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Abstract—We consider the problem of reliable broadcast in % and thecritical node degree (defined in Section III) is

a wireless network in which nodes are prone to failure. Each Inn ) .

node can fail independently with probability p. Failures are @ | Omin+ =" —=— |- This may alternatively be stated as
permanent. The primary focus is on Byzantine failures, but 2 2P

we also handle crash-stop failures. We consider two network @ <dmin+$ whereQ: denotes theBernouIIi(%) dis-
models: a regular grid, and a random network. Our necessary 1 2

and sufficient conditions for the Byzantine failure model irdicate  tribution, P denotes th&ernoulli( p) distribution, and>(Q||P)
that p should be less than3, and the critical node degree denotes theelative entropy(or Kullback-Leibler distance) be-

is O dmin+ mu% (where dmin is the minimum node tween distribution® andP. We also prove that in a randomly
A+ ks . . i .
degret associated with 4 non-empty neighborhood, and is a sih deployed network with Byzantine failures, the critical eage
constant). For a random network we prove that, for failure node degree for reliable broadcasfj{ﬂl—'l&l— when
probability less than % the critical average degree for reliable 1 72— P3N g
broadcast is O(ﬁ). We briefly discuss the issue of P< 3.
2 2

crash-stop failures for which we have results that improve pon Ve briefly discuss the case of crash-stop failures in a grid

previously existing results for this model, whenp approaches Nnetwork, in Section X. For crash-stop failures, the problem
0. We also identify an interesting similarity in the structure of reliable broadcast is equivalent to connectivity. Foisth
of various known results in the literature pertaining to a sé case, we have results showing that the critical node de-

of related problems in the realm of connectivity and reliabke
broadcast. gree is® (dmin+ l'nlff) with p < 1, or alternatively stated,
Index Terms— Probabilistic failure, Byzantine faults, crash- P
stop faults, broadcast, fault-tolerance, reliability C] (dmin+ D(('S—lr“‘P)), whereQ; is theBernoulli(1) distribution.
Our results improve upon previous results proved in [1] when
. INTRODUCTION the failure probabilityp approaches 0.

hWe also identify an interesting but intuitive similarity in
structure of results (previously known results, as asll
results derived in this paper) for a set of mutually esdat
problems pertaining to connectivity and reliable broatlcas

Reliable broadcast in the presence of Byzantine and cras
stop failures has been studied under different network aHZF
failure models. A reliable broadcast mechanism may be
significant utility in large-scale sensor network deployrse e : ’
While the shared nature of the wireless medium is conducité!s IS discussed in Section XI.
to the broadcast operation, the unreliability of the wissle [l. PROBLEM MODEL

channel, and the possibility of collisions can make it a clif We consider a two network models, viz., a regular grid,
problem to solve. As a first step towards addressing thghere nodes are located on a two-dimensional square grid
issue, it is useful to focus on an idealized wireless chann@éach grid unit is a & 1 square), and a random network,
We consider the problem of reliable broadcast in a such @ere node locations are i.i.d. uniformly distributed ottee
idealized wireless network. We primarily focus on Byzaetindep|0ymem region. In both models, the network is assumed
failures, but have also considered the case of crash-sigp,e deployed over &n x /fi square region. The pre-failure

failures. The failures are permanent and are assumed ta OClhology (i.e., node locations) of the deployed network is
probabilistically, i.e., each node can fail independemtith a 55sumed to be known to all nodes.

certain probabilityp. However, once failure has happened, the  Formal Definition of Reliable BroadcastAny node in

faulty nodes can exhibit worst-case behavior. ~ the network can originate a broadcast message. The goal is
For the Byzantine failure model, we show that reliablgy ensure that all nodes receive the valid broadcast vaitre

broadcast in a grid network ofi nodes requires thap < high probability! . In the Byzantine failure model, this source

This research is supported in part by NSF grant CNS 05-198hd, a 1We use the termwith high probability (w.h.p.) to mean with probability 1
Vodafone Graduate Fellowship. asn— oo,



