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Purpose: The authors present a robust algorithm that removes the blurring and double-edge arti-

facts in high-resolution computed tomography (CT) images that are caused by misaligned scanner

components. This alleviates the time-consuming process of physically aligning hardware, which is

of particular benefit if components are moved or swapped frequently.

Methods: The proposed method uses the experimental data itself for calibration. A parameterized

model of the scanner geometry is constructed and the parameters are varied until the sharpest 3D

reconstruction is found. The concept is similar to passive auto-focus algorithms of digital optical

instruments. The parameters are used to remap the projection data from the physical detector to a

virtual aligned detector. This is followed by a standard reconstruction algorithm, namely the Feld-

kamp algorithm. Feldkamp et al. [J. Opt. Soc. Am. A 1, 612–619 (1984)].

Results: An example implementation is given for a rabbit liver specimen that was collected with a

circular trajectory. The optimal parameters were determined in less computation time than that for

a full reconstruction. The example serves to demonstrate that (a) sharpness is an appropriate mea-

sure for projection alignment, (b) our parameterization is sufficient to characterize misalignments

for cone-beam CT, and (c) the procedure determines parameter values with sufficient precision to

remove the associated artifacts.

Conclusions: The algorithm is fully tested and implemented for regular use at The Australian

National University micro-CT facility for both circular and helical trajectories. It can in principle

be applied to more general imaging geometries and modalities. It is as robust as manual alignment

but more precise since we have quantified the effect of misalignment.VC 2011 American Association

of Physicists in Medicine. [DOI: 10.1118/1.3609096]
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I. INTRODUCTION

The nondestructive 3D imaging technique known as com-

puted tomography (CT) is used extensively in many fields of

research including medicine, biology, geology, and materials

science. Three dimensional tomographic images (tomograms)

of an object are generated by acquiring many projection

images of a static object at different projection angles and

then applying a reconstruction algorithm to these images. For

high-resolution tomography, where the various system com-

ponents must be aligned with (sub-) micrometer precision,

the projection images do not always adhere to the strict geo-

metrical assumptions of the reconstruction algorithm. The

result is that the reconstructed tomograms are totally or par-

tially blurred or out-of-focus. Geometric misalignment can be

represented by a set of parameters. This paper presents a soft-

ware method to automate the process of determining (and

correcting for) misalignment parameter values, given a model

that parameterizes the geometry of the instrument. This

removes the associated artifacts from the tomogram.

In essence, we model the geometry of the instrument,

parameterizing all the possible misalignments. This is com-

bined with an appropriate fitness function (sharpness) with

which to quantify the effects of misalignment on a tomo-

gram. Subject to the value of the parameters, the projection

images are remapped from a physical detector plane to a vir-

tual detector plane. An aligned virtual detector is found

when the reconstruction results in the largest sharpness

value. The notion of sharpness is identical to that defined for

passive auto-focus of optical devices. We have been using

this alignment method at our micro-CT facility (with circu-

lar1 and helical2 source trajectories) for over 1 yr and have

reconstructed hundreds of tomograms of a range of speci-

mens including: animals, fossils, bones, metals, and rocks.

The method has only failed when the sample itself moved

substantially during the experiment; for these cases, the pro-

posed method finds the best average alignment.

Combining reference-scan source drift correction (Sasov

et al.3) with the autoalignment method proposed here, the

resolution of tomograms at our facility is now principally

limited by source spot size. For other systems, typically

nano-CT, where mechanical instabilities are an issue, the

reprojection method introduced by Mayo et al.4 could be

used to refine the time dependant misalignments after the

best average misalignment has been found using the pro-

posed method. Alternatively, methods to correct for patient

movement could be adapted to apply to source drift in

micro-CT. For example, Atkinson et al.5,6 presented a

4934 Med. Phys. 38 (9), September 2011 0094-2405/2011/38(9)/4934/12/$30.00 VC 2011 Am. Assoc. Phys. Med. 4934



method in the field of nuclear magnetic resonance imaging

that parameterized the trajectory of a patient over the acqui-

sition time in order to find the set of parameter values that

minimize the entropy of the reconstruction.

Historically, many techniques have been proposed to

solve the problems associated with misaligned tomographic

instruments. They fall into three main categories: The first,

is to calibrate the instrument by collecting auxiliary data. As

a calibration step, or as an experiment prior to the main to-

mography experiment, projection images of a well defined

and specifically designed object are imaged. These images

are compared to the expected ideal images and any differen-

ces are used to calculate misalignment parameter values.7–12

The second, is to include fiducial markers in the projection

images. These markers are then extracted and tracked to

derive the misalignment parameter values.13 This method is

used extensively in electron tomography.14–16 The third, and

far more practical method, is to directly use the tomographic

projection images. Various methods have been proposed to

date,17–21 (see Sec. IV for more detail). However, they seem

to be either not generally applicable, or lack the robustness

and/or precision required to be useful in practice. After

applying these methods, manual alignment is typically nec-

essary to correct or refine the misalignment characterization.

Thus, manual alignment can be thought of as the most robust

software alignment method. We show that a truly reliable

automatic method can be formed by emulating this manual

alignment (or visual inspection) process.

In this paper, we first define misalignment parameters for

cone-beam and parallel-beam x-ray CT in Sec. II. We make

use of several simple geometric symmetries to reduce the

number of misalignment parameters. We briefly outline

methods to correct for known geometric misalignments in

Sec. III. Here, we also propose that for the majority of cases

software correction of misalignment is indistinguishable

from hardware alignment in the resulting tomograms. In Sec.

