocate entries Mk·lF +ti ,c(k = 0, 1, ...) on M
11: Allocate the slots k · lF + ti on Su and Si
12: Allocate slot ti on F
13:
14: if All allocations are successful then
15: ScheduleLink(i, v, G, F , ti, o);
16: end if
17: else
18: if i is the first successor then
19: Identify the earliest slot from t with a channel c to:
20: Allocate entries Mk·lF ′+ti ,c on M
21: Allocate slots k · lF ′ + ti on Su and Si
22: Allocate slot ti on F ′
23: else
24: Identify the earliest slot from t in M with a channel c to:
25: Allocate entries Mk·lF ′+lF +ti ,c on M
26: Allocate slots k · lF ′ + lF + ti on Su and Si
27: Allocate slot lF + ti on F ′
28: end if
29:
30: if All allocations are successful then
31: ScheduleLink(i, v, G, F ′, ti, o);
32: end if
33: end if
34: if No feasible allocations available then
35: return FAIL;
36: end if
37: end for
38: return SUCCESS;

VII. System Implementation
We have built a complete WirelessHART communication

system to verify the correctness and efficiency of our network
management techniques. We are deploying the system in a large-
scale manufacturing factory to collect sensor data from testing
devices, and achieve factory automation. Figure 12 depicts the
abstract architecture of our system which has five major compo-
nents: the WirelessHART mesh network, Gateway, Access Point,
Network Manager and Host applications. These components in
our system are shown in Figure 13, and their design details will
be presented in the following sections.

A. WirelessHART Mesh Network
Our WirelessHART mesh network is formed by two types

of devices. Rosemount [24] sensors and the Freescale devices

Network

Manager

Security

Manager

Gateway

Access Point
Access Point
Access Point

WirelessHART Mesh Networks

Host Applications

OPC Server

TCP Sockets

Serial Port Connection

IEEE
802
.
15
.
4
Radio

Fig. 12. Architecture of the complete WirelessHART communication system

Fig. 13. The major components in the system

with the stack that developed by ourselves [3]. All these devices
comply to the WirelessHART standard, thus have no problem to
interoperate with each other. They join into the network through
the standardized procedure [25]. The Network Manager organizes
these devices into a multi-hop reliable mesh and configures them
with corresponding routes and communication schedules. Once
the devices are correctly configured, they begin to exchange
management and data messages with the Network Manager and
Gateway.

B. Gateway Design

The Gateway works as a server responsible for communicating
with the Network Manager, processing the requests from the Host
applications, collecting and caching data from all devices in the
network. Its architecture is illustrated in Figure 14 and has the
following major components:

Physical Connections: The Gateway provides a serial port
connection to each attached Access Point. The Gateway talks
with the Network Manager through a socket connection for
message exchange. It also provides one or more Host Interfaces
to backbone networks (e.g., the plant automation network) to
receive the queries and send the responses back.

Real-time Database and Query Processor: The core parts of
the Gateway are a real-time database and a query processor. The
database provides data caching for burst mode, event notification,
and common HART command responses. The query processor
processes the queries from Host applications. If the requested
data are already cached and still valid, they are returned im-
mediately to the Host applications. This reduces network traffic

Access Point
Access Point

Receive Thread
&
Queue
Receive Thread
&
Queue
 Transmit Queue
Transmit Queue

Serial Port Communication

Destination
:
NM

Invalid Addresses
:
Dropped

Security

Manager

Security

Manager

Gateway

Command

Processor

Command

Processor

Network

Manager
 Data Caching
Data Caching

Network Layer

Gateway Configuration

To Field Devices

TCP
/
IP

TCP
/
IP

Destination
:
Gateway

Destination
:
Gateway and Devices

Cached Response upon Read
/
Write Confirmation
,
Burst

Mode
,
Event Notification

Host
Host

Host Interface

Fig. 14. The architecture of the Gateway

and improves the Host application’s responsiveness. Otherwise,
the query processor will generate the request messages and send
them to the corresponding devices. The return response data are
cached in the Gateway and sent back to the Host applications.

