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Abstract: This letter presents a multi-fault diagnosis scheme for bear-
ings using hybrid features extracted from their acoustic emissions and a
Bayesian inference-based one-against-all support vector machine
(Bayesian OAASVM) for multi-class classification. The Bayesian
OAASVM, which is a standard multi-class extension of the binary sup-
port vector machine, results in ambiguously labeled regions in the input
space that degrade its classification performance. The proposed
Bayesian OAASVM formulates the feature space as an appropriate
Gaussian process prior, interprets the decision value of the Bayesian
OAASVM as a maximum a posteriori evidence function, and uses
Bayesian inference to label unknown samples.
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1. Introduction

Rolling element bearings are the most frequently failing components in rotating
machinery, accounting for approximately 51% of all failures (Kang et al., 2015a).
Bearing failure is generally caused by localized defects, which appear as cracks or
spalls on rollers or raceways (inner or outer) of a bearing (Kang et al., 2015b). Data-
driven techniques are extensively used for fault diagnosis in bearings. These methods
work by means of three steps: data or signal acquisition, extraction of features from
the acquired data, and classification of the data based upon the extracted features.
Generally, vibration and current signals are utilized to detect faults in bearings, but the
analysis of these signals is not effective in detecting emergent faults at low operating
speeds (Widodo et al., 2009). In this letter, we describe a data-driven method based
upon acoustic emission (AE) signals to detect multiple types of single and compound
bearing defects in machines operating at low speeds. The diagnostic performance of
this method is improved using a Bayesian one-against-all support vector machine
(Bayesian OAASVM).

Statistical features calculated for the time- and frequency-domain AE signal,
along with features extracted through complex envelope analysis of the AE signal, are
used to create a hybrid feature vector. A hybrid feature vector is useful in accurately
identifying each fault condition; nevertheless, the ultimate diagnostic performance
largely depends upon the effectiveness of the classifier. Generally, classifiers like naive
Bayes, artificial neural networks, and support vector machines (SVMs) (Widodo et al.,
2009; Islam et al., 2015) are used to generate models of the training data, which are
then used to classify unknown test data. SVM is the most extensively used method
because of its better generalization performance and its ability to work well with high-
dimensional input data (Widodo et al., 2009).

The standard one-against-all support vector machine (standard OAASVM) is
the most widely used multi-class extension of the original binary SVM. It constructs
l binary SVMs for an l-class classification problem, where the kth SVM is used to dis-
tinguish class k from the remaining l � 1 classes. An unknown feature vector is classi-
fied only if it is accepted by one of the l binary SVMs and rejected by the remaining
l � 1. However, this is not always the case; a feature vector might be rejected by all
the SVMs or accepted by more than one SVM, resulting in ambiguously labeled
regions of the input space and hence degradation in diagnostic performance. The
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“fuzzy one-against-all support vector machines” (fuzzy OAASVMs) classifier improves
the accuracy of the standard OAASVM by calculating class membership values for
samples in the ambiguously labeled regions (Abe, 2015). Likewise, Islam et al. (2015)
have improved the standard OAASVM by assigning a static reliability measure to indi-
vidual SVMs and by proposing a new decision aggregation rule (Islam et al., 2015).
None of these methods, however, use the SVM in a probabilistic framework to esti-
mate the likelihood of an unknown observation being a member of class; rather, they
use it only to obtain class label information.

In this letter, we propose the Bayesian multi-class one-against-all support vec-
tor machine (Bayesian OAASVM), which considers the standard OAASVM as a maxi-
mum a posteriori evidence function based on the appropriate formulation of the feature
space as a Gaussian process prior (GPP), and then estimates the class probabilities of
the unknown samples using the principles of Bayesian inference (Murphy, 2012). The
proposed Bayesian OAASVM is used to improve the diagnostic performance of fault
diagnosis schemes in low-speed rotary machines using AEs.