IV, we address the case of unknown misalignment parameter

values. Alignment-parameter space is scanned (as detailed in

Sec. V) to determine the set of parameter values that yield

the sharpest tomogram. To calculate the sharpness of a

tomogram for a given set of alignment parameters, all the

projection images are mapped from the experimental physi-

cal detector plane onto a virtual detector plane and then a

reconstruction is performed. Once the best set of parameters

is found, the instrument is virtually aligned and is equivalent

to the detector plane being placed at a position which satis-

fies the strict geometrical requirements of the reconstruction

algorithm. Section VI provides an example implementation

to demonstrate the success of this method in removing mis-

alignment artifacts from CT reconstructions. This is fol-

lowed by some concluding remarks in Sec. VII.

II. PARAMETERIZING MISALIGNMENT

Before continuing, it is necessary to define the misalign-

ment of the various components of a CT instrument. Figure 1

depicts the experimental geometry of our circular trajectory

cone-beam CT (C-CB-CT) set-up. It contains a source (S),

rotation stage (R), and detector (D). For parallel-beam CT

(C-PB-CT) the set-up is similar, though the distances SR and

SD are typically not needed for reconstruction; A notable

exception is phase-contrast imaging. We have also imple-

mented the technique on a helical trajectory cone-beam CT

(H-CB-CT) (Ref. 3) (using FDK reconstruction) which has

an additional vertical translation stage (T) located at R.

Let Xg denote the misalignment of component X in direc-

tion g, and define w, h, and / as rotations about the w, h, and

l-axes, respectively. The three source drift misalignments Sw,

Sh, and Sl are actually functions of time and can be corrected

using methods such as that proposed by Sasov et al.;3 They

will be ignored for the remainder of this paper. Assuming suf-

ficient precision of the rotation and translation stages, there are

six misalignments of D, namely: Dw, Dh, Dl, D/, Dh, and Dw,

and four misalignments of R: Rw, Rl, R/, and Rw. Some of

these are of course degenerate. For example, R/ is equivalent

to D/. Let, M denote magnification defined as SD=SR and let

L denote SD; a misalignment Rw ¼ a can be decomposed as

Dw ¼ Ma, Dh ¼ arctanðMa=LÞ, and Dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þM2a2
p

� L.

Similarly, a misalignment Rw ¼ a can be decomposed as

Dh ¼ L tan a, Dw ¼ a, and Dl ¼ Lðcoseca� 1Þ.
C-PB-CT requires only three parameters to define mis-

alignment: Rw (equivalent to Dw), R/ (equivalent to D/), and

Rw. Dl, Dh, and Rl are all unnecessary and Dh and Dw give

scaling effects that do not cause inconsistent projections. C-

CB-CT requires six parameters, e.g., the full set of detector

misalignments. Rl is ignored as it affects only magnification

and, for sufficiently large SD, alignment is not sensitive to

detector tilts Dh and Dw. This is supported by the optimal

units described below and implies that the detector can be

aligned with the spherical wavefront emanating from the x-

ray source to sufficient accuracy by eye. Therefore, in prac-

tice we use a reduced set of four parameters: Rw, R/, Rw, and

Dl. Finally, H-CB-CT requires nine parameters, e.g., all six

detector misalignments plus Rl, T/, and Tw. For our set-up

this can be reduced to seven, since T is aligned with R to suf-

ficient precision. Detector tilts can not be ignored in this

case due to the very high cone-angles utilized.

Throughout this paper, misalignments are measured in

optimal units. These optimal units essentially normalize the

sensitivity to errors in the alignment parameters and provide a

stopping criterion when searching for the optimal set of pa-

rameters. For any one of the parameters, one optimal unit (ou)

is defined as the perturbation in the parameter value required

FIG. 1. The geometry of an aligned cone-beam computed tomography

instrument. Both circular and helical trajectories are possible.
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to approximately cause a maximum one-voxel deviation of

any back-projected ray through the tomogram. In accordance

with Sakellariou,22 all parameter values must be determined

to a precision of < 0:5 ou to ensure a sharp tomogram.

Given a detector with physical width and height of Pw and

Ph mm, respectively, that has Nw � Nh pixels placed a distance

of L mm from the source, the optimal units for the six detector

and three rotation stage misalignments are as follows:

D

trans.

misalignment

Optimal

unit

(mm)

D

rot.

misalignment

Optimal

unit

(rad)

R

misalignment

Optimal

unit

(mm=rad)

Dw
Pw

Nw

2L
2LþPw

� �

D/
2
Nw

2L
2LþPw

� �

Rw
Pw

Nw

2L
2LþPw

� �

Dh
2L
Nw

Dh
4L

NwPw
R/

2
Nw

2L
2LþPw

� �

Dl
4L2

NwPw
Dw

8L2

NwP
2
h

Rw
2
Nw

The derivation of these values is given in Appendix A.

Note that the magnitude of the optimal units indicates the

insensitivity of each parameter to misalignment.

III. CORRECTING FOR KNOWN MISALIGNMENTS

This section describes how corrections are performed once

misalignment parameter values are known (either from direct

measurement or determined by some software alignment

method). There are essentially two correction methods: The

first, remaps all the projection images from the experimental

physical detector plane onto a virtual detector plane and then

a reconstruction is performed. The second, is to alter the

back-projection geometry to account for the misalignments.

In practice, we utilize a combination of both. When imple-

menting remapping, 2D Akima interpolation23,24 is well

suited as it is of high accuracy while preserving monotone

behavior near sharp boundaries. When computational effi-

ciency is of greater concern than accuracy, “revitalized linear

interpolation”25 may be used. Using this remapping method,

followed by Feldkamp–Davis–Kress (FDK) (Ref. 26) recon-

struction of the resulting correctly aligned virtual data, we are

able to reconstruct accurate tomograms from misaligned data,

provided we have knowledge of the misalignment parameters.

In Sec. IV, we discuss how to determine these parameters.

