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Abstract

This paper describes an accurate vision-based position

tracking system which is significantly more robust and reli-

able over a wide range of environments than existing ap-

proaches. Based on fiducial detection for robustness, we

show how a machine-learning approach allows the devel-

opment of significantly more reliable fiducial detection than

has previously been demonstrated. We calibrate fiducial po-

sitions using a structure-from-motion solver. We then show

how nonlinear optimization of the camera position during

tracking gives accuracy comparable with full bundle adjust-

ment but at significantly reduced cost.

1. Introduction

Accurate outdoor and indoor tracking remains a key re-

quirement for augmented reality, and despite significant re-

search effort in markerless approaches [16, 6], fiducial-

based tracking is still the technology of choice for construc-

tion of AR systems which must provide repeatable and reli-

able performance. Fiducial detection, for example using the

popular ARToolkit software [11], is reliable, and pose esti-

mation from detected targets is robust and accurate. How-

ever, two significant challenges remain, and are the topics

addressed by this paper:

First, fiducial-based position tracking requires, for opti-

mal accuracy, that at least three fiducials are visible from

all points in the environment. Therefore, a large number

of fiducials must be placed at known locations through-

out the workspace. Surveying fiducial positions is tedious

and prone to error. We propose to use an offline camera

tracker to automatically generate survey data for fiducials.

This means that fiducials can be placed arbitrarily through-

out the environment, greatly simplifying the setup of new

environments.

Secondly, off-the-shelf fiducial detectors are still re-

stricted in the classes of scenes in which they perform well.

Figure 1 shows a range of indoor and outdoor scenes in

Figure 1. Example environments in which ac-
curate tracking is required. We can place
fiducials in arbitrary positions, automatically
survey their positions and calibrate the cam-
era offline. At run time, we can detect them
with higher reliability than existing systems,
and compute accurate camera positions.

which we would like to operate. The system in this pa-

per is based on Claus’s recently introduced fiducial detec-

tor [5] which significantly outperforms ARToolkit in these

scenes.

2. Previous work

The use of fiducials for pose estimation is by now an

established technique in augmented reality. For most de-

scribed applications, however, the required pose is that of

a single target in the camera’s field of view, for example a

planar card on which augmentations are superimposed, or

a single fiducial in a room [15]. We are interested in de-

termining the camera position from multiple fiducials po-



sitioned in the environment. Kalkusch et al [10] describe a

system where markers are placed throughout an extensive

indoor environment. The position of each marker is physi-

cally measured and related to a CAD model of the environ-

ment. This is a time-consuming task, in which it is difficult

to preclude the possibility of error. Wagner [18] describes

another system in which markers are used to separate a large

environment into rooms, but the emphasis is on the topolog-

ical problem of determining which room the camera is in,

rather than on accurate position estimation within rooms.

In this paper, we wish to determine camera pose from

images of fiducials, and in order to obtain an accurate pose,

it is important to use more than a single fiducial. Thus the

positions of all fiducials must be known in the same refer-

ence frame, and thus an initial calibration stage is required.

Aliaga and Carlbrom [2] describe a system where the ini-

tial calibration information is refined using bundle adjust-

ment, however the fiducials’ world locations must be pro-

vided a priori. Thomas et al [17] describe a system which

also uses circular fiducials and an optical calibration pro-

cedure to refine the approximate physical measurements. In

our system, all initial calibration is automatic.

In the following we describe each component of the sys-

tem in detail, and discuss the accuracy of this approach.

3. System overview

Before describing the system components in detail, we

provide an overview of the system. An offline autocalibra-

tion stage precedes per-frame fiducial detection and pose

estimation. The core of the system is a highly reliable fidu-

cial detector based on machine learning. This allows us to

identify to subpixel accuracy the image positions of the

four discs on each fiducial. Figure 3 shows some example

fiducials. In offline calibration the following steps are per-

formed:

1. Distribute fiducials throughout the environment. These

need not be placed in known positions, nor need they

be aligned with any specific world features.

2. Capture video of the environment, with the aim of

viewing as much of the operating volume as possible.

3. Detect fiducials in all frames of the calibration se-

quence. Since each fiducial can be uniquely identified,

this establishes image point matches between frames.

4. Use an off-the-shelf structure and motion solver to de-

termine camera calibration (focal length and lens dis-

tortion) as well as 3D scene geometry for the fidu-

cials. We used boujou from 2d3 [1], but the techniques

are well established [9] and can be implemented lo-

cally if desired. This assigns 3D coordinates to all fidu-

cials, without any user measurement. Calibration is

now complete.