Time Source: The Gateway maintains a time source module for
maintaining network-wide time synchronization. It will notify
all the devices in the network and let them synchronize with
the Gateway through the approaches discussed in Section IV.
In our system, the actual time source is a designated Access
Point instead of the Gateway. This Access Point will periodically
update the accurate time to the Gateway and Network Manager.

C. Access Point Design

The Access Point is a bridge between the mesh network and
the Gateway. There could be multiple Access Points attached to
the Gateway providing load balancing and reliable graph routing.
Each Access Point goes through the same join procedure as
a normal device to authenticate itself and establish a secured
connection with the Network Manager. As shown in Fig. 15, The
communication stack on the Access Point is extended from that
of the device by adding an extra UART module. The messages
received from the mesh will be forwarded to the UART module
and sent to the Gateway. In the other direction, the messages
from Gateway/Network Manager will be sent through the serial
port and put into the network layer queue in the Access Point.

If a network includes multiple Access Points, then they must
be synchronized. In our design, except the designated time
source, all other Access Points will be instructed by the Network
Manager to scan the physical channels the same way as when
a normal node joins the network. A normal node will send
out join request message to a neighbor after synchronization.
These Access Point directly send the join request to the Network
Manager through the Gateway. Afterwards the Network Manager
configures them just like it configures the original time source.

D. Network Manager Design

The core of a WirelessHART mesh network is the Network
Manager. It is responsible for authenticating the devices, forming
the network, allocating network resources and scheduling process
data transmissions. We have described the detailed algorithmic
issues in Section V and Section VI for generating routing graphs
and constructing communication schedules. Here we describe our
implementation of the Network Manager and how we integrate
our network management solutions into it. Figure 16 shows

Application Layer
Application Layer

Data Link Layer
Data Link Layer

Physical Layer
Physical Layer

Network Layer
Network Layer

PIB
PIB

Access Point
Access Point

Serial Port Connection

Serial Port Connection

UART
UART

UART
UART
 Gateway
Gateway

Fig. 15. The architecture of the Access Point

Gateway

Security

Manager

Command

Processor

Communication

Tables

Topology

Network Layer

GUI

TCP Socket Communication

Network

Manager

Access Control

Fig. 16. The architecture of the Network Manager

the architecture of the Network Manager which has four major
components:

Command Processor: The application layer of the Wire-
lessHART standard is command-oriented. The WirelessHART
devices and the Network Manager interact by exchanging com-
mand requests and command responses. The command processor
in the Network Manager processes the commands from the
devices, updates the network topology and triggers the algorithms
if necessary to reconstruct the routing graphs and communication
schedules.

Network Topology and Communication Tables: In the Net-
work Manager, the network topology is maintained in a directed
graph structure. All the algorithms for constructing routing
graphs and allocating network resources are conducted in the
graph and the results are maintained in a set of communication
tables. Interested readers are referred to [3] for their details.

Security Manager and Access Control: WirelessHART is a se-
cure wireless communication protocol and it provides encryption
and authentication in both the data link layer and network layer.
The main task of the security manager is to manage various key
information for the devices. It takes charge of the device join
authentication and updates the key information in the network
periodically for protection purpose. The access control module
maintains a list of pre-approved devices together with their valid
join keys. Only the devices on the list can be admitted into the
network by providing the correct join keys.

Visualizer: Our visualizer is implemented based on the JUNG
library [26]. It provides the user a straight-forward way to observe
the network topology, the routing graphs, the device communi-

Fig. 17. The topology of the WirelessHART network under deployment

cation schedules, and the exchanged messages. Any update on
them will also be reflected in the visualizer in real-time. With the
visualizer, users can identify problematic network topology and
bottlenecks limiting network throughput and perform appropriate
adjustments. [27] gives an example of a WirelessHART network
with two Access Points and 50 field devices. It also shows
the communication schedules which are generated based the
proposed algorithms and each device’s bandwidth usage.