For H-CB-CT, provided the Tam–Danielson window

remains in the field-of-view, all the data required for an exact

reconstruction is present no matter how misaligned. So the

difference between alignment by software and hardware is im-

perceptible. Aligned C-CB-CT has a shadow region of

unknown data along the z-axis of the 3D Radon transform

(RT). Misalignment of Dh (or Rw in the reduced set of param-

eters) does slightly increase the volume of this unknown

region. However, for any reasonable misalignment (i.e., a

fraction of the detector height for Dh) this is negligible. We

can conclude that alignment by software and hardware is

indistinguishable for this case as well. C-PB-CT is unique in

this aspect. Unlike CB-CT it has no shadow region when per-

fectly aligned, however, when misaligned in Rw an unknown

volume of 0:125pN3 tan3 Rw appears in the 3D-RT. Although,

using software correction to correct for an Rw misalignment

does improve the tomogram (and should always be used to

refine the reconstruction quality), hardware alignment is better

for this parameter. This is not true for Rw and R/, which can

be aligned equally well with software and hardware.

IV. CORRECTING FOR UNKNOWN
MISALIGNMENTS

Since software alignment is indistinguishable from hard-

ware alignment, a reliable postacquisition software correc-

tion is preferable as it obviates the need to physically align

each experiment, (or to image calibration phantoms), saving

a lot of valuable experiment time. There are several pro-

posed methods to align projection data solely based on the

data itself. Viskoe17 presents two methods to correct for Rw

only. The first iterative method, minimizes artifacts in the

air surrounding the object. The second method, estimates Rw

as the average center-of-mass of the projection data. Brunetti

and DeCarlo18 also present an iterative method to correct for

Rw that minimizes support; i.e., the smallest possible object

is the least blurred one. Panetta et al.19 present an iterative

method to correct for both Rw and R/. They discuss how it is

also possible (but difficult) to correct for detector tilts. Their

method minimizes the difference between data acquired

from projection along lines 180
�
apart in regions of interest

(where data approximates a fan beam). Patel et al.20 present

a similar method to estimate the axis translation and in-plane

rotation by minimizing the difference between 180
�
projec-

tion image pairs. Kyriakou et al.21 model the source trajec-

tory as a circle in an arbitrary plane in order to correct for

Rw, R/, and Rw. They iteratively reconstruct the central hori-

zontal slice of the tomogram and aim to minimize entropy.

The most robust method (although not necessarily the

most precise) is manual alignment. The manual alignment

process scans misalignment parameters through a range of

values. This involves reconstructing a selection of one or

more 2D slices of the 3D tomogram for the range of assumed

misalignments and selecting the image, which looks the best.

The alignment-parameter space is scanned to determine the

set of parameter values that yield the sharpest tomogram.

Once found, the instrument is virtually aligned and is equiv-

alent to the detector plane being placed at a position which

satisfies the strict geometrical requirements of the recon-

struction algorithm. The visual inspection, i.e., selecting the

sharpest reconstructed slice, is the only truly manual part of

the process. For a reliable auto-alignment method, we seek

to define a fitness function that simulates this visual inspec-

tion. The ideal fitness function has several features: (1) it has

a global maximum corresponding to an aligned tomogram;

(2) it is relatively free of local maxima; and (3) it can be reli-

ably evaluated using only a sub-volume of the complete

reconstruction, to save on computation time. The images

corresponding to a parameter scan demonstrate a sequence

of blurry to sharp, back to blurry behavior analogous to that

observed when focusing optical instruments. Figure 2 dem-

onstrates this for the parameters R/ and Rw using the liver

projection data described in Sec. VI. This behavior suggests

that tomogram sharpness is a natural fitness function, since

any misalignment of projection data causes blurred tomo-

grams. Given a set of misalignment parameter values, the
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measured projection data can be remapped as described in

Sec. III to compensate for these misalignments. We use the

set of parameter values that modify the projection data to

produce the least blurred, or sharpest, tomogram to quantify

the misalignment of the system. We can now formulate auto-

matic misalignment correction as an optimization problem.

We seek the parameter set A ¼ fRw;R/;Rw;Dlg that, when

used for remapping and reconstruction (as outlined above),

produce a tomogram that maximizes sharpness.

Digital optical instruments are commonly focused using

passive auto-focus techniques that maximize the image

sharpness. This is measured using a “focus function”. One of

the earliest methods was proposed by Horn in 1968,27 and

new methods continue to be developed and explored as new

image processing theory and hardware become available

(e.g., Kautsky et al.28). There have been many comparison

studies performed over the years.29–33

Sharp images tend to contain the maximum amount of

high-frequency information. The act of defocusing, or blur-

ring, suppresses these high frequencies. Therefore, the prin-

ciple behind most focus functions is to first emphasize the

high-frequency information and then quantify it. Methods

based on this principle are commonly found to be the most

robust, accurate, and unimodal, (i.e., produce a single maxi-

mum). These methods include image contrast, image differ-

entiation, and those utilizing the discrete Fourier transform,

discrete cosine transform, or wavelet transform. Several

other measures have been proposed that do not utilize high-

pass filtering. For example, Schlag et al.30 studied image en-

tropy as a candidate. They found that entropy worked well

as a measure for a simple edge image, however, the proper-

ties completely inverted for a complicated texture image.

Our studies with entropy as a focus function for tomographic

alignment method agreed. Entropy is based solely on the his-

togram of an image. It ignores spatial information and does

not really indicate sharpness but rather segmentability.

IV.A. Fitness function: sharpness

Among the survey literature, it is generally found that the

difference in behavior between these various high-pass focus

functions is not considerable. This was observed at our facility

for C-CB-CT (using FDK reconstruction) when imaging bio-

logical, industrial, fossil, and geological tomographic data.

