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Abstract— We consider the problem of reliable broadcast in
a wireless network in which nodes are prone to failure. Each
node can fail independently with probability p. Failures are
permanent. The primary focus is on Byzantine failures, but
we also handle crash-stop failures. We consider two network
models: a regular grid, and a random network. Our necessary
and sufficient conditions for the Byzantine failure model indicate
that p should be less than 1

2 , and the critical node degree

is Θ
(

dmin+ lnn
ln 1

2p+ln 1
2(1−p)

)

(where dmin is the minimum node

degree associated with a non-empty neighborhood, and is a small
constant). For a random network we prove that, for failure
probability less than 1

2 , the critical average degree for reliable
broadcast is O( lnn

1
2−p+ 1

2 ln 1
2(1−p)

). We briefly discuss the issue of

crash-stop failures for which we have results that improve upon
previously existing results for this model, when p approaches
0. We also identify an interesting similarity in the structure
of various known results in the literature pertaining to a set
of related problems in the realm of connectivity and reliable
broadcast.

Index Terms— Probabilistic failure, Byzantine faults, crash-
stop faults, broadcast, fault-tolerance, reliability

I. I NTRODUCTION

Reliable broadcast in the presence of Byzantine and crash-
stop failures has been studied under different network and
failure models. A reliable broadcast mechanism may be of
significant utility in large-scale sensor network deployments.
While the shared nature of the wireless medium is conducive
to the broadcast operation, the unreliability of the wireless
channel, and the possibility of collisions can make it a difficult
problem to solve. As a first step towards addressing the
issue, it is useful to focus on an idealized wireless channel.
We consider the problem of reliable broadcast in a such an
idealized wireless network. We primarily focus on Byzantine
failures, but have also considered the case of crash-stop
failures. The failures are permanent and are assumed to occur
probabilistically, i.e., each node can fail independentlywith a
certain probabilityp. However, once failure has happened, the
faulty nodes can exhibit worst-case behavior.

For the Byzantine failure model, we show that reliable
broadcast in a grid network ofn nodes requires thatp <

This research is supported in part by NSF grant CNS 05-19817,and a
Vodafone Graduate Fellowship.

1
2, and thecritical node degree (defined in Section III) is

Θ
(

dmin+ lnn
ln 1

2p+ln 1
2(1−p)

)

. This may alternatively be stated as

Θ
(

dmin+ lnn
D(Q1

2
||P)

)

whereQ1
2

denotes theBernoulli(1
2) dis-

tribution,P denotes theBernoulli(p) distribution, andD(Q||P)
denotes therelative entropy(or Kullback-Leibler distance) be-
tween distributionsQ andP. We also prove that in a randomly
deployed network with Byzantine failures, the critical average

node degree for reliable broadcast isO

(

lnn
1
2−p+ 1

2 ln 1
2(1−p)

)

when

p < 1
2.

We briefly discuss the case of crash-stop failures in a grid
network, in Section X. For crash-stop failures, the problem
of reliable broadcast is equivalent to connectivity. For this
case, we have results showing that the critical node de-

gree is Θ
(

dmin+ lnn
ln 1

p

)

with p < 1, or alternatively stated,

Θ
(

dmin+ lnn
D(Q1||P)

)

, whereQ1 is theBernoulli(1) distribution.
Our results improve upon previous results proved in [1] when
the failure probabilityp approaches 0.

We also identify an interesting but intuitive similarity in
the structure of results (previously known results, as wellas
the results derived in this paper) for a set of mutually related
problems pertaining to connectivity and reliable broadcast.
This is discussed in Section XI.

II. PROBLEM MODEL

We consider a two network models, viz., a regular grid,
where nodes are located on a two-dimensional square grid
(each grid unit is a 1× 1 square), and a random network,
where node locations are i.i.d. uniformly distributed overthe
deployment region. In both models, the network is assumed
to be deployed over a

√
n x

√
n square region. The pre-failure

topology (i.e., node locations) of the deployed network is
assumed to be known to all nodes.

Formal Definition of Reliable Broadcast:Any node in
the network can originate a broadcast message. The goal is
to ensure that all nodes receive the valid broadcast valuewith
high probability1 . In the Byzantine failure model, this source

1We use the termwith high probability(w.h.p.) to mean with probability 1
asn→ ∞.



node may be faulty. Thus the goal is to ensure that if the
source is non-faulty, every non-faulty node in the network
correctly receives and determines the broadcast value; if the
source is faulty, all non-faulty nodes should agree on some
common value. In the crash-stop failure model, a message
can only be originated by a non-faulty node (as faulty nodes
cease to function), and the goal is to ensure that all non-faulty
nodes receive this value. If even one non-faulty node fails to
make a valid value determination, the broadcast is deemed to
have failed. Reliable broadcast is said to fail in a given fault
configuration, if it fails for at least one possible broadcast
origin/source.