(a) (b) (c) (d) (e)

Figure 2. Overall algorithm to detect fidu-
cials. (a) Input image, (b) output from the fast
classifier stage, (c) output from the full clas-
sifier superimposed on the original image.
Every pixel has now been labelled as fidu-
cial or non-fiducial. The size of the circles in-
dicates the scale at which that fiducial was
detected. (d) The target verification step re-

jects non-target fiducials through photomet-
ric and geometric checks. (e) Fiducial coordi-
nates computed to subpixel accuracy.

5. (Optional) If augmentations are to be placed in a room-

referenced coordinate system, align the coordinate sys-

tems using one of several methods provided by the

structure and motion solver. For example, by identify-

ing three points with known world coordinates, or by

identifying three known planes (floors, walls, etc.).

At run-time, position estimation follows the conven-

tional strategy. For each frame of captured video, the fol-

lowing steps are performed.

1. Detect fiducials in each frame, and look up world co-

ordinates for each. In our system, each fiducial com-

prises four discs on a black background, so four 2D

point measurements are obtained for each.

2. Compute the camera pose which relates the 3D and

2D measurements. As four points is the minimum re-

quirement for a unique solution, only one fiducial need

be detected to obtain a pose. It is more accurate, how-

ever, to detect as many fiducials as possible, because

the small angle subtended by the 2D points on a sin-

gle fiducial yields inaccurate 3D pose.

We now proceed to describe the system components in de-

tail. We first review our fiducial detection scheme, which

is designed to offer higher tolerance to lighting and scale

change than existing systems. We then discuss pose estima-

tion from multiple targets, and show that a nonlinear refine-

ment of pose offers significant accuracy gains for little com-

putational cost.



Figure 3. Representative samples of positive target images. There is a wide variation of marker ap-
pearances, which are learned by the system in order to build a robust detector.

4. Fiducial detection

Fiducial detection in modern AR systems is almost in-

variably achieved using the ARToolkit software [11]. This

is a freely available system which allows real-time detection

of coded targets, and which provides excellent performance

providing lighting conditions are suitable. However, in dif-

ficult lighting conditions, such as outdoors or in low light,

the toolkit’s detection performance drops. In addition, low

resolution images, extreme foreshortening, motion blur, and

specular reflections all cause performance to drop. Modifi-

cations such as the use of adaptive thresholding [14] and ho-

momorphic image processing [13] alleviate some of these

problems, but each modification imposes additional com-

putational cost, and introduces additional failure modes to

the algorithm. In contrast, we propose that the most effec-

tive way to build a fiducial detector is to use machine learn-

ing techniques. Essentially we take an algorithm which at

first sight is impossibly inefficient—“compare every 12×12
subwindow of every video frame to every possible fiducial

image”—and make it run at video rate.

Our fiducials are composed of the simplest possible

primitives: a black dot against a white background. A given

marker will have four dots arranged in a square, with area in

the centre of the dot for barcodes, icons, or other identifica-

tion aids. We require that fiducials are detected at all scales,

and anywhere in the image, at video rate. The first stage of

fiducial detection is to detect candidates in the image. In or-

der to obtain invariance to all of the image degradations de-

scribed above, we prepared a library of example fiducials by

capturing video sequences of the markers in a variety of in-

door and outdoor environments, some frames from which

are shown in Figure 1. Example fiducial images are shown

in Figure 3, including variation due to foreshortening, mo-

tion blur, and lighting. The imaged fiducials are all scaled

to fit into a 12 × 12 window. In total, 8506 example fidu-

cial images were gathered. In addition, 19052 examples of

non-fiducial windows were drawn at random from the train-

ing sequences.

Given the training images, an ideal but impractical ver-

sion of the algorithm for fiducial detection is as follows:

Given:

Input image I(x, y)
Set of N+ positive examples PositiveExamples
Set of N− negative examples NegativeExamples

for scale = 1 : 4
S = reduce(I, scale);

for (x, y) ∈ {[6..width(S) − 6] × [6..height(S) − 6]}
Window = 12x12 window of S centred on (x,y)

[*]

best positive score = best negative score = ∞
for k = 1 : N+

best positive score = min(best positive score,
‖Window − PositiveExamples(k)‖)

for k = 1 : N−

best negative score = min(best negative score,
‖Window − NegativeExamples(k)‖)

if best positive score < best negative score
Report fiducial at (x,y,scale)

A nearest-neighbour classifier is run over every 12 × 12
subwindow of the image at every possible scale. Given that

in our system N+ = 8506 and N− = 19052, this would

take hours per frame, which is clearly of little use. In prac-

tice, this can run at video rate with two simple modifica-

tions. The first is to insert a fast classifier at the line marked

[*] which quickly rejects windows which are unlikely to be

fiducial candidates. This test is tuned to have few false neg-

atives (of the order of 1%), and reduces the number of win-

dows to be tested by a factor of about 3000. The second

modification is to use nearest-neighbour condensing [8] to

reduce the total number of nearest-neighbour comparisons.