node may be faulty. Thus the goal is to ensure that if thmuse most confusion to non-faulty nodes). The non-faulty
source is non-faulty, every non-faulty node in the netwonkodes do not know which nodes have failed.
correctly receives and determines the broadcast valudseif t
source is faulty, all non-faulty nodes should agree on some
common value. In the crash-stop failure model, a messaga/Ve briefly describe the notation and terminology used in
can only be originated by a non-faulty node (as faulty nodéais paper.
cease to function), and the goal is to ensure that all noltyfau Nodes are identified by their coordinate location {ey)
nodes receive this value. If even one non-faulty node fails €€notes the node dk,y). The neighborhood ofx,y) com-
make a valid value determination, the broadcast is deemedPféses all nodes within distance of (x,y) and is denoted
have failed. Reliable broadcast is said to fail in a giveritfaids nbd(x,y). For succint description of grid network proofs,
configuration, if it fails for at least one possible broadcaye define a termpnbdXx,y) where pnbd(x,y) = nbd(x —
origin/source. 1,y) unbd(x+1,y)U nbd(x,y— Hu nbd(x,y+ 1) Intuitively
For a given broadcast instance, once an origin/source A8bd(x.y) denotes theperturbed neighborhoodf (x.y) ob-
designated, it is identified af,0). All nodes can then be tained by perturbing the center of the neighborhood to one
uniquely identified by their coordinate locatiafx,y) w.rt. Of the nodes immediately adjacent (y) on the grid. Also
this origin. In the grid network model, the node coordinatekaults(s) denotes the number of faulty nodes in the set of
are a|Way5integer$ while for random networks they are nodess. The termqnbd is sometimes used as an abbreviation
real numbers. All nodes have a common transmission radiffy’ quarter-neighborhood (defined later in the paper). $ran
r(n, p). For grid networks, we assume thigh, p) is an integer, Mission range is referred to agn, p) and sometimes as just
and for random networks it is allowed to be any real numbdr. The node degree is referred to @@, p) or justd.
A message transmitted by a nogey) is heard by all nodes We use standard asymptotic notation [6]. Besides, we denote
within distancer (n, p) from it (where distance is defined inby D(Qs]|P) the relative entropy between tigernoulli(3)
terms of the assumed metric). The set of these nodes is terraed Bernoulli(p) distributions. ThusD(Q.||P) = %In %} +
the neighborhood ofx,y). ?
In this paper, we consider two distance metrits: and
Lo. The Lo, metric is the metric induced by the, norm
[2], such that the distance between poifitg y1) and (x2,y2)
is given by max|xys — xo|, |y1 — y2|} in this metric. Thus the
neighborhood ofa,b) comprises a square qf23|de Bith itS  gegree is exactly determined by specifying the transmissio
centroid at(a,b), and the degree of a node is“4-4r. In this range. Hence, we can define the notion itical degree

T T e S COTESEaNInG 2 g coieponing 0 e Tansmsson angc

the Euclidean distance metric. The distance between points us: _
(x1,y1) and(xz,y2) is given by/(x1 — %2)2+ (y1 — y2)2, and deritical = Q(9(n, p)) = 31 > 0, such that:
the neighborhood ofa,b) comprises nodes within a circle of d < ¢19(n,p) —> lim Pr[reliable broadcast achievable 1
radiusr centered at(a,b). The L, metric (which was also _ . . .

used in [3], [4], and [5]) enables more tractable analysi _,h|s _ylelds a necessary c_onqmon. I
from which necessary and sufficient conditions for thgEu- n@mPr[rel|able broadcast achievable- 0, it is a stong

clidean) metric proceed. In Section VIII, we further elaier Necessary condition.
on this. deritical = O(f(n,p)) = 3¢z > 0, such that:

A random failure mode is assumed, wherein each node ¢ . . .
fail with probability p independently of other nodes. FaiIures%PZ C2f(n,p) = lim Prlreliable broadcast achievable 1

are permanent. We primarily focus on Byzantine failureshis yields asufficientcondition.

In the Byzantine failure mode, a faulty node can behave Thusdgiica is O(f(n, p)) implies thatdeiticar is Q((n, p))
arbitrarily, in contrast to crash-stop failures, where altia andO(f(n,p)).

node simply stops functioning. However, in our model, the |n a random network, the degrees of individual nodes can
Byzantine nodes cannot spoof addresses or cause collisiaigy; however, it is possible to define a notion oftical

i.e., the MAC layer is assumed fault-free, and the Byzantingerage degree?? .., which is the average degree corre-

critical *

faults reside only in higher layers of the protocol stack. Weponding to the ranggyiticai. Then dgr\fgcm can be expressed

assume that the channel is perfectly reliable, and a |0¢ﬁ|asymptotic notation, similar tdgiticar for a grid network.
broadcast is correctly received by all neighbors. The same

reliable local broadcasassumption underlies the results in [3] IV. RELATED WORK

and [4] for a locally bounded adversarial fault model. While Reliable broadcast in radio networks has been studied
the occurrenceof the permanent failures is probabilistic, then [3], [7], [4] for a locally bounded adversarial model in
failed Byzantine nodes can thereafter choose to behave invhich the adversary may choose fault locations so long as
worst-case manner (i.e. modulate the messages they senddmeighborhood has more tharfaulty nodes. The issue of

I1l. NOTATION AND TERMINOLOGY

Zin —2(1{ 5

By critical transmission range for reliable broadcast, we
imply the minimum transmission rang®itical, required to
guarantee that broadcast is achievable w.h.p.

In a grid network, with the considerdd, metric, the node




achieving broadcast when the (locally bounded) adversamy ¢ Lemma 3: (Relatlve Entropy Form of Chernoff-Hoeffding

cause bounded a bounded number of collisions or addr%nd[lg]) If X — qu whereX's are i.i.d. Bernoulli(p),
spoofing is handled in [5]. .
However, in many practical situations, nodes may fail rafen forp<p =< 1

domly with a certain probability. It is therefore of intetes BB p)l

to determine the conditions under which reliable broadcast Pr[X > pn] < e "Pinp RNy 2)
is achievable under such a probabilistic fault model. In [8] Lemma 4:[14] If X1, Xa,..., Xn are drawn i.i.d. from al-
reliable broadcast under probabilisticansient failures has phabetx according toQ(x), then probability of the observed
been studied. Our results pertain to reliable broadcast $aquence being is given by:

the presence opermanentrandom Byzantine failures, e.g.,
when a Byzantine adversary launching a remote attack has an
independent probability of compromising each node.