2. Acquisition of AE data

We use a previously reported experimental setup (Islam et al., 2015; Kang et al.,
2015b) to capture AEs from normal bearings and bearings with seeded defects, both
single and compound. The AEs are captured using a wideband AE sensor and sampled
at 250 kHz using a PCI-2 system. AE signals are recorded for bearings operating at
two different rotational speeds with seeded defects of two different dimensions. A total
of four datasets are analyzed, as summarized in Table 1. Each dataset has signals for
eight bearing conditions: normal condition (BNC), outer raceway crack (BCO), inner
raceway crack (BCI), roller crack (BCR), inner and outer raceway cracks (BCIOs),
outer and roller cracks (BCORs), inner and roller cracks (BCIRs), and inner, outer,
and roller cracks (BCIORs).

3. Method for fault diagnosis in bearings

The proposed method for fault diagnosis consists of hybrid feature extraction and clas-
sification using the proposed Bayesian OAASVM; Fig. 1 illustrates the method in
detail.

3.1 Hybrid feature extraction

Data-driven techniques detect bearing defects by using different features of the fault
signal. The accurate detection of multiple bearing defects requires the extraction of dis-
tinguishing features from the AE signal that can be used to uniquely identify each

Table 1. Summary of AE data acquisition conditions, including the use of two different operating conditions
and two crack sizes.

Datasetsa Average rotational speed (RPM)

Sizes of cracks in the bearing’s
outer and/or inner roller raceways

Length Width Depth

Dataset 1 Dataset 2 300 500 3 mm 0.35 mm 0.30 mm
Dataset 3 Dataset 4 300 500 12 mm 0.49 mm 0.50 mm

aNinety AE signals for each fault type; sampling frequency fs¼ 250 kHz; each signal is 10 s long.

Fig. 1. Detailed framework of the reliable bearing fault diagnosis scheme. “C” represents the fault classes.

Islam et al.: JASA Express Letters [http://dx.doi.org/10.1121/1.4976038] Published Online 8 February 2017

EL90 J. Acoust. Soc. Am. 141 (2), February 2017 Islam et al.

http://dx.doi.org/10.1121/1.4976038


defect. We use a hybrid feature model that requires the calculation of different statisti-
cal measures of the time and frequency domain AE signal, as well as the signal’s enve-
lope power spectrum. Twelve statistical features of the time and frequency domain AE
signal are calculated as given in Table 2 (Kang et al., 2015a). Moreover, 12 features
are extracted from the envelope power spectrum of the AE signal, including root-
mean-square (RMS) values for the three characteristic defect frequencies, and the first
three harmonics of each of these frequencies. The characteristic defect frequencies are
the ball pass frequency over inner race, ball pass frequency over outer race, and two
times the ball spin frequency; the envelope power spectrum of the AE signal shows
peaks at these frequencies and their harmonics for defective bearings (Kang et al.,
2015b). For each AE signal, feature vectors are constructed using these 24 features,
which are then used to train the Bayesian OAASVM that is subsequently used to clas-
sify unknown AE signals.

3.2 Proposed Bayesian OAASVM

Consider an l-class classification problem with the dataset Q ¼ f ðxi; yiÞ jxi 2 Rdg n
i¼1,

where xi 2 Rd is a d-dimensional feature vector, yi 2 f1; 2; :::; lg is the set of class
labels, and n is the number of feature vectors in the training dataset. In the standard
OAASVM, the following optimization problem is solved to distinguish a particular
class k¼ 1 from the remaining l � 1 classes (Chih-Wei and Chih-Jen, 2002)

minimize
xi ; bi

1
2
kxik2 þ C

Xn

j¼1

yj x•u xjð Þ þ b
� �� �( )

subject to yj xi•u xið Þ þ bi
� �

� 1� fi
j; if yj ¼ i

and fi
j � 0; 8i ¼ 1; 2; ::: ; n: (1)

Here, b is the bias, x is the weight vector, u(xj) is the kernel function that maps input
feature vectors xj to a high-dimensional space, where they are linearly separable by a
hyperplane with a maximum margin of b/jjxjj, and C is the linearity constraint.
During classification, the standard OAASVM labels a feature vector x as i* if the deci-
sion function fi generates the highest value for i*, as given in Eq. (2),

i� ¼ argmax
i¼1;2; :::; l

fiðxÞ ¼ argmax
i¼1;2; :::; l

ðxT
i uðxÞ þ biÞ: (2)