The result of this empirical analysis is that an ideal focus

function to use is the simplest and fastest: the L2 norm of

image gradient, jjrf jj2, i.e.,
S½f � ¼

X

x

X

y

rf ðx; yÞj j2: (1)

Here, rfj j2 can be found using the finite difference

approximation as ðg � f Þ2 þ ðgT � f Þ2 where � denotes con-

volution and g is a localized horizontal gradient convolution

kernel such as the Sobel mask:

g ¼
�1 0 1

�2 0 2

�1 0 1

0

@

1

A: (2)

Alternatively, rf can be evaluated using the differentia-

tion property of the Fourier transform. Define the 1D discrete

Fourier transform (DFT) of f(x), x 2 ½0;NÞ, as follows:

F 1½f �ðuÞ ¼ f̂ ðuÞ ¼
X

N�1

x¼0

f ðxÞe�i2pux=N; u 2 ½0;NÞ; (3)

with the inverse DFT being:

F�1
1 ½f̂ �ðxÞ ¼ f ðxÞ ¼ 1

N

X

N�1

u¼0

f̂ ðuÞei2pxu=N; x 2 ½0;NÞ: (4)

The 2D DFT, (F 2), that maps f ðx; yÞ to f̂ ðu; vÞ, can be com-

puted as a sequence of 1D DFTs along each dimension. Dif-

ferentiation in the frequency domain becomes:

d

dx
f ðxÞ ¼ F�1

1 ði2pu=NÞf̂ ðuÞ
� �

ðxÞ; u 2 ½�N=2;N=2Þ: (5)

FIG. 2. Depiction of the change in quality and sharpness of a 2D cross-sec-

tion from a 3D tomogram reconstructed assuming various Ru and Rw mis-

alignments. The cross-section is taken perpendicular to the rotation plane.

For rows (a), (b), and (c): Ru ¼ �4:8, 1.2, and 7.2 ou, respectively; For col-

umns (i), (ii), and (iii): Rw ¼ �7:5, 4.5, and 16.5 ou, respectively. The cen-

tral image coincides with the maximum sharpness for this dataset with

A? ¼ f�8:76; 1:17; 4:69;�0:84g ou. Sharpness values are calculated

according to, and have been normalized by the maximum.
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Since sharpness requires only the L2 norm of rf , it can be

found as a ramp filtered image:

S½f � ¼
X

x

X

y

F�1
2 ð2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v
2

p

=NÞF 2½f �
h i

ðx; yÞ
�

�

�

�

�

�

2

;

� u; v 2 ½�N=2;N=2Þ: (6)

For FBP type reconstruction this ramp filtering technique is

a more efficient and convenient method to calculate sharp-

ness since ramp filtering is already performed as a part of

reconstruction. Consider a 2D image f to be reconstructed

from a set of 1D projections ph for h 2 ½0; 2pÞ, with ele-

ments, phðwÞ for w 2 ½0;NÞ. Prior to back-projection, the fil-

tering step is performed on the projections to yield:

~ph ¼ F�1
1 ð2p

ffiffiffiffiffi

u2
p

=NÞF 1½ph�
h i

; h 2 ½0; 2pÞ; (7)

where ~ph is the filtered projection. Owing to the Fourier slice

theorem, the 2D ramp filtering of f discussed above can be

applied simultaneously with this filtering as follows:

�ph ¼ F�1
1 ð4p2u2=N2ÞF 1½ph�
� �

; h 2 ½0; 2pÞ: (8)

Back-projection of these modified projections will yield the

ramp filtered image required for sharpness in (6). The L2

norm computed directly on this image will give S½f �. This
method was used to calculate the sharpness of the recon-

structed images in Fig. 2 to indicate that sharpness is an

appropriate fitness function.

The sharpness measure (2) is strictly not scale invariant;

sharpness increases with magnification, M ¼ SD=SR. In

order to eliminate magnification during the alignment search,

it is assumed that SR ¼ SD; This can be done without loss of

generality and voxel dimensions of the tomogram are equiv-

alent to that of the detector pixels. Thus, varying Dl only

alters the angle of back-projected rays without magnifying

the reconstructed image. (Note that this assumption breaks

down for the high cone-angles that can be used in H-CB-CT;

a modified solution for scale invariance for this case is pre-

sented in Ref. 34). A scan over Dl can be performed to iden-

tify an aligned system. After the misalignment parameter

values have been determined and a reconstruction from an

aligned projection set has been performed, the voxel dimen-

sions are scaled by 1=M. The uncertainty in the final scale is

proportional to that in SR.

IV.A.1. Simulated Dl misalignment

Figure 3 demonstrates this scale invariance with various

values of Dl misalignment. A high-resolution 256� 256mm

image of the standard head phantom was projected to 403

equally spaced projections simulating 360-C-CB-CT. A 1D

detector with 256 pixels of dimension 2 mm was used with

SR ¼ 500 mm and SD ¼ 1000 mm. Reconstructions were

performed assuming SD long by 3.2 ou, i.e., 1098 mm, for

values of Dl from � 10 ou up to 10 ou in steps of 1

ou¼ 30.52 mm. Note, in the reconstructed images that the

phantom does not change size but does cause degradation.

Sharpness was evaluated at each instance using (6). A para-

bolic fit to the sharpness data estimates Dl as approximately

� 2.8 ou.

IV.A.2. Simulated Rw misalignment

Figure 4 demonstrates the performance of the sharpness

function with various values of Rw misalignment. A high-re-

solution image of the standard head phantom was projected

to 403 equally spaced projections simulating 360-C-PB-CT.

Note that 403 ¼ 256p=2d e is below the Nyquist frequency

but is a sufficient number of projections such that the ramp

filter can be used without introducing artifacts in the recon-

struction. The projection data was then translated off-center

by 5.7 ou (1 ou¼ 1 pixel) in order to simulate an Rw mis-

alignment. 256� 256 tomogram reconstructions were per-

formed assuming values of Rw from � 10 ou up to 10 ou in

steps of 1 ou. The tomogram pixel dimensions are equivalent

to that of the detector elements. Sharpness was evaluated at

each instance using (6). Parabolic fits to the sharpness data

estimates Rw as approximately � 5.9 ou for data with 0 and

10% noise and � 5.5 ou for data with one quarter the number

of projections. For simplicity, the noise model follows a nor-

mal distribution with a standard deviation one tenth that of

the projection data.