For crash-stop faults, the reliable broadcast problemgesiu Where H and D denote the entropy and relative entropy
to the connectivity problem. Conditions for connectivityda functions (here considered w.r.t bageandP is the empirical
coverage have been formulated in the context of differeflistribution of sequence.
network models. A grid network model similar to ours was LetT(P) denote the type class corresponding to distribution
considered in [1] where nodes are located at grid locatiofs i-€., the set of sequenceswhose empirical probability
on a square grid, but may fail independently. Nodes havedigtribution isP. Then, for any distributior® belonging to the
common transmission range The probability of not failing is set of possible types with denominatorand any distribution
q (whereq=1—p), and it is shown that a sufficient conditionQ, the size of type clas$ (P) satisfies:
for connectivity and coverage is that transmission range
must be set to ensure that node degreel(é"g—”) (for some _
constantcy). It is also shown that a necessary condition for (n+ 1)K
coverage (and hence for joint coverage and connectivity) is o
that node degree be at |ea§(|ogn) (for another constart,). and, the probability of the type clasB(P) under Q
A fallacy in the above necessary condition was pointed o§pverned by:
by [9], and a subsequent correction [10] by the authors of [1] 1 _OE(O) ) A
presents examples illustrating that the necessary conditiay DN <Q"(T(p)) <e (5)

fail to hold for certain subranges af We have also derived | syima 5:(Vapnik-Chervonenkis Theorem) Let S be a set

results for crash-stop failures/connectivity that yielditeerent i finite VC dimension VCdims). Let {X} be i.i.d. random
expression than [1], and while our results are within a camist | 5 isples with distributiorP. Then fore. & >0

factor of their results for most values pf our results are more

accurate whemp — 0. We discuss this further in Section X.
Sup| le‘eo— D)<e]|>1-9
pes N

Q)(x) = e NH(PRID(RIQ) 3)

NP < T(p)| <P (4)

Recently, necessary and sufficient conditions for asyrigptot
connectivity in a random network with low duty cycle sensors

have been formulated in [11]. This is equivalent to the peabl whenevem > max( 8YCcdims) log 166 4 % log 2)
of crash-stop failures in a random network. . 2 e 25
Lemma 6:Suppose we are given a reglon of areavith n
V. SOME USEFUL MATHEMATICAL RESULTS nodes located uniformly at random. Consider all axis-pealral
> <o <=0
We state some mathematical results that have been useﬂﬁﬁqazgf; S?chﬁ rr?e?;gta)ngllie ﬁ; s) at lle?:w“ﬂlqgﬁl 58 Inn %%’c'j”e”é
oulr: prtocl)fsv L > with probability at least 1- 500,
ac xe[0,1]: ”117x =X Proof: Please see [15]. [ |
Fact 2: If [f(n)] <nz2"$(0<e< 3):
) fm\"  (im () VI. RELIABLE BROADCAST WITH PROBABILISTIC
M}o 1+ n )/ ene BYZANTINE FAILURES

Lemma 1:(Jogdeo & Samuels [12]) GiveK = Y1 + Yo +

..,+Yn whereVvi,Y; = Bernoulli(pi), andy pi =np, the median
m of the dlstrlbutlon is eithefnplornp], i.e.,PriX <m| > 1
andPr(X >m| > 1.

We present necessary and sufficient conditions for achiev-
ability of reliable broadcast in a grid network. Note thaideo
degreed(n, p) = 4(r?(n,p) +r(n,p)) for nodes not near the
edges, and the minimum number of neighbors of any node

Lemma 2: (Chernoff Bound) IfX = ZX| whereX’s are  (even one located in a corner) is at legsi(n,p). In the
i.i.d. Bernoulli(p), then for 0< B < 1: following proofs, we shall assume a toroidal network for

) ease of explanation. However this assumption can be relaxed
without affecting the results. This is discussed further in
PriX < (1-B)E[X]] < exp(—Z E[X]) @ Section X,



—_ . . Region x-extent y-extent
A. Sufficient Condition for Reliable Broadcast GbG(ab) | a<x< (@¥r) BN Zy<B=T)
o . . gnbds(a,b) (a-r)<x<(a-1) | (b—-r)<y<b
We now present a sufficient condition for the asymptotic gnbk(ab) | (a—r)<x<a b+ <y<(b+r)
achievability of reliable broadcast. gnbcb(ab) | (a+l)<x<(atr) | b<y<(b+r)
anbdy (ab) | (a+1) <x<(a+r) | (b—r)<y<b
Theorem 1:In the grid network model, whep < 3, and gﬂﬁﬁﬁﬁiﬂg (:::Eiiaa—l) ébg;)ég(gfr()bil)
d(n, p) = 4r(n, p)(r(n, p) + 1) > max{dmin, 16n—21_+'|”T”1—} qnbdy (3,b) | a<x< (atr) B+ <y<(®+1)
P 2(1-p)
TABLE |

max{dmin,S%} , reliable broadcast is asymptotically
) <3 B SPATIAL EXTENTS OF QUARTER NEIGHBORHOODS
achievable with probability 1.