We note that our Network Manager design is not only for the
WirelessHART communication systems. It is also a generic sim-
ulator for wireless mesh networks and allows the users to specify
any network topology either through reading in a topology file
or configuring it manually. It provides the user a platform to
design their algorithms, exercise them on the specified topology
and evaluate their performance.

E. System under Deployment
We are deploying our system in a manufacturing factory to

help achieve factory automation. The factory has 4 floors, and
each floor has around 20 trollies. Each trolly can carry up to
16 motherboards under test and each board is attached with
a watchdog. All the watchdogs in a trolly are connected to
a controller through I2C bus, and they publish their sampling
data (60 bytes) to the controller every one minute. Previously,
the testers have to manually check each trolly and identify
the malfunctioning boards. To achieve factory automation, we
are integrating their testing equipments with our WirelessHART
communication system. We attach our sensor board to each trolly
and connect it to the I2C controller. The samples from the
watchdogs will be forwarded from the controller to our board
and transmitted to the Access Point. To improve the network
connectivity, we deploy one Access Point in each floor. The
Gateway and Network Manager are installed on the third floor
and all the Access Points are connected to them through ethernet.
Fig. 17 shows the topology of the system under deployment.
Once the system is set up, the tester can monitor the status of
all motherboards under test simply through the Gateway. This
will save a large amount of manpower, and speed up the testing
period.

VIII. Performance Evaluation
This section summarizes the major results from our simulations

to evaluate the performance of our algorithms. Our simulation

model and parameter settings are described in Section VIII-A.
Section VIII-B compares our algorithms in constructing reliable
routing graphs to traditional approaches. Section VIII-C evaluates
the performance of our approach for constructing communication
schedules. The results show that our approaches can achieve
higher routing success rates, better end-to-end communication
latency while incurring only modest configuration overheads on
devices.

A. Simulation Model and Parameters

In the simulations, we assume open field, line-of-sight experi-
mental scenarios. The simulation area is fixed at 450 m × 450 m
and the default device communication distance is 100 meters with
a 0 dBm transmitter. We assume that there is no edge between
a pair of nodes if they are not in each other’s communication
range. Otherwise, an edge exists with an edge success probability
p that is varied from 0.0 to 1.0. The size of the network is varied
from 50 to 150 to evaluate the effect of network density on the
algorithm’s performance. We disable a given portion of links in
the network to evaluate the reliability of the constructed routing
graphs and this percentage is varied from 0% to 95%.

B. Performance of Reliable Routing Graphs

We conducted a series of experiments to evaluate the per-
formance of the reliable broadcast graph GB, reliable uplink
graph GU and reliable downlink graph Gv for each individual
node v. Since essentially GU is the reversed version of GB,
its performance is similar to that of GB. For this reason, the
experiment results of GU are omitted here.

We compare our approach for constructing GB with two
baseline methods. The first method constructs a single broadcast
tree using breadth-first search and the second method generates
the max-reliable broadcast graph. In the latter method, when
a node is chosen to be added to the broadcast graph, all its
incoming edges from the current broadcast graph are also added.
Different from this method, our approach only chooses the
first two incoming edges of the chosen node with minimum
latency, and thus achieve a good balance between the routing
reliability and the configuration overhead. In this paper, the
configuration overhead is defined as the average number of links
to be configured per node. It is an important performance metric
because wireless sensors’ memory is limited and configuring
large number of links in the network will severely hurt the
schedulability of the communication schedule.