FIG. 3. (a) Normalized sharpness plot obtained from the 1D scan of Dl using

an assumed value of SD ¼ 1098 mm. The true SD ¼ 1000 mm corresponds

to Dl ¼ �98 mm or � 3.2 ou. Sharpness is determined using (6) via projec-

tion filtering described in (8). The peak is located at Dl ¼ �86 mm or –

2.81 ou. (b) A selection of the images reconstructed, assuming

Dl 2 f�10;�3; 7g ou. The range of the presented images is [� 0.2,1.2),

with [0,1) corresponding to the range of the original phantom.
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IV.A.3. Robustness of the Sharpness metric

Sharpness as defined above is sensitive to fluctuations not

related to image edges, such as image noise and streaking

from course angular sampling by projections. This is demon-

strated by the reduced peak strength for noisy and under-

sampled circumstances in Fig. 4. The influence of these

effects can be reduced by soft thresholding the image gradi-

ent and/or low-pass filtering the data before applying differ-

entiation.32 Figure 5 demonstrates the performance of the

sharpness function when combined with low pass filtering.

The head phantom data from Fig. 4 was reevaluated sharp-

ness function when combined using a Gaussian windowed

ramp filter in the frequency domain, i.e.,

S½f � ¼
X

x

X

y

�

�

�F�1
2

h

ð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v
2

p

=NÞe�ðu2þv
2ÞN2=8p2r2

� F 2½f �
i

ðx; yÞ
�

�

�

2

; (9)

for u; v 2 ½�N=2;N=2Þ. This was implemented by modifying

the filtering in the FBP reconstruction according to the

following:

�ph ¼ F�1 ð4p2u2=N2Þe�u2N2=8p2r2F½ph�
h i

; (10)

where r ¼ p=4 and the L2 norm of the reconstruction gives

sharpness. Parabolic fits estimate Rw as � 5.75 ou for data

with 0 and 10% noise and � 5.71 ou for data with one quar-

ter the number of projections.

FIG. 4. (a) Sharpness plots obtained from the 1D scans of Rw normalized by

maximum sharpness. Sharpness is determined using (6) via projection filter-

ing described in (8). The peak is located at � 5.85 and � 5.87 ou for data

using 403 projections with 0 and 10% noise, respectively, and � 5.48 ou for

data using 101 noise free projections. (b) A selection of the images recon-

structed assuming Rw 2 f�10;�6; 2g ou. The range of the presented images

is [� 0.2,1.2), with [0,1) corresponding to the range of the original phantom.

FIG. 5. (a) Sharpness plots obtained from the 1D scans of Rw normalized by

maximum sharpness. Sharpness is determined using (9) via projection filter-

ing described in (10) with r ¼ p=4. The peak is located at � 5.75 and

� 5.75 ou for data using 403 projections with 0 and 10% noise, respectively,

and � 5.71 ou for data using 101 noise free projections. (b) A selection of

smoothed reconstructed images for Rw 2 f�10;�6; 2g ou. The range of the

presented images is [� 0.2,1.2), with [0,1) corresponding to the range of the

original phantom.
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Given a reconstruction algorithm that assumes a correctly

aligned CT imaging system, the above form of sharpness

works well for system alignment given source trajectories

such as 360-C-fPB,CBg-CT and H-CB-CT. These are

smooth trajectories without end-points and misalignment

results in blurring. Modalities such as 180-C-fPB,CBg-CT
have trajectory specific end-points and, as well as blurring,

large streaking artifacts result from misaligned data. Another

fitness function (or a modified reconstruction method during

the alignment process) may be more appropriate in these

cases, however, the principle remains the same.

IV.B. Auto-focus procedure for determining
misalignment

Using this focus function, together with the detector

remapping technique described above, we are now able to

solve for, and correct for, the misalignment parameters in a

cone-beam CT system. For a given set of parameters A, we:

(1) remap the data; (2) from this remapped data, we recon-

struct several slices through the object using (in this case)

the FDK algorithm; and (3) evaluate the sharpness of each of

these slices, as discussed above. Parameter space is then

searched for the set A? that produces the sharpest reconstruc-

tion. Finally, the parameter set A? is used to reconstruct a

full, correctly aligned tomogram.

The scanning process is outlined in the following section

and an example implementation for a C-CB-CT scan is given

in Sec. VI. For the H-CB-CT with FDK reconstruction the

process is identical but with some additional parameters.

Alignment of H-CB-CT with theoretically exact reconstruc-

tion methods such as that introduced by Katsevich35 is more

complicated (as it is similar in concept to 180-C-PB-CT).

Adaptation of the proposed method for this mode is detailed

in Ref. 34.

V. SCANNING MISALIGNMENT PARAMETER
SPACE

A four-dimensional, brute-force parameter search is not

the most computationally efficient way of finding the correct

misalignment parameters. We define here a simple scanning

process that takes approximately as much CPU time as the

final, full-volume reconstruction, and occurs automatically,

i.e., without human input. There are several key components

to making the search efficient: (1) reconstruct only 2D slices

for inspection, (2) a set of 1D (or 2D) scans only, (3) the pa-

rameter search order and/or combinations, and (4) a multi-

scale search. Pseudocode outlining the procedure is

presented in Appendix B.

V.A. 2D slice reconstruction

Note that for each evaluation of a set A we need only

reconstruct a few representative slices through the object,

rather than the full 3D volume. This speeds up the search

process significantly. The FBP reconstruction of an N3 tomo-

gram from O(N) projections requires O(N4) computations. A

set of K 2D slices require only O(KN3) computations. Typi-

cally, at our facility K ¼ 5 and N¼ 2048 giving a 400�
speed up.