Note that triviallyr(n, p) must be at least 1 else nodes would

have no neighbors. Also when 5+ Iz < 225, all  mayid, 16- I:m } max{dmin, 852)}, then
network nodes are neighbors of the source, and thus the suf- 25N 5 3

ficient condition degenerates to merely indicating thatitngv

everyone in direct range suffices for reliable broadcasidwh lim Pr{ ¥(xy) faults(Q(xy)) < g

is the trivial sufficient condition for the assumed networlda d

fault model). Thus the sufficient condition is of interestyon and faultsQ'(x,y)) < §] —1

so long as I + I 5t > 16inn,

Proof: As shown above, the population of amynbd
is 4 2- Each node may fail independently with probabiliy
II_ tYxy) be a random variable denotlng the number of faulty
ifpodes iNQ(x,y). ThenE[Yyy)| = p4 Using & = 2 25— 1, we
may then apply the relative entropy form of the Chernoff

a) p=o(%): Whenp=o(3), i.e.,np— 0, the probabil-
ity of even a single node failing approaches 0 asymptotical
and thus reliable broadcast is trivially ensured even wi
r(n,p) =1, i.e., degre@min. This may be seen thus:

bound (Lemma 3) t&xy) = 5 |j, wherel; is an indicator
' JEQ(xy)
Pr[No failureg = (1— p)" (6) Vvariable that takes value 1 if nodg is faulty. Note that
d > max{dmin, 16'”7”} 16—n
In QT)Hn 20-P) In QT)Hn TP
Thus, we obtain:
lim Pr[No failures;trivial broadcakt> I|m 1- 7 d ddinit+in L
A [ bt ( p" (7 Pr{Yjy) > 8] <o 13ng+3ingty) 9)
=¢ 'm0 — 1 from Fact2  (8) ~ 16Inn

)( In2p+ In M p))

<e 4(ln%p+ln 2<11,p)) —e 2Inn:n_l2 (10)

Similarly, settlngY(’ ) be a random variable denoting the
b) p = Q(%): We define a term called quarter-number of faulty nodes i (x,y), we obtain that:

neighborhood ¢nbd of a node (x,y), and denote it by d 1

gnbdx,y). We associate eight quarter-neighborhoods with Pr[Y(/X‘y) > §] <= (11)

each node:gnbdy, gnbds, gnbd;, gnbds, gnbdy, gnbdy, ' n

gnbdy, gnbdy. The quarter-neighborhoods for a node BY application of union bound over allndistinct quarter-

(a,b) are depicted in Fig. 1 and 2, and their spatial exieighborhoods:

tents are tabulated in Table I. Observe thpibds(a,b) = _ d , d
gnbdy(a—r —1,b), gnbc:(a,b) = gnbdy(a—r,b+r + 1), and - ImPriv(xy),Y(xy) < g andY'(x,y) < £] (12)
gnbch(a,b) = gnbd,(a,b+r + 1). Similarly, gnbdy (a,b) = 1 2
gnbdy(a—r —1,b), gnbdy (a,b) = gnbdy(a—r —1,b+r), and 2l-2n{ 5 )=1---1 (13)

gnbdy (a,b) = gnbds(a,b+r+1). Thus if we simply consider

gnbdy(u) and gnbdy (u)¥ nodesu, we will have considered u

all quarter-neighborhoods, i.e. the number of distinct ot ] ) ) )
disjoing quarter-neighborhoods isn2 Henceforth, we shall VW& now consider a simple broadcast protocol that is fairly
sometimes us@(x,y) to refer tognbdh(x,y), andQ'(x,y) to similar tol the protocol described in [3] for the locally-baled
refer to gnbdy(x.y). The population of angnbdis r(r +1), adversarial model:

and sinced = 4r? + 4r = 4r(r 4 1), the gnbd population :%_ « Initially, the sources does a local broadcast of the
We now state and prove the following result which is crucial ~message.
to proving our sufficient condition for reliable broadcast: « Each neighbor of the source immediately commits to the

thefirst valuev it heard from the source, and then locally
Theorem 2:If p< % andd(n,p) =4r(n,p)(r(n,p)+1) > broadcasts it once in @OMMITTED(i,v) message.



x:‘a—r X=a X;a+r | \ ; I
x=a-r-1 x=a X=a+r+1l
Fig. 1. Depiction ofgnbdy, gnbds, gnba:, gnbdy
Fig. 2. Depiction ofgnbdy, gnbdy, gnbdy, gnbdy

x=a-r+l x=a+l
‘ 1
| |

« Hereatfter, the following protocol is followed by all nodes
j ¢ nbd(s):
If %r(r+1)+1: % +1COMMITTEDI,v) messages are
received for a certain valug from neighborg all lying

|
P (a-r+l| br+1)
d

within a singlegnbd, commit tov, and locally broadcast g@u{gﬂ |
aCOMMITTELDj,v) message. i&};ﬁ
o SO0 S NN R yebl
= @b
Theorem 3: (Probabilistic CorrectnessYhe probability !
that a node shall commit to a wrong value by following the
y=b—r—------------ e

above protocol diminishes to 0 asymptotically.