Moreover, the value of i*th decision function should be positive, and the values of the
remaining decision functions should be negative as given in Eq. (3),

fi¼i� ðxÞ > 0; fi 6¼i� ðxÞ < 0: (3)

The feature vectors that do not satisfy the criterion in Eq. (3) are not classified by the
standard OAASVM and are defined as ambiguous feature vectors, as follows:

8�x 62 fxjfi¼i� ðxÞ > 0; fi 6¼i� ðxÞ < 0g: (4)

These ambiguous feature vectors are classified using Bayes’ rule. The conditional prob-
ability of the feature vector x being labeled as i, is given in Eq. (4),

p yijx1; :::xdð Þ ¼
p x1; :::xd jyið Þp yið Þ

p xð Þ
; 8i ¼ 1; 2; ::: ; n; (5)

where p(x) is the probability of the feature vector x, p(x1,…,xdjyi) is the conditional
probability of feature vector x given class label yi, and p(yi) is the probability of class
yi. The probability p(yi) is equal to 1/n, as class yi is selected among n classes. Since
each feature vector is independent, the conditional probability, p(x1,…,xdjyi), can be
written as follows:

pðx1; :::; xd jyiÞpðyiÞ ¼ pðx1jyiÞpðx2jyiÞ; :::; pðxd jyiÞpðyiÞ ¼ pðyiÞ
Yd

k¼1

pðxkjyiÞ: (6)

Finally, the conditional probability pðyijx1; :::; xdÞ can be determined as follows:

p yijx1; :::; xdð Þ ¼
p yið Þ

Yd

k¼1

p xkjyið Þ

p x1; :::; xdð Þ
; (7)
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Table 2. Six time-domain and three frequency-domain statistical feature components of the AE signal (s is the time domain of the signal, f is the frequency domain of the s signal) with their equations.

Features Equations Features Equations Features Equations Features Equations

Time-domain: RMS 1
N

XN

i¼1

s2
1

 !1=2 Square root of magnitude
1

Nsample

XNsamples

n¼1

ffiffiffiffiffiffiffiffiffiffiffi
js nð Þj

q0
@

1
A2 Skewness

1
N

XN

i¼1

si � �s
r

� �3

Crest factor
max jsijð Þ

RMS

Kurtosis 1
N

XN
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si � �s
r

� �4 Shape factor RMS

1
N

XN
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jsij
 ! Impulse factor

max jsijð Þ
1
N
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jsij
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i

 !2
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where pðx1; :::; xdÞ is equal to 1, as x is an observation. For estimating pðxkjyiÞ, we
assume that the probability distribution of feature xk is Gaussian, and hence pðxkjyiÞ is
calculated using the training data, as follows:

p xkjyið Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2

i

q e� xk�lið Þ2=2r2
i ; (8)

where li and r2
i are the mean and standard deviations of the feature value in the ith

class, respectively. For classification, an ambiguous feature vector �x is labeled as i*, if
the conditional probability pðyijx1; :::; xd Þ is highest for i*, as given in Eq. (9),

i� ¼ argmax
i
ðpðyijx1; :::; xd ÞÞ: (9)

In Fig. 2, we consider a 3-class classification problem to illustrate the effectiveness of
the proposed Bayesian OAASVM, which uses the probabilistic decision function in
Eq. (9) as opposed to the decision function in Eq. (2) that is employed in the standard
OAASVM. The standard OAASVM fails to correctly classify the data points in the
overlapped regions, whereas the Bayesian OAASVM correctly classifies these data
points.

Table 3. Average sensitivities of the proposed model and other models for each fault type and each dataset.