V.B. 1D (or 2D) parameter scans

The parameters are not entirely independent; for a given

horizontal slice, z ¼ g, Rw ¼ d can be approximately can-

celed by an axis rotation of R/ ¼ arctanð�d=gÞ. Similarly,

Rw ¼ d can be approximately canceled by a detector transla-

tion of Dl ¼ 1� g=ðL sin dþ g cos dÞ. Therefore, 4D param-

eter space can be scanned as two separate 2D scans over

fRw;R/g and fRw;Dlg.
Selecting K slices for reconstruction that are distributed,

throughout the volume minimizes the correlation of parame-

ter misalignment effects; An example slice selection could

be K¼ 5 horizontal slices for z 2 f�Ph=3;�Ph=6; 0;
Ph=6;Ph=3g. The scan over 4D parameter space can then be

performed as a set of 1D scans over each of the parameters

in A.

V.C. Parameter scan order

The determination of optimal units for each misalignment

parameter gives a stopping criterion, i.e., when each parame-

ter value is known to within 0.5 ou. The relative magnitude

of these optimal units also indicates the sensitivity of each

parameter, and hence the parameter scans order. Rw and R/

have the smallest optimal units and so should be determined

first followed by Rw and then Dl.

V.D. Multiscale approach

FBP reconstruction of K 2D slices of the tomogram from

O(N) projections is performed in O(KN3) computations.

Therefore, K 2D slices downsampled to S2, where S ¼ N=b,
reconstructed from O(S) projections downsampled to S2 is

performed b3 times faster. We refer to b as the binning value.

Using a binning of 4, the parameter scan can be performed

64 times faster.

Figure 6 demonstrates that up to resolution the location of

maximum sharpness is invariant under downsampling. Note

that at each resolution, for a binning by b, we step by b opti-

mal units when scanning a parameter. This removes any

inconsistencies due to different degrees of interpolation.

The 1D scans over each of the parameters in A can

be performed at multiple resolutions. The initial set of

extremely fast coarse-resolution scans with b¼ 4 can be

broad to identify approximate parameter values in A?. These

can then be refined at the subsequent finer resolutions,

b 2 f2; 1g using highly localized searches. A parabolic fit is

applied around the peak of each plot to improve the estimate

of the parameter values.

V.E. Optimization

The above set of multiscale 1D searches complete the

scan of parameter space very quickly. We found no need to

implement further optimization techniques such as the

golden section search, the simplex method, Powell’s method,

or gradient based techniques. It should be noted that using a
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greater degree of blurring in the sharpness calculations

causes the fitness function to behave more suitably for such

techniques without altering the location of maximum sharp-

ness. This has been demonstrated in Fig. 7 for the head phan-

tom dataset with 10% noise using a Gaussian window

(applied to the ramp filter in Fourier space) with various

standard deviations, r.

VI. IMPLEMENTATION AND CASE STUDY—RABBIT
LIVER

In what follows, we apply our auto-focus scheme to real

data. The example demonstrates that: (1) the auto-focus pro-

cedure can determine misalignment parameters with suffi-

cient precision to remove the associated artifacts, using only

the original projection data; (2) our chosen parameters are

sufficient to characterize misalignments in a circular cone-

beam CT system; and (3) the L2 norm of the image gradient

is an appropriate fitness function to measure misalignment.

The case study specimen is a rabbit liver fixed in wax, as

shown in Fig. 2. (This image also serves to demonstrate the

effect that a perturbation of parameter values R/ and Rw

have on reconstruction quality and corresponding sharpness).

The projection data were collected with SD ¼ 1000 mm

and SR ¼ 600 mm. The pixel size of the detector was

33:6� 33:6 l m, binned by 2 so that the effective voxel size

of the tomogram is approximately 40 l m. After binning

the square detector size is N¼ 1024 pixels and a 10243

tomogram is reconstructed from 1440 projections. This

experiment was performed in 2007, and is used in this dem-

onstration because it was not physically aligned very well. A

demonstration of the improvement in image quality achieved

by using the auto-focus software alignment of projection

data is presented in Fig. 8.

To demonstrate the efficacy with which the auto-focus

technique can correct the misalignment, plots of sharpness

values for each of the 12 iterations are shown for experimen-

tal data. Sharpness is determined according to (9), by filter-

ing the projection data as in (10) with r ¼ p=4. It has been
averaged over five horizontal slices distributed throughout

FIG. 6. Sharpness plots obtained from the 1D scans of Rw normalized by

maximum sharpness. Sharpness is determined as in Fig. 5 on the projection

set with 10% noise. The peak is located at � 5.55, � 5.72, and � 5.85 ou for

data with binning of 4, 2, and 1, respectively.

FIG. 7. Sharpness plots obtained from the 1D scans of Rw normalized by

maximum sharpness. Sharpness is determined sharpness determined as in

Fig. 5 with r 2 fp=4;p=8;p=16g on the projection set with 10% noise. The

peak is located at � 5.75, � 5.72, and � 5.70 ou, respectively.

FIG. 8. (a) and (b) each show a selected 256� 256 subsection of 2D slices

of the reconstructed 1024 tomogram. The following software projection

alignment implemented: (i) none (A? ¼ f0; 0; 0; 0g ou), (ii) Rw alignment

only [as is common in literature], (A? ¼ f�8:76; 0; 0; 0g ou), and (iii) align-

ment by the full set of parameter values specified by the auto-focus proce-

dure, (A? ¼ f�8:76; 1:17; 4:69;�0:84g ou). The two slices are

perpendicular to the rotation plane.
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the tomographic volume. Each plot is normalized by the

maximum sharpness of the entire process. Figure 9(a)

shows the results of the initial set of four broad coarse-scale

parameter scans. After these coarse-scale iterations A? ¼
f�10:44; 1:17; 4:55; 0:31g ou. Figure 9(b) shows the results

of the next set of four mid-scale parameter scans. Following

these mid-scale scans A? is refined to f�9:21; 1:08; 4:78;
�0:75g ou. Figure 9(c) shows the results of the final set of

four full-scale parameter scans. The best and final set of pa-

rameter values is A? ¼ f�8:77; 1:16; 4:61;�0:84g ou. The

entire auto-focus process 1.5 times faster than the final full-

scale 3D reconstruction. It can be seen from the final results

that all misalignment parameter values were nonzero, how-

ever, the auto-focus process quickly located the best values

for each parameter. To investigate accuracy, the 1D scan of

each parameter was repeated at full resolution to yield

A? ¼ f�8:76; 1:17; 4:69;�0:84g. No parameter value has

changed by more than 0.1 ou which is well below the

required resolution of 0.5 ou. So the three sets of 1D scans at

multiple resolutions is sufficient for convergence.