Proof: If all Q(x,y)(Q'(x,y)) have strictly less tharg | ; ; ;
faults, the correctness of the protocol proceeds as follows xsd--1 | xa | xeabel
By thereliable local broadcasassumption, fault-free nodes
in nbd(s) are guaranteed to be able to commit to the correct
value. The proof for the remaining nodes is by contradiction

Consider the first fault-free node, sy that makes a wrong correct value. This follows trivially since they hear thegim
decision to commit to a value. This implies that§ +1 of directly, and we assume that address-spoofing is impossible
its neighbors within somenbd broadcast &LOMMITTED Inductive Hypothesis:

message fov (the COMMITTED messages were directly|f all non-faulty neighbors of a node located &, b) i.e.
heard, leaving no place for doubt). All of these nodes cabeot all non-faulty nodes imbd(a,b) are able to commit to the

faulty, as less tha nodes in anygnbdare faulty. Thus there correct value, then all non-faulty nodes imbd(a, b) are able
was at least one fault-free node that committed.t&incej to commit to the correct value.

is the first fault-free node to make a wrong decision, none of Proof of Inductive Hypothesis:

the fault-free nodes amongst t@ek 1 nodes could have madewe show that each nod® in pnbd(a,b) — nbd(a,b) has

a wrong decision. Thug must indeed be the correct value. gne ofgnbda(P), gnbds(P), gnbd:(P), gnbds(P), gnbdy (P),
We know that allgnbd have less thar% faults with proba- gnbds (P), gnbd (P), gnbdy (P) fully contained innbd(a, b).

bility 1 asymptotically, and hence the protocol also fuoot Since less tharg of the nodes in @nbdare faulty with prob-

correctly with probability 1 asymptotically. B ability 1 (asymptotically), this guarantees that the nodé w

o ~ become aware (%—1—1 nodes imbd(a, b) having committed to
Theorem 4: (Probabilistic Completenes§ach node is 3 (the correct) value, and will also commit to it. The sitoati
eventually able to commit to the (probabilistically) care js depicted in Fig. 3 foP € {(a—r+1,b+r+1)|1<I<r},

Fig. 3. Node at P has gnbdin nbd(a,b)

value. for which gnbdy(P) lies in nbd(a,b). For all other locations,
a similar argument holds. ]
Proof:
The proof proceeds by induction. B. Necessary Conditions for Reliable Broadcast
Base Case: Theorem 5:If a node not innbd(s) has at least half faulty

All non-faulty nodes innbd(0,0) are able to commit to the neighbors, it can be made to commit to an erroneous value



Fig. 4. Division of network into disjoint neighborhoods

non-faulty but has at least half faulty neighbors, and cotami
to the wrong value. TheRr[lj =1] > 3(£)=£ >0, and all
li’s are independent. Note th&t— «. Let X be a random
variable indicating the number of non-faulty nodes with at
least half faulty neighbors that resultantly commit to themg
value. TherE[X] =5 Pr[l; = 1] > £(55) — o (sincee >0 is

a constant independent of. Thus from the Chernoff Bound
in Lemma 2, forany B <1 (e.g., seB= %):

B2E(X]
PrIX<(1-PEX]<e 2 (0<B<1)
with probability at least. e
Proof: Assume that the message is drawn fré@nl}. A A'L’lopr[x >(1-REX] > A'Hlol_ e =1
node which is not an immediate neighbor of the source must (" E[X] — o)

rely on messages received from its neighbors.

First, consider any function that takes as argument messag@Us: asn — «, the number of non-faulty nodes isolated by

received from all neighbors and outputs one of 0 or 1. Th
corresponding to each fault configurati@i with t > % in
nbd(u), there is another configuratic®, with t faults, such
that all non-faulty nodes irC; are faulty inCy, while the
non-faulty nodes irC, were all faulty inC;. Then, the faulty

nodes can modulate their message-sending behavior sa thgt&X{dmin, ;-

If or more faulty neighbors, and which commit to the wrong
value, will also tend to infinity with probability 1.
]
Theorem 7:In a grid network, when O p < %—s
(e > 0), and node degred(n,p) = 4r(n,p)(r(n,p) +1) <

Ihn__1 (for suitable constart < 1), reliable
+In
2t 21 p

is unable to distinguish between the case where the corrggbadcast asymptotically fails with probability 4.

broadcast value was 0 and configuration Wasand the case
when the correct value was 1 and the configuration @as

Proof: It is immediately obvious that(n, p) must be at
least 1 (i.e.d must at least bely), else nodes will have no

(recall that once failure has happened, the faulty nodes GRighbors. We therefore focus on the calse dmin = 8, and

exhibit worst-case behavior). Thus, there are two equikghy
possibilities for a given set of received messages,acahnot
expect to choose the correct one with a probability greaten t

consider thec— N0

In 25+|n TP
p< % — ¢, whereg is an arbitrarily small constant independent

term. Suppose failure probability

half. If the message can have more than two possible vaIu@E{‘- Take f(n) = (Inn)2, andn to be large enough so that

it cannot increase the probability of correct choice.
For a more detailed proof, please see [15]. [ ]
Theorem 6:When failure probabilityp satisfies:% <p<
1-¢ and nIimg — oo (this happens whend = o(n)),
l!irrgoPr[ reliable broadcast fails— 1.