Datasets

Average sensitivity for each fault type

OAASVM BCO BCI BCR BCIO BCOR BCIR BCIOR BNC Avg. (%)

Dataset 1 Standard 87.57 85.84 77.10 78.37 81.44 86.24 83.00 83.11 82.83
Fuzzy 85.00 93.00 96.33 93.00 95.00 90.55 91.00 90.43 91.79

Bayesian 93.78 100.00 100.00 97.33 96.89 100.00 97.78 100.00 98.22
Dataset 2 Standard 80.66 82.13 82.66 82.53 82.53 82.39 82.26 82.21 82.17

Fuzzy 89.28 93.08 94.62 89.48 96.22 91.35 90.22 93.97 92.28
Bayesian 100.00 100.00 99.56 100.00 98.67 100.00 98.22 100.00 99.55

Dataset 3 Standard 91.69 92.00 93.69 92.49 82.09 90.36 91.96 96.00 91.29
Fuzzy 91.9 95.1 83.03 93.57 98.3 92.77 93.03 95.43 92.89

Bayesian 100 100 100 100 100 100 100 100 100
Dataset 4 Standard 92.31 93.92 93.12 92.22 93.31 92.17 98.00 93.30 93.54

Fuzzy 100.00 100.00 100.00 100.00 100.00 96.00 92.59 99.50 98.51
Bayesian 100 100 100 100 100 100 100 100 100

Fig. 2. (Color online) (a) Illustration of the problem of standard OAASVM for a 3-class classification problem,
in which the use of the standard decision functions leads to overlapped classification regions (R1, R2, R3, and
R4). (b) Resolution of this problem using the proposed probabilistic decision function.

Islam et al.: JASA Express Letters [http://dx.doi.org/10.1121/1.4976038] Published Online 8 February 2017

J. Acoust. Soc. Am. 141 (2), February 2017 Islam et al. EL93

http://dx.doi.org/10.1121/1.4976038


4. Experimental results and discussion

The proposed Bayesian OAASVM classifier is validated by using it in a multi-class
bearing diagnostics classification scenario, which considers four datasets with eight
fault classes in each dataset (see Table 1). Each dataset contains 90 AE signals for
each fault condition, and these are randomly divided into training and test sets with 40
and 50 AE signals, respectively. For each AE signal, a hybrid feature vector is
extracted as discussed in Sec. 3.1. These hybrid feature vectors are then used as inputs
to the standard, fuzzy, and proposed Bayesian OAASVMs. The performance of the
Bayesian OAASVM is compared with the standard OAASVM and the fuzzy
OAASVM in terms of sensitivity and average classification accuracy. Table 3 presents
the experimental results. The proposed Bayesian OAASVM delivers better classifica-
tion performance than the other two approaches, yielding classification accuracy of
98.22%, 99.55%, 100%, and 100% for datasets 1 to 4, respectively (Fig. 3). The pro-
posed Bayesian OAASVM improves the average classification accuracy of the diagnos-
tic system by 17.83% and 4.68% as compared to the standard OAASVM and the fuzzy
OAASVM, respectively. The Bayesian OAASVM improves the diagnostic performance
of the bearing fault diagnosis scheme by more accurately labeling the ambiguous fea-
ture vectors or samples in the overlapped regions of the input space.

5. Conclusions

In this letter, we proposed a Bayesian OAASVM classifier to improve the diagnostic
performance of a multi-class bearing fault diagnosis scheme. The fault diagnosis
scheme used hybrid feature vectors extracted from the AEs of normal and defective
bearings. The proposed Bayesian OAASVM improved the classification accuracy of
the multi-class fault diagnosis scheme by accurately labeling feature vectors in the
ambiguously labeled regions of the input space. Ambiguously labeled regions in the
input space are a common outcome of extending the original binary SVM to multi-
class classification problems. The Bayesian OAASVM uses a GPP to properly utilize
the feature space, and Bayesian inference to correctly label feature vectors in the
ambiguously labeled regions. The proposed Bayesian OAASVM yielded superior diag-
nostic performance compared to the standard OAASVM and fuzzy OAASVM. The
overall improvement in average classification accuracy ranged from 4.68% to 17.83%
across different datasets.
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