The first experiment compares the configuration overhead
introduced by these three approaches. In the experiments, we
vary the size of the network from 50 to 150 nodes and evaluate
its impact. Figure 18 summarizes our results. As expected,
we observe that the configuration overhead of the max-reliable
approach is much higher than the other two and it increases
linearly along with the increase of the network density. On the
other hand, the overhead in our approach and the broadcast tree
solution is much low and stable. The overhead in our approach is
always below 2 links per node, and it is closer to the performance
of the broadcast tree when the network density is low. This
observation is mainly because when the network density is low,
it is difficult for many nodes to find two parents in the network
thus has only one link in the broadcast graph.

In the second experiment, we first construct the broadcast
graphs based on these three approaches with 100 nodes in the
network. We then gradually increase the percentage of failed links
in the network from 0% to 95%. We measure the reliability of

these three approaches and apply the recovery mechanisms we
discussed in Section V-I on them. We compare their recovery
overhead in terms of number of changed links. Figure 19 shows
that along with the increased percentage of failed links in the
network, the reliability of the broadcast tree drops quickly and
when half of the links die, only around 25% nodes are reachable
from the Gateway. Our approach performs much better. With
the same percentage of failed links, around 55% of nodes are
still connected. Among all three approaches, the max-reliable
broadcast graph has the best performance as a tradeoff of its poor
scalability and much higher configuration overhead. In figure 19,
we also show a curve of the reachability for the broadcast graphs
after the recovery. As the recovery mechanisms are all based on
the same underlying network topology, all three approaches have
the same reachability after reconstruction. This in turn verifies
the correctness of our recovery mechanisms.

Figure 20 and Figure 21 compare the recovery overhead among
these approaches. Figure 20 shows the overhead to resume the
connectivity of the broadcast graphs while Figure 21 further
shows the overhead to recover their reliability properties. We
observe from Figure 20 that the broadcast tree always has the
heaviest recovery overhead while the max-reliable broadcast tree
has the minimum because of its best reliability. The performance
of our approach sits between them. However, Figure 21 shows
that to recover the reliability property, our approach needs to
add more links than the other two alternatives. The reason is
the broadcast tree has no reliability requirement while the max-
reliable approach has already added most of the links in the
construction stage thus its recovery overhead is relatively smaller.

In the third experiment, we evaluate the performance of the
two proposed approaches for constructing reliable downlink
graphs, the standard approach as defined in WirelessHART
standard RDG(standard) and the sequential reliable downlink
routing approach (SRDR). we compare them with two baseline
methods. The first method finds a single shortest path from the
Gateway to the destination, while the second one constructs
a two node-disjoint path and can tolerate one link or node
failure. Figure 22 summarizes the comparison of the routing
reliability among these four approaches. It clearly shows that
the single path approach always has the worst performance. On
the other hand, RDG(standard) maintains the best reliability and
always outperforms the two node-disjoint path method more than
30%. SRDR is around 8% worse than RDG(standard) in routing
reliability. This is because the downlink graphs constructed under
RDG(standard) have more redundant links. As a tradeoff, as
shown in Figure 23 and Figure 24, RDG(standard) introduces
a much higher configuration overhead. The average number
of nodes in the constructed graphs is 2 times and 1.2 times
larger than that of the single shortest path approach and two
node-disjoint path approach respectively. Furthermore, as each
node under RDG(standard) has two outgoing edges, the average
number of links in the constructed graphs is even higher. As
shown in Fig. 24, it is around 5.5 times and 2.8 times larger than
that of the single shortest path approach and two node-disjoint
path approach respectively. However, SRDR only introduces very
limited configuration overhead because it only constructs local
graphs and these local graphs can be further reused for assem-
bling the downlink routes to different destinations. Its average
number of nodes is the lowest among all the four approaches
and its average number of links is only slightly higher that of
the single shortest path approach and around 33% lower than the
two node-disjoint path approach. In sum, SRDR achieves a good