VII. CONCLUSION

A robust and precise method to automate alignment of to-

mographic projection data using passive auto-focus has been

presented. This procedure can be applied to any tomography

data, even retrospectively on archived data previously

thought unusable, without any additional information. Our

auto-focus alignment method works for FDK reconstruction

from circular and helical source trajectories, but should work

for any reconstruction algorithm that assumes a correctly

aligned CT imaging system. The process reliably aligns to

sub-pixel accuracy and, since the experimental data itself is

used for calibration, it automatically aligns to the precision

required regardless of scale. If all component movement,

such as source drift and rotation stage eccentricity are

ignored, this method will find the sharpest time-averaged

tomogram. However, we have verified that this method can

be extended to correct for such problems; all that is required

are appropriate parametrized models.
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APPENDIX A: OPTIMAL UNIT DERIVATIONS

Here, we establish the perturbation required for each mis-

alignment parameter that approximately produces at most a

1 voxel deviation of backprojected rays from their true tra-

jectory throughout the Nw � Nw � Nh reconstruction volume.

We denote these perturbations optimal units (ou). Approxi-

mate ou values are derived here assuming a Nw� Nh pixel

detector with physical dimensions Pw mm � Ph mm placed

at L ¼ SD mm with a specimen placed at SR mm. Through-

out the following, we assume that Pw � Ph, Nw � Nh � 2

and that detector pixels are square, i.e., Pw=Nw ¼ Ph=Nh.

1. OPTIMAL UNITS FOR MISALIGNMENTS IN D

There are six detector misalignments, three translations

and three rotations as described in Sec. II. Since uncertainty

in SR, i.e., jRlj > 0:0 mm, does not cause misalignment,

when performing reconstruction by backprojection it is con-

venient to assume the detector lies at the center of the speci-

men, i.e., SR ¼ L. This eliminates magnification as a

contributing factor to sharpness and gives reconstructed

FIG. 9. The sharpness profiles obtained from the 1D scans of parameters Rw,

Ru, Rw, and Dl at various resolutions as described in Sec. VI: (a) coarse reso-

lution (bin¼ 4), (b) mid resolution (bin¼ 2), and (c) full resolution

(bin¼ 1). The ordinate is the change in misalignment from the assumed val-

ues of A?. The system is initially assumed to be aligned, i.e.,

A? ¼ f0; 0; 0; 0g in plot (a), then accepts the values identified in the 1D

scans in (a) to become A? ¼ f�10:44; 1:17; 4:55; 0:31g for plot (b) and like-
wise A? ¼ f�9:21; 1:08; 4:78;�0:75g for plot (c). Note, the key in plot (c)

applies to all plots.
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voxel dimensions identical to that of the detector pixels, i.e.,

Pw=Nw mm. Then misalignment in the reconstruction is pro-

portional to misalignment in the detector. In this context,

L ¼ Pw=2 corresponds to the source rotating at the boundary

of the reconstructed volume and serves as a reasonable lower

limit for L. After reconstruction, voxel dimensions are scaled

by SR=L.

a. An optimal unit in Dw

Due to the cone angle geometry, we require the horizontal

shift at the detector that corresponds to a 1 voxel shift

(Pw=Nw mm) at the far side of the reconstructed volume, i.e.,

Lþ 0:5Pw. This has been depicted in Fig. 10(a). This corre-

sponds to dw ¼ Pw

Nw

2L

2Lþ Pw

� 	

.

b. An optimal unit in Dh

Consider the ray backprojected through the center of the

central horizontal slice, z ¼ 0. We require the change in de-

tector height of dh that translates the point of back-projection

at the far side of the reconstructed volume by 1 voxel, (or

Pw=Nw mm), as depicted in Fig. 10(b). This corresponds to

dh ¼ 2L=Nw.

c. An optimal unit in Dl

Consider, the ray backprojected through the center of the

vertical slice at x ¼ 0:5Pw. We require the change in detector

length of dl that translates the point of back-projection at the

far side of the reconstructed volume by 1 voxel (or

Ph=Nh ¼ Pw=Nw mm), as depicted in Fig. 10(c). Similar tri-

angles give x ¼ PhðLþ 0:5PwÞ=2L and we require

xþ Pw

Nw

¼ ðL� dl þ 0:5PwÞ
Ph

2ðL� dlÞ
: (A1)

Substituting in the above equation for x and assuming

Nw � 2, this simplifies to give dl ¼ 4L2=ðNwPwÞ.

d. An optimal unit in D/

An optimal unit for in-plane rotation can be found as that

which gives a 1 ou translation, dw, calculated above at a ra-

dius of 0:5Pw, i.e., d/ ¼ arctanð2dw=NwÞ. Assuming

Pw � Ph and Nw � 2, this simplifies to the following

d/ ’ 2

Nw

2L

2Lþ Pw

� 	

.

e. An optimal unit in Dh

Observe the geometry in Fig. 11(a). This depicts a h rota-

tion of the detector that causes the backprojected ray passing

through the edge pixel of the detector to shift by 1 pixel in

the corrected virtual detector. Through the sine rule we find

horizontal component of dhh as follows:

dhh ¼ arcsin
2x cos a0

Pw

� 	

’ 2x cos a0

Pw

: (A2)

The cosine rule can be used to obtain the following relation-

ship in order to find x:

0:25P2
w ¼ x2 þ ð0:5Pw � Pw=NwÞ2

� 2xð0:5Pw � Pw=NwÞðcos a0 þ 0:5pÞ: (A3)

FIG. 10. (a) A translation by 1 voxel (or Pw=Nw mm) at the far side of the

reconstructed volume corresponds to dw ¼ 1 ou at the detector. (b) A change

in backprojection angle causing a translation by 1 voxel (Ph=Nh) at the far

side of the reconstructed volume corresponds to dh ¼ 1 ou of the detector.