This produces a classifier with the same performance as the

full classifier, but using many fewer examples, which is thus

much faster. In our application, the number of training ex-

amples (N++N−) was reduced from 27558 to 382, a speed

increase of two orders of magnitude. It is worth noting that

for patterns of this dimensionality, the use of k-d trees to ac-

celerate the nearest-neighbour search provided little further

speed improvement.

The above algorithm operates at video rate, and emits

of the order of 100 fiducial candidates per frame. In order

to eliminate the false positives, we use a geometric check

based on the assumption that a Delaunay triangulation of

the returned fiducial positions will always include the true

target in the configuration shown in Figure 2(d). In practice

this is a very robust assumption, failing only with extreme

perspective effects, or when a false positive is detected very

close to the true target. After all stages of the algorithm, typ-

ical performance is accurate detection of the target across



Figure 4. Multiple fiducials printed out on
a single sheet of paper. The white overlay
shows the detected marker positions and the
squares bounding the marker identification
codes. The target detection and assignment
of the identification patterns is performed au-
tomatically from a single frame of video.

all environments in about 95% of frames, with a false posi-

tive on average every 500–1000 frames.

The task of identifying which target has been found is

again handled through a nearest neighbour (sum of squared

differences) match with a set of trained patterns (Figure 4).

These patterns are easily recorded using the detection algo-

rithm itself. The target dots are automatically located, and

the registration pattern is recorded for each target found. In

our tests, the patterns consist of non-symmetric binary pat-

terns in a 3 × 3 grid, but in general any pattern could be

used. A normalization step is used to handle differences in

lighting conditions. A higher degree of robustness can be

obtained by recording training images under a wide vari-

ety of lighting conditions [5], however in this case we want

to minimize the amount of storage and computational over-

head associated with the target recognition. Therefore a sin-

gle image is recorded at the expense of some robustness.

5. Pose estimation

The key to accurate pose estimation is accurate survey-

ing of the markers in the environment. We automate this

difficult task by using an off-the-shelf structure and mo-

tion system [1]. Such systems are frequently used for ex-

tremely demanding augmented reality tasks in cinema post-

production, where virtual objects must be added to real-

world footage with jitter of the order of half a pixel in a

4096 × 3312 image, and drift over hundreds of frames of

the order of a few pixels. However, because they depend on

batch computation and bundle adjustment [9], they are un-

suitable for online operation, although ideal for offline cali-

bration and surveying.

To survey the environment, a video of the AR workspace

is captured, ensuring that each marker of interest is visible

in from at least two widely-spaced viewpoints. The struc-

ture and motion solver returns a camera trajectory for the

calibration sequence, as well as calibration parameters such

as lens distortion and focal length. The camera position for

a given image is represented as a 3 × 4 projection matrix

P = K [R | t]

where R is a 3×3 rotation matrix, and t is the translation of

the camera. The matrix K represents the internal calibration

parameters of the camera:

K =





f s u0

0 af v0

0 0 1











f is focal length;

(u0, v0) is principal point;

a is aspect ratio; s is skew

The structure and motion solver returns a single K for the

entire sequence, and per-frame rotation and translation esti-

mates.

5.1. Computing fiducial positions

In surveying the fiducials, we independently compute the

3D position of each of the four discs on each target. This al-

lows for deviations from planarity in paper targets.

In order to determine the position of a particular disc,

we gather its 2D positions in every frame in which it was

detected as a list of (x, y, f) tuples, where (x, y) is the

marker’s position in frame f . Then the 3D point we require

is that which minimizes the reprojection error [9]

ǫ(X) =
num detections

∑

i=1

‖

(

xi

yi

)

− π (K(Rfi
X + tfi

)) ‖

where the 3D-to-2D perspective projection function is de-

fined as π(x, y, z) = (x/z, y/z). Although this minimiza-

tion has no closed-form solution, it is readily solved by ini-

tialization using the DLT method [9] followed by nonlinear

optimization of ǫ(X).
By repeating this procedure for all fiducials, we obtain

accurate estimates of the fiducial positions.