For a given broadcast instance, once an origin/source is
designated, it is identified as(0,0). All nodes can then be
uniquely identified by their coordinate location(x,y) w.r.t.
this origin. In the grid network model, the node coordinates
are always integers, while for random networks they are
real numbers. All nodes have a common transmission radius
r(n, p). For grid networks, we assume thatr(n, p) is an integer,
and for random networks it is allowed to be any real number.
A message transmitted by a node(x,y) is heard by all nodes
within distancer(n, p) from it (where distance is defined in
terms of the assumed metric). The set of these nodes is termed
the neighborhood of(x,y).

In this paper, we consider two distance metrics:L∞ and
L2. The L∞ metric is the metric induced by theL∞ norm
[2], such that the distance between points(x1,y1) and(x2,y2)
is given by max{|x1− x2|, |y1− y2|} in this metric. Thus the
neighborhood of(a,b) comprises a square of side 2r with its
centroid at(a,b), and the degree of a node is 4r2+4r. In this
metric, the minimum node degreedmin = 8 corresponding to
r = 1. The L2 metric is induced by theL2 norm [2], and is
the Euclidean distance metric. TheL2 distance between points
(x1,y1) and(x2,y2) is given by

√

(x1−x2)2 +(y1−y2)2, and
the neighborhood of(a,b) comprises nodes within a circle of
radius r centered at(a,b). The L∞ metric (which was also
used in [3], [4], and [5]) enables more tractable analysis,
from which necessary and sufficient conditions for theL2 (Eu-
clidean) metric proceed. In Section VIII, we further elaborate
on this.

A random failure mode is assumed, wherein each node can
fail with probability p independently of other nodes. Failures
are permanent. We primarily focus on Byzantine failures.
In the Byzantine failure mode, a faulty node can behave
arbitrarily, in contrast to crash-stop failures, where a faulty
node simply stops functioning. However, in our model, the
Byzantine nodes cannot spoof addresses or cause collisions,
i.e., the MAC layer is assumed fault-free, and the Byzantine
faults reside only in higher layers of the protocol stack. We
assume that the channel is perfectly reliable, and a local
broadcast is correctly received by all neighbors. The same
reliable local broadcastassumption underlies the results in [3]
and [4] for a locally bounded adversarial fault model. While
the occurrenceof the permanent failures is probabilistic, the
failed Byzantine nodes can thereafter choose to behave in a
worst-case manner (i.e. modulate the messages they send to

cause most confusion to non-faulty nodes). The non-faulty
nodes do not know which nodes have failed.

III. N OTATION AND TERMINOLOGY

We briefly describe the notation and terminology used in
this paper.

Nodes are identified by their coordinate location i.e.(x,y)
denotes the node at(x,y). The neighborhood of(x,y) com-
prises all nodes within distancer of (x,y) and is denoted
as nbd(x,y). For succint description of grid network proofs,
we define a termpnbd(x,y) where pnbd(x,y) = nbd(x−
1,y)∪nbd(x+ 1,y)∪ nbd(x,y−1)∪nbd(x,y+ 1). Intuitively
pnbd(x,y) denotes theperturbed neighborhoodof (x,y) ob-
tained by perturbing the center of the neighborhood to one
of the nodes immediately adjacent to(x,y) on the grid. Also
f aults(S) denotes the number of faulty nodes in the set of
nodesS . The termqnbd is sometimes used as an abbreviation
for quarter-neighborhood (defined later in the paper). Trans-
mission range is referred to asr(n, p) and sometimes as just
r. The node degree is referred to asd(n, p) or just d.

We use standard asymptotic notation [6]. Besides, we denote
by D(Q1

2
||P) the relative entropy between theBernoulli(1

2)

and Bernoulli(p) distributions. ThusD(Q1
2
||P) = 1

2 ln 1
2p +

1
2 ln 1

2(1−p) .
By critical transmission range for reliable broadcast, we

imply the minimum transmission rangercritical , required to
guarantee that broadcast is achievable w.h.p.

In a grid network, with the consideredL∞ metric, the node
degree is exactly determined by specifying the transmission
range. Hence, we can define the notion ofcritical degree
dcritical correponding to the transmission rangercritical .

Thus:

dcritical = Ω(g(n, p)) =⇒ ∃c1 > 0, such that:

d ≤ c1g(n, p) =⇒ lim
n→∞

Pr[reliable broadcast achievable] < 1

This yields a necessary condition. If
lim
n→∞

Pr[reliable broadcast achievable] = 0, it is a strong

necessary condition.

dcritical = O( f (n, p)) =⇒ ∃c2 > 0, such that:

d ≥ c2 f (n, p) =⇒ lim
n→∞

Pr[reliable broadcast achievable] = 1

This yields asufficientcondition.
Thusdcritical is Θ( f (n, p)) implies thatdcritical is Ω( f (n, p))

andO( f (n, p)).
In a random network, the degrees of individual nodes can

vary; however, it is possible to define a notion ofcritical
average degreedavg

critical , which is the average degree corre-
sponding to the rangercritical . Thendavg

critical can be expressed
in asymptotic notation, similar todcritical for a grid network.