Proof: Note that in this case, can be an arbitrarily small
constant, but must be independentofConsider a particular
nodej in the network. Then, if is non-faulty, but more than
half of its neighbors are faulty, reliable broadcast failghw
probability at least half. Given that there ateneighbors, and
each may fail independently with probability let Y; denote
the number of failed neighbors ¢f Then,Y; takes values from
0,1,...,d, andE[Y|] > 4. Thus [E[Y]] > |$] = § (sinced =
4r? 4 4r is always even). Thu®r[y > %] > Pr[Y > [E[Y]]] >
% (from Lemma 1). Let us call this probability. Whenp <
1—¢, we have - p>¢€>0. Thus:

Pr[ j alive; has half+ faulty neighbdrs (1— p)q > ; >0

Let us mark out a subset of nodg¢ssuch that the neigh- corresponding tovj =
borhoods of these nodes are all disjoint, as in Fig. 4. Th

In 3 +In ﬁ > L. Choose a suitableonstant0 < ¢ < 1
such that§Inn<Inn—3Ininn—2Inf(n), i.e., §Inn<Inn—
7Inlnn, for sufficiently largen (e.g. ¢ = 0.9 would work).

Settingd < c——"1 for this choice ofc, and large
Inzﬁlnm

enoughn, we obtaind < c(Inn)? < (Inn)>2.

Consider a particular nod¢ in the network. Then, ifj
is non-faulty, but more than half of its neighbors are faulty
reliable broadcast fails with probability at least half (as
commits to an erroneous value with probability at Ieést
from Theorem 5). Given that there adeneighbors, and each
may fail independently with probability, let (1 <k <d)
denote the indicator variable corresponding to neighbof
j (enumerated in some order), such that=1 if k is faulty,
and O otherwise. The¥j = 5 | x denotes the number of failed
neighbors ofj. Y takes values from @, ...,d, andE[Y] = pd.
PrY; > 4] = gd (?)p'(1—p)@-. Let us simply consider the

=2

eventYj = %. Then we can apply the lower bound from Lemma
4. The variabled (1 < k < d) are drawn fromyx = {0,1}
as per distributionP = Bernoulli(p), and the distributiorQ
dis Bernoulli(%) (we shall refer to

s asQq). ‘

the number of such nodes that we may obtain is at least 2

([%r—\@lj)z (whered = 4r2 + 4r), which for largen is at least
- Let Ij be an indicator variable that takes value 1jifs

2We have a new result extending this theorem to a larger rahgevalues.
For specific details, please see [15].



iw = @r >
(d-+1)IXI (d+1) 5d?

2e72d (sinced > 8). Thus, we obtain:

x| = 2, and = at random. The average degree of a node is the average
number of the remainingh — 1 nodes that fall within its

neighborhood (recall we are usirg, distance metric), i.e.,

o 2
priyi > G s prpyy = 3> LR Qavg(n, p) = ("HE 2L ~ 4r2(n, p) for largen.
q=PrlY;> ] >PrlYj=z]> ———
=2 P20 (d+ i Theorem 8:When failure probabilityp < 3, andr(n, p) >
—d(D(Q1|IP —d(D(Qy|IP))—2Ind
- (d+11 se (B(Qg 11P) :é (B(Qg lIP)-2in %, reliable broadcast is asymptotically achiev-
2Ptz
o (e M )(Fin g+ in il ) -4ininn able in the random network model with high probability.
>Ze AT
(24) Proof: At the outset, we make the observation that if
(sincen large enough to ensure B%F +1In 1 r(n,p) = v, all nodes are neighbors, and trivially broadcast
p 2(1-p) is achievable. Thus this result is of interest only so long as
1 , 2 2 r(n,p) < vn.
> )
Z o andc < 1, leading tod < ¢c(Inn)* < (Inn)“ ) In light of Fact 1:
_ 2 —SInn—4Ininn Z(Inn)3 .
= ée 2 > —an from our choice ofc 1 1

1 1

. . R T )
Pr[ j alive; at least halhbd(j) faulty ] > (1— p)q 1
2

12(nn)® _ (nn?® (19 Z5(1_2p)+§|r]2(1—p):E_ij_mZ(l—p)

(17)

2 ?,n 3n . Also, since 0< p< 3:
Let us mark out a subset of nodg¢ssuch that the neigh-
borhoods of these nodes are all disjoint, as in Fig. 4. Then, a 0< 1_ p+}In _1 < }(1_ In2) < 1 (18)
noted earlier, the number of such nodes that we may obtain 2 2 21-p "2 2

is k> (|00 2 > M for large n. Let |j be an indicator Similar to grid networks, we use a notion of quarter-
variable that takes value 1 if is non-faulty but has at least ) ) ) ) _