(c) A change in backprojection angle causing a translation by 1 voxel

(Pw=Nw) at the far side of the reconstructed volume corresponds to dl ¼ 1

ou of the detector.

FIG. 11. (a) A change in detector angle causing a translation by 1 voxel

(Pw=Nw) at the edge of the reconstructed volume corresponds to dhh ¼ 1 ou

of the detector. (b) A change in detector angle causing a translation by

dh ¼ 2L=Nw at the edge of the reconstructed volume corresponds to dvw ¼ 1

ou of the detector.
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Noting that sin h ¼ � cosðhþ 0:5pÞ and that the x2 term can

be ignored we obtain the following:

x ¼ P2
w=Nw � P2

w=N
2
w

ð0:5Pw � Pw=NwÞ sin a0
: (A4)

Note that the term P2
w=N

2
w can be ignored. By substituting this

expression back into the equation for dhh and observing that

tan a0 ¼ L=ð0:5Pw � Pw=NwÞ, we obtain dhh ’ 4L=ðNwPwÞ.
The vertical component dvh can be found using the value

of dl. A rotation of the detector by dvh causes a change in L at

the edge of the detector by 0:5Pw tan d
v
h ’ 0:5Pwd

v
h. If we set

this equal to the value of dl obtained above, we see that

dvh ’ 8L2=ðNwP
2
wÞ ¼ 2Ldhh=Pw. Assuming L � 0:5Pw, d

h
h is

always smaller than dvh and so dhh is used to define an optimal

unit in Dh.

f. An optimal unit in Dw

Observe the geometry in Fig. 11(b). This depicts a w rota-

tion of the detector that causes the backprojected ray passing

through the edge pixel of the detector to shift by

dh ¼ 2L=Nw in the corrected virtual detector. Through the

sine rule we find vertical component of dvw as follows:

dvw ¼ arcsin
2x cos a0

Ph

� 	

’ 2x cos a0
Ph

: (A5)

The cosine rule can be used to obtain the following relation-

ship in order to find x:

0:25P2
h ¼ x2 þ ð0:5Ph � 2L=NwÞ2

� 2xð0:5Ph � 2L=NwÞðcos a0 þ 0:5pÞ: (A6)

Noting that sin h ¼ � cosðhþ 0:5pÞ and that the x2 term can

be ignored we obtain the following:

x ¼ LðPh � 2L=NwÞ
Nwð0:5Ph � 2L=NwÞ sin a0

: (A7)

Ignoring the term 2L=Nw in the numerator, substituting this

expression back into the equation for dvw, and observing that

tan a0 ¼ L=ð0:5Ph � 2L=NwÞ, we obtain dvw ’ 8L2=ðNwP
2
hÞ.

The horizontal component dhw can be found using the

value of dl. A rotation of the detector by dhw causes a change

in L at the edge of the detector by 0:5Ph tan d
h
w ’ 0:5Phd

h
w. If

we set this equal to the value of dl obtained above, we see

that dhw ’ 8L2=ðNwPwPhÞ ¼ Pwd
v
w=Ph. Therefore, dvw is

always less than or equal to dhw and so dvw can be used to

define an optimal unit in Dw.

2. OPTIMAL UNITS FOR MISALIGNMENTS IN R

There are three rotation stage misalignments one transla-

tion and two rotations as described in Sec. II. An optimal

unit for these parameters can be derived from those for D,

e.g., it has been established that R/ ¼ D/.

a. An optimal unit in Rw

A misalignment Rw ¼ a mm can be decomposed as

Dw ¼ Ma mm, Dh ¼ arctanðMa=LÞ rad, and Dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þM2a2
p

� L mm where M ¼ L=SR. By setting Dw, Dh,

and Dl to 1 ou (as defined above) and solving for a, we find

Rw as the minimum of these which corresponds to the Dw

term. Therefore, 1 ou in Rw is Pw

MNw

2L
2LþPw

� �

mm.

b. An optimal unit in Rw

A misalignment Rw ¼ a rad can be decomposed as

Dh ¼ L tan a mm, Dw ¼ a rad, and Dl ¼ Lðcoseca� 1Þ mm.

By setting Dh, Dw, and Dl to 1 ou (as defined above) and

solving for a, we find Rw as the minimum of these, which

corresponds to the Dh term. Therefore, 1 ou in Rw is 2=Nw

rad.

APPENDIX B. PSEUDOCODE TO SCAN PARAMETER
SPACE

The pseudocode below scans 1 parameter at a time. The

search range for a parameter with current estimate Xou is

denoted by A : B and defined as ½X � A;X þ B� with sharp-

ness evaluated at fX � A;X � Aþ BIN;X � Aþ 2BIN;
:::;X þ Bg. Sharpness is averaged over K reconstructed sli-

ces. The search ranges A : B and the K specified slices for

each parameter and resolution should be tailored to the spe-

cific system. At the coarsest resolution scans are very fast and

can be quite broad; for example at our facility, with N¼ 2048,

the initial search for Rw is A : B¼�128 ou:128 ou. For subse-

quent higher resolution searches, we have found it sufficient

to use A : B ¼ �2BIN : 2BIN for all parameters.
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