5.2. Computing pose

Given the fiducial positions as computed above, we may

now discard the calibration sequence, and use the fiducials

in the usual manner for pose computation. In a given frame,

2D marker positions xj are obtained, and the corresponding

3D locations Xj are looked up using the fiducial ID. Then

the pose estimation problem is to find R and t to minimize

the reprojection error

ǫ2(R, t) =
∑

j

‖xj − π (K(RXj + t)) ‖
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Figure 5. Errors in camera position computed
by various methods. Plot shows absolute er-
ror for a sample set of 50 frames.

Some small observations are pertinent at this stage. First, on

a 1GHz PC it is possible to run such a nonlinear optimiza-

tion very quickly, of the order of one millisecond. For ac-

curate pose estimation, multiple targets are required. A sin-

gle target (four discs) can provide a pose estimate, but will

not in general be accurate, particularly if the target is far

from the camera. One often proposed method for obtaining

a more accurate camera pose is to compute the average of

the solutions obtained from several individual targets. This

does provide an improvement over the single target solu-

tion (Figure 5 and Table 1), but further reductions are pos-

sible through simultaneous estimation. Initialization of the

nonlinear iteration can be performed by an algorithm such

as POSIT [7], and then followed with non-linear optimiza-

tion to minimize the reprojection error.

The calibration parameters obtained from the initial se-

quence were then used to compute the camera pose from

fiducial tracks in a second video sequence of the same envi-

ronment. In order to compare against a measure of ground

truth, we also used boujou to compute a bundle-adjusted

path for the same sequence. As boujou’s second run chooses

an arbitrary coordinate system, independent of that chosen

in the first sequence, we aligned the two paths using a sim-

ilarity transform, computed using the method of Arun et

al [3], before making the comparison.

5.3. Zoom lenses

If the AR camera is changing focal length during track-

ing, this is also readily included in the optimization for pose,

although with a reduction in position accuracy. To check

RMS error

Targets Method (mm)

1 Non-linear reprojection min. 130

3 ARToolkit (see §5.4) 43†

3 Mean of three positions 25

3 POSIT 29

3 Non-linear reprojection min. 9.7
† Omitting the 12% of frames where detection failed.

Table 1. Camera position error relative to
ground truth. Non-linear minimization of the
reprojection errors for only twelve fiducial
markers (three targets) provides centimeter
level camera position accuracy.

the accuracy of this computation, we ran pose estimation

including variable focal length on our fixed-focal-length

ground-truth sequence. This allowed us to compare the fo-

cal length from the MATLAB Camera Calibration Tool-

box [4] (846.6 pixels), boujou’s fully bundle-adjusted so-

lution (848.7 pixels), the mean estimates from individual

frames (849.7 pixels), and sequences of frames (849.1 pix-

els). If the focal length is known to be fixed it can be ob-

tained by optimizing over the entire sequence simultane-

ously; for realtime operations or variable focal length it is

possible to estimate the focal length from individual frames.

5.4. ARToolkit comparison

A sample sequence was recorded with ARToolkit mark-

ers placed in the same physical locations as the fiducials de-

scribed in the above experiments. The mean distance to the

camera for this sequence was 3.33 m, which is on the edge

of the operating range for the ARToolkit [12]. Training pat-

terns for each marker were recorded under the same light-

ing and viewpoint conditions as used in the test in order to

maximize the marker recognition rate. However, the system

was unable to reliably track multiple markers at this scale.

The square border detection is successful for all three tar-

gets in 88% of the frames, but the pattern identification fails

on most frames. In order to make a three target comparison,

we exported the points of every square pattern found then

manually established the marker identifications and world

correspondences. The path computed by non-linear refine-

ment of the POSIT pose estimate is shown in Figure 6. As

shown in Table 1, our camera tracking system yields a ten-

fold improvement in accuracy over the ARToolkit.
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5.5. Conclusions

We have introduced a vision-based tracking sys-

tem which combines highly reliable fiducial detection with

an off-the-shelf structure and motion algorithm to sig-

nificantly improve the performance and ease of setup

of camera tracking. Because the tracker performs a full

scan of the image at every frame, recovery after occlu-

sions or extreme motion blur is instantaneous. However,

the system is of course not robust to the normal bug-

bears of vision-based tracking. If the targets are not de-

tected, no pose is reported for that frame, so an inertial or

other sensor will still be required in order to provide con-

tinuous output.

In our tests, we repeatedly compared against the bundle-

adjusted positions instead of measured coordinates, as these

are difficult to obtain. For some augmented reality tasks,

this is reasonable: after all, cinema-quality augmentation

would be more than adequate in many situations. On the

other hand, many tracking applications require real-world

coordinates, which may prove to be different from the

structure-and-motion solution, for example if the camera fo-

cal length is misestimated. We hope to use a robot-mounted

camera to determine the accuracy of this registration.
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