(Inn) relative coordinates by treating the source’s coordinaes
independent. We have choserlarge enough to ensure that(o’ 0). With some abuse of the grid network notation intro-

1 1 1 2 ! indi
In 25 +In = e.d S _c(ln n)*. Let lj be an mqllcator include all nodes within distangeof point(x,y) (regardless of
variable that takes value 1 jfis non-faulty but commits to a whether or not there is a node (&t y)), wherex andy are real
wrong value. From Theorem 5, we know that if a non-fault '
node has half or more faulty neighbors, it will commit to th(?
X - ly nbd(x—1 bd(x+1 bd(x,y— 1) Unbd
wrong value with probability at Ieas%. Thus Pr{lj = 1] > mply nbd(x —1,y)Unbd(x+1,y) Unbd(x,y — 1) Unbd(x,y+
3 . Lo
$Prllj =1] > % Let X be a random variable indicating Note again that in this model, a node’s (or point’s) coor-
the number of non-faulty nodes with half or more faultylinates are real numbers. We thus associate eight quarter-
3 3
andE[X] = Pr[l =1] > ("232) (&) = (lleng S IT_S — o (as Table I, except that now andy must be treated as real
setp = %) and apply the Chernoff bound in Lemma 2 to obtairP”!y 2n distinct quarter-neighborhoods. Thus, aI.I e_ig_ht quarter-
neighborhoods of a node must be treated as distiyalding

Z+l neighborhoods. For a given broadcast instance, we again use
half faulty neighbors. TheRr[l; = 1] > =-~, and alll;'s are
duced in Section Ill, we can extend the notionndid(x,y), to
2(1—p) = Inn’
Humbers. The notion gbnd(x,y) is also similarly extended to
1) for all points (x,y).
neighbors that commit to the wrong value. Th¥n= 31, neighborhoods with eacimode with spatial extents as in
d < (Inn)2). Thus we can choose any constant f < 1 (e.g. numbers. Also, now it is not possible to assert that there are
2 . .
lim Pr[X > (1— B)E[X]] > lim1— efﬁ—'i[ﬁ =1 E[X]— oo 8n quarter-neighborhoods in all.

n—oo n—o 16 The quarter—neigborhoodzs are axis-parallel rectangles of
(16) arear(n,p)(r(n,p) — 1) > w (for r(n,p) > 2). Then,
Thus, asn — o, the probability that some non-faulty node(s)f 4r2(n,p) > —4%Im___ " then we can apply Lemma 6
fail to commit to the correct value tends towards 1: Sz Pralnag
for all axis-parallel rectangles of aredn,p)(r(n,p) — 1) >
lim Pr[ reliable broadcast fais— 1 . pf‘f:g” — > 1%0M "t obtain that they all have at least
e 2 P2 N oy
50Inn 25Inn 50Inn H
] —50Inn > > nodes, with
3Ptz oy 1 p+in 2<1{p) 1-In2

VIl. SUFFICIENT CONDITION FORRANDOM NETWORKS  probability at least +- &A"” — 1.

We obtain a sufficient condition for a network nfnodes  '1us all such rectangles anen-empty Also:
deployed uniformly at random, based on the sufficient con- 25Inn 25Inn S 8Inn (19)
dition for the grid network model. To maintain consistency 3- p+%|n2(l—lfp> - D(Q%||p) D(Q%||p)
with the grid network formulation, we assume a toroidal
region of area,/n x /n, with n nodes located uniformly 3Note that distinct does not mean disjoint.




N of ranger by al, neighborhood of rangey/2 (Fig. 5). Hence
\ : the non-faulty nodes in ah, network of transmission range
: rv2 can be made to simulate the operation of nodes in a
K L. network with ranger (as thel. neighborhood is fully
contained within thd_, neighborhood). Also, given that this

is a network of known topology, with no address spoofing
Fig. 5. Relationship betweein, andL neighborhoods allowed, the faulty nodes cannot gain any unfair advantage
by not simulating the thd.,, network. This implies that if
broadcast is achievable in tHe, network of ranger , so
Hence all the quarter-neighborhoods have at Iqﬂ% must it be in thel, network of rangery/2. If there is some

nodes (which is the quarter-neighborhood populatiozn in e Mmin for which we can achieve broadcast in the network

grid network case). Then using a proof argument similar ﬁympto.tically, but npt_ in the thé? netv.v.ork. of rangerv'2,
Theorem 2, one can prove the following theorem: we obtain a contradiction, as achievability in the network

would imply achievability in theL, network. [ ]

100Inn . o
%—p+%|nz<1—{p)' then Lemma 8:If reliable broadcast fails i, for all r < rmin,

then it fails inLs for all r < rmin.