0

2

4

6

8

10

75 15050A
vg

 N
um

be
r o

f L
in

ks
 p

er
 N

od
e Broadcast Tree

 2-Reliable Broadcast Graph
 Max-Reliable Broadcast Graph

Number of Nodes
100 125

Fig. 18. Configuration overhead in broadcast graphs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
er

ce
nt

ag
e

of
 R

ea
ch

ab
le

 N
od

es

Percentage of Failed Links

 2-Reliable BCast Graph
 Broadcast Tree
 Max-reliable BCast Graph
 Reconstructed BCast Graph

Fig. 19. Reachability in broadcast graphs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

50

60

70

80

N
um

be
r o

f L
in

ks

Percentage of Failed Links

 2-Reliable Del
 Tree Del
 Max Del
 2-Rreliable Add
 Tree Add
 Max Add

Fig. 20. Recovery overhead to regain connectivity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

50

60

70

80

90

100

110

120

N
um

be
r o

f L
in

ks

Percentage of Failed Links

 2-reliable Del
 Tree Del
 Max Del
 2-reliable Add
 Tree Add
 Max Add

Fig. 21. Recovery overhead to regain reliability

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
P

er
ce

nt
ag

e
of

 R
ea

ch
ab

le
 N

od
es

Percentage of Failed Links

 SRDR
 RDG(standard)
 Single Shortest Path
 2 Node-Disjoint Path

Fig. 22. Reachability in downlink graph

0

1

2

3

4

5

6

7

8

9

10

11

12

A
ve

ra
ge

 #
 o

f N
od

es

Number of Nodes in the Network

 SRDR
 RDG(standard)
 Single Shortest Path
 2 Node-Disjoint Path

50 75 100 125 150

Fig. 23. Average # of nodes per downlink graph

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28

A
ve

ra
ge

 N
um

be
r o

f E
dg

es

Number of Nodes in the Network

 SRDR
 RDG(standard)
 Single Shortest Path
 2 Node-Disjoint Path

50 75 100 125 150

Fig. 24. Average # of edges per downlink graph

50 60 70 80 90 100 110 120 130 140 150

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

A
ve

ra
ge

 L
at

en
cy

Number of Nodes in the Network

 SRDR
 SRDR-OPT
 RDG(standard)
 Single Shortest Path
 2 Node-Disjoint Path

Fig. 25. Average latency vs. Network size

60 80 100 120 140 160 180 200
1

2

3

4

5

6

7

8

9

10

11

A
ve

ra
ge

 L
at

en
cy

Communication Range

 SRDR
 SRDR-OPT
 RDG(standard)
 Single Shortest Path
 2-Node disjoint Path

Fig. 26. Average latency vs. Communication range

balance between high routing reliability and low configuration
overhead.

We also evaluate the performance of the optimization mecha-
nism SRDR-OPT which is proposed in Section V-H, and measure
its improvement on average latency in two different scenarios.
In the first scenario, we fix the devices’ communication range at
100m and increase the number of nodes in the network from 50 to
150. The results is shown in Fig. 25. We observe that SRDR has
a much higher average latency compared with RDG(standard).
This is because when constraint C2 is satisfied, SRDR chooses
the node with larger latency as its parent in constructing downlink
graph while RDG(standard) take both and its latency is calculated
as their average plus one. The performance of SRDR-OPT is
similar to RDG(standard) because the shortcuts are taken in the
optimization. Obviously, the single shortest path approach always
has the lowest latency. In the second scenario, we fix the number
of nodes in the network at 150 and vary the communication
range of the devices from 50m to 200m. As shown in Fig. 26,
the average latencies of all the four approaches decrease with
the increase of the communication range, and consistent with the

observations in the first scenario, SRDR has a great improvement
on the average latency when the optimization mechanism is
applied.

C. Construction of Communication Schedules

Our approach for constructing the communication schedule
has two unique features. First, we split the traffic from a device
among all its successors by reducing the bandwidth requirement
on each successor. The communication schedules on the suc-
cessors are carefully designed so that their combination has the
same patten as the original device. Second, we use the concept
of shared timeslot to allow multiple devices to compete for
communicating with the same device simultaneously. This is
especially useful for the links that are allocated for retry purpose
and it can significantly improve the network throughput.