IV. RELATED WORK

Reliable broadcast in radio networks has been studied
in [3], [7], [4] for a locally bounded adversarial model in
which the adversary may choose fault locations so long as
no neighborhood has more thant faulty nodes. The issue of



achieving broadcast when the (locally bounded) adversary can
cause bounded a bounded number of collisions or address
spoofing is handled in [5].

However, in many practical situations, nodes may fail ran-
domly with a certain probability. It is therefore of interest
to determine the conditions under which reliable broadcast
is achievable under such a probabilistic fault model. In [8],
reliable broadcast under probabilistictransient failures has
been studied. Our results pertain to reliable broadcast in
the presence ofpermanentrandom Byzantine failures, e.g.,
when a Byzantine adversary launching a remote attack has an
independent probabilityp of compromising each node.

For crash-stop faults, the reliable broadcast problem reduces
to the connectivity problem. Conditions for connectivity and
coverage have been formulated in the context of different
network models. A grid network model similar to ours was
considered in [1] where nodes are located at grid locations
on a square grid, but may fail independently. Nodes have a
common transmission ranger. The probability of not failing is
q (whereq= 1− p), and it is shown that a sufficient condition
for connectivity and coverage is that transmission ranger
must be set to ensure that node degree isc1(

logn
q ) (for some

constantc1). It is also shown that a necessary condition for
coverage (and hence for joint coverage and connectivity) is
that node degree be at leastc2(

logn
q ) (for another constantc2).

A fallacy in the above necessary condition was pointed out
by [9], and a subsequent correction [10] by the authors of [1]
presents examples illustrating that the necessary condition may
fail to hold for certain subranges ofq. We have also derived
results for crash-stop failures/connectivity that yield adifferent
expression than [1], and while our results are within a constant
factor of their results for most values ofp, our results are more
accurate whenp→ 0. We discuss this further in Section X.

Recently, necessary and sufficient conditions for asymptotic
connectivity in a random network with low duty cycle sensors
have been formulated in [11]. This is equivalent to the problem
of crash-stop failures in a random network.

V. SOME USEFUL MATHEMATICAL RESULTS

We state some mathematical results that have been used in
our proofs:

Fact 1: ∀x∈ [0,1] : ln 1
1−x ≥ x

Fact 2: If | f (n)| ≤ n
1
2−ε(0 < ε < 1

2):

lim
n→∞

(

1+
f (n)

n

)n

= e
( lim
n→∞

f (n))

Lemma 1: (Jogdeo & Samuels [12]) GivenX = Y1 +Y2 +
...,+Yn where∀i,Yi = Bernoulli(pi), and∑ pi = np, the median
m of the distribution is either⌊np⌋or⌈np⌉, i.e.,Pr[X ≤ m]≥ 1

2
andPr[X ≥ m] ≥ 1

2.

Lemma 2: (Chernoff Bound) IfX =
n
∑

i=1
Xi , whereXi ’s are

i.i.d. Bernoulli(p), then for 0< β < 1:

Pr[X ≤ (1−β)E[X]]≤ exp(−β2

2
E[X]) (1)

Lemma 3: (Relative Entropy Form of Chernoff-Hoeffding

Bound[13]) If X =
n
∑

i=1
Xi , whereXi ’s are i.i.d. Bernoulli(p),

then for p≤ β ≤ 1:

Pr[X ≥ βn] ≤ e−n(β ln β
p+(1−β) ln 1−β

1−p ) (2)
Lemma 4: [14] If X1, X2,..., Xn are drawn i.i.d. from al-

phabetχ according toQ(x), then probability of the observed
sequence beingx is given by:

Q(n)(x) = e−n(H(Px)+D(Px||Q)) (3)

where H and D denote the entropy and relative entropy
functions (here considered w.r.t basee), andPx is the empirical
distribution of sequencex.

Let T(P) denote the type class corresponding to distribution
P, i.e., the set of sequencesx whose empirical probability
distribution isP. Then, for any distributionP belonging to the
set of possible types with denominatorn, and any distribution
Q, the size of type classT(P) satisfies:

1

(n+1)|χ|
enH(P) ≤ |T(p)| ≤ enH(P) (4)

and, the probability of the type classT(P) under Q(n) is
governed by:

1

(n+1)|χ|
e−n(D(P||Q)) ≤ Q(n)(T(p)) ≤ e−n(D(P||Q)) (5)

Lemma 5: (Vapnik-Chervonenkis Theorem) Let S be a set
with finite VC dimension VCdim(S). Let {Xi} be i.i.d. random
variables with distributionP. Then forε,δ > 0:

Pr

(

sup
D∈S

| 1
N

N

∑
i=1

IXi∈D −P(D)| ≤ ε

)

> 1− δ

wheneverN > max

(

8VCdim(S)

ε
log2

16e
ε

,
4
ε

log2
2
δ

)

Lemma 6:Suppose we are given a region of arean, with n
nodes located uniformly at random. Consider all axis-parallel
rectangles of areaa(n). If a(n) ≥ 100α lnn,1 ≤ α ≤ n

100 lnn,
then each such rectangle has