Theorem 9:If p< %, andr(n, p) >

l!irrl)Pr[ all 8n gnbdshave non-faulty majority— 1
Thus, one can use a broadcast protocol similar to that for Proof: The proof is by contradiction. Suppose there is a
grid networks (a node commits to a value if it is receiveffilure configuration in which broadcast fails in, for range
from half or more nodes in some quarter-neighborhood), arfd, but does not fail inL, for ranger. Observe that an..
for all broadcast sources, and instances, the correctmess Beighborhood of transmission rangecircumscribes arl;

completeness continue to hold, as follows: neighborhood of range (Fig. 5). Thus, for any given failure
Correctness Relying on Theorem 9, we can apply a proofonfiguration, if broadcast succeeds in the the network
argument similar to Theorem 3. of ranger, so can it in theL. network of radiusr, as we

CompletenessThe proof uses the an inductive argumeriould simply make the fault-free nodes in the network
similar to the proof of Theorem 4, except that the term3mulate the behavior of nodes in the network. This yields
nbd(x,y), pnd(x,y) and quarter-neighborhood must be interd contradiction. ]
preted as per their re-definition in this section. In the base
case, all neighbors of the source (which iS@&t0)) commit to
the correct value trivially. In the inductive step, one chiow We used the assumption that the network is toroidal to
that if all nodes innbd(x,y) (as per extended notation) haveavoid edge effects. However, our Byzantine failure results
comitted to the correct value, all nodespnd(x,y) —nbd(x,y) ~continue to hold even if the network were spread over a non-
have somegnbd contained innbd(x,y), and can thus commit toroidal rectilinear domain. The necessary conditiongtiooe
to the value received from a majority of nodes in thisbd to hold since the degree of nodes at the edges can be no
m more more than the degree of nodes towards the center; if
Since the area within range of a node2s)2 = 4r? (for the reliable broadcast is impossible even with the assumptfon o
valid domain ofr values) in the., metric, the result indicates equal degree for all nodes, it must certainly be impossible
that an average node degrdgg of —29%IM ___ guffices when some nodes (those at the edges) have a smaller degree.

“orIin I . - : . )
. 2 PTaliNan The sufficient condition for Byzantine failures continues t
for reliable broadcast. Hence tleeitical average node degree ; X ) . .
a9 is Of Inn ). 4 hold since the described prqtocol relies on informationfro
critical 3PNy quarter-neighborhoods, and it can be seen that even thesnode
at the edges have at least one quarter-neighborhood witain t

network region.

IX. NON-TOROIDAL NETWORKS

VIII. CONDITIONS IN EUCLIDEAN METRIC
Our results derived fot.., metric continue to hold fot,

metric, with only the constants in the asymptotic notation X. CRASH-STOP FAILURES

changing. A similar argument was used in [3]. As mentioned in Section IV, broadcast in presence of
Lemma 7:1f reliable broadcast is achievable In, for all - ¢rash-stop failures is equivalent to connectivity undélufa.

r > min, then it is achievable i, for all r > rminv/2. We have also derived results for crash-stop failures in a

rid network. These are closely related to the results of [1]

Proof. The proof is by contradiction. Suppose that, for%iscussed in Section IV. However, we prove that, given a

given failure configuration, broadcast is achievabld.infor ) o o ; 7 inn
all r > i but is not achievable for alt > rmny/2 in Lo, failure probability p, the critical degree |@(dm.n+ﬁ) for
Observe that it is possible to circumscrib&a neighborhood connectivity (please see [15] for details). Our resultsracege
accurate than those of [1] whem— 0, and our necessary
4A more intuitive way of viewing the result is thatritical degree is condition holds in a certain subdomain where that of []_]

|
O(max{inn, 5. ey })- does not. To illustrate, whemp = 0, their condition yields

1
2




a degree of the order of lagwhile our condition yields a sleeping/crash-stop case in [11], age- % for the Byzantine
degreedmin, Which is accurate, since in absence of failure, thiailure case.

minimum transmission range for a non-empty neighborhoodAlso note that both our grid network and random network
suffices. However, both our necessary conditions and thassults (for Byzantine failure) have similar structuralrfg

of [1] will fail to apply when p becomes very close to 1.involving a minimum term required for connectivity without
Besides, the necessary condition derived in [1] was agt@all disruptive (Byzantine) behavior, and a second term reduire
necessary condition for coverage, and hence a joint camditito ensure broadcast even in presence of failure.

for connectivity and coverage. Also relevant to the coninégt
issue is analysis presented in [16] regarding the feasdtie r

in a sensor network, which may potentially be adapted talyiel We considered the problem of reliable broadcast in wireless
similar connectivity results. networks with permanent probabilistic failures, and ofbagi

tight bounds for asymptotic achievability of broadcast in a

XI. Discussion grid deployment. We also presented a sufficient conditian fo

An interesting observation is that the form of the resultByzantine failures in a random network. In recent work, we

for Byzantine failures is very similar to the results for gia have also obtained a necessary condition for random neswork
stop failures/connectivity. For Byzantine failures, wevba

XIl. CONCLUSIONS

obtained that the critical node degree for grid networks is ACKNOWLEDGEMENT
O(dmin+ n_1+||nTn1_) which may be re-stated @3(dmin+ We acknowledge an anonymous reviewer of a prior
2p T 2(1-p) manuscript version whose useful remarks suggesting tlemext
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