In this section, we evaluate the performance of these two
features by comparing our approach with three baseline methods.
The basic methods either lack one of the features or both of
them. For simplicity, we only show our experimental results on
scheduling process data from devices to the Gateway on the

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

20 23 262-1

S
uc

ce
ss

 R
at

io

Sampling Rate

 Half-Rate w/ Shared Links
 Half-Rate w/o Shared Links
 Same-Rate w/ Shared Links
 Same-Rate w/o Shared Links

2-2 21 22 24 25 27 28

Fig. 27. Success ratio vs. Sample rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30
 Half-Rate w/ Shared Links
 Half-Rate w/o Shared Links
 Same-Rate w/ Shared Links
 Same-Rate w/o Shared Links

N
et

w
or

k
U

til
iz

at
io

n

20 23 262-1

Sampling Rate
2-2 21 22 24 25 27 28

Fig. 28. Network utilization vs. Sample rate

uplink graph. Scheduling control data on the other direction is
similar, and thus is omitted here. Two performance metrics are
defined for this experiment. The first metric is the scheduling
success ratio which measures the percentage of nodes that can
successfully allocate the required bandwidth along its paths to
the Gateway; The second metric is the network utilization which
measures the percentage of entries in matrix M that are already
allocated for communication. Our results are summarized in
Figure 27 and Figure 28 respectively.

In Figure 27, we compare the scheduling success ratio by
deploying 50 nodes in the network and varying the device sample
rate from 250 ms to 4 min and 16 sec (each device has the
same sample rate). We observe that by halving the bandwidth
requirement on a device’s successors (if it has two successors),
the success ratio can be greatly improved. The improvement
is more than 25% when the sample rate is 2 sec and is even
higher when the sampling is faster. Figure 27 also shows that by
applying the shared timeslot, the success ratio can be increased by
5% and this improvement is consistently shown in our experiment
results until the sample rate is low enough that the scheduling
success ratio approaches 100%. Figure 28 shows that when the
approaches have a similar scheduling success ratio, our approach
has a much lower network utilization, and this will further help
include more devices into the network. When the sample rate is
fast, our approach has a higher network utilization because in
these scenarios, the success ratio for other approaches is so poor
that a very limited number of devices can successfully allocate
their required bandwidth along its path to the Gateway.

IX. Conclusions and FutureWork

In this paper, we study the problem of how to achieve
reliable and real-time communication in industrial wireless mesh
networks. Taking WirelessHART network as an example, we
abstract the reliability requirements in typical wireless indus-
trial process control applications and present the algorithms for

constructing three types of reliable routing graphs for different
communication purposes. Based on these routing graphs, we
describe how we construct the communication schedule in the
network and highlight our approach’s unique features. We present
the architecture of a complete WirelessHART communication
system that we have built and we have performed extensive
simulations to evaluate the performance of our algorithms.

In ongoing and future work, we are deploying our system
in a large-scale manufacturing factory, so that we can eval-
uate the performance of our network management techniques
in real industrial environments. We shall continue to look for
more efficient approaches for constructing routing graphs and
communication schedules to maximize the power saving in
WirelessHART networks, and study their corresponding recovery
mechanisms.

References
[1] Andreas Willig, “Recent and emerging topics in wireless industrial

communications: A selection,” IEEE Trans. on Industrial Informatics, 2007.
[2] Dick Caro, Wireless Networks for Industrial Automation, ISA Press, 2004.
[3] J. Song, S. Han, A. K. Mok, D. Chen, M. Lucas, M. Nixon, and W. Pratt,

“WirelessHART: Applying wireless technology in real-time industrial pro-
cess control,” in RTAS, 2008.

[4] Rajeev Alur, Alessandro D’Innocenzo, Karl H. Johansson, George J.
Pappas, and Gera Weiss, “Modeling and analysis of multi-hop control
networks,” in RTAS, 2009.

[5] Gera Weiss, Rajeev Alur, Alf J. Isaksson, and Karl H. Johansson, “Scalable
scheduling algorithms for wireless networked control systems,” in CASE,
2009.

[6] Joonas Pesonen, Haibo Zhang, Pablo Soldati, and Mikael Johansson,
“Methodology and tools for controller-networking codesign in Wire-
lessHART,” in ETFA, 2009.

[7] Shahid Raza, Adriaan Slabbert, Thiemo Voigt, and Krister Landernäs,
“Security considerations for the wireless hart protocol,” in ETFA, 2009.

[8] Gabriella Fiore, Valeria Ercoli, Alf J. Isaksson, Krister Landernäs, and
Maria Domenica Di Benedetto, “Multihop multi-channel scheduling for
wireless control in WirelessHART networks,” in ETFA, 2009.

[9] “ISA,” http://www.isa.org/.
[10] “HART communication,” http://www.hartcomm.org.
[11] “ZigBee Alliance,” http://www.zigbee.org.
[12] “WirelessHART,” http://www.hartcomm.org/protocol/wihart/

wireless_technology.html.
[13] Abusayeed Saifulah, Chenyang Lu, You Xu, and Yixin Chen, “Real-time

scheduling for WirelessHART networks,” in RTSS, 2010.
[14] Pablo Soldati, Haibo Zhang, and Mikael Johansson, “Deadline-constrained

transmission scheduling and data evacuation in wirelesshart networks,” in
Technical Report TRITA-EE 2008:060, 2008.

[15] Haibo Zhang, Pablo Soldati, and Mikael Johansson, “Optimal link
scheduling and channel assignment for convergecast in linear wirelesshart
networks,” in Technical Report TRITA-EE 2009:018, 2009.

[16] “Bluetooth,” www.bluetooth.com/bluetooth.
[17] “IEEE 802.15.4 WPAN Task Group,” www.ieee802.org/15/pub/TG4.

html.
[18] Stephen Mueller, Rosep. Tsang, and Dipak Ghosal, “Multipath routing in

mobile ad hoc networks: Issues and challenges,” Performance Tools and
Applications to Networked Systems, 2004.

[19] Sasan Adibic Mohammed Tariquea, Kemal E. Tepeb and Shervin Erfanib,
“Survey of multipath routing protocols for mobile ad hoc networks,” Journal
of Network and Computer Applications, vol. 32, no. 6, 2009.

[20] Deepak Ganesan, Ramesh Govindan, Scott Shenker, and Deborah Estrin,
“Highly-resilient, energy-efficient multipath routing in wireless sensor net-
works,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 5, no. 4, 2001.

[21] S.J.Lee and M. Gerla, “Split multipath routing with maximally disjoint
paths in ad hoc networks,” in ICC, 2001.

[22] Mahesh K. Marina and Samir R. Das, “On-demand multipath distance
vector routing in ad hoc networks,” in ICNP, 2001.

[23] Z. Ye, S.V. Krishnamurthy, and S.K. Tripathi, “A framework for reliable
routing in mobile ad hoc networks,” in INFOCOM, 2003.

[24] “Rosemount,” http://www.emersonprocess.com/Rosemount/.
[25] S. Han, J. Song, X. Zhu, A. K. Mok, D. Chen, M. Nixon, W. Pratt, and

V. Gondhalekar, “Wi-HTest: testing suite for diagnosing WirelessHART
devices and networks,” in RTAS, 2009.

[26] “Java Universal Network/Graph Framework,” jung.sourceforge.net/.
[27] “An example of network manager visualizer,” www.cs.utexas.edu/

˜shan/WH-example.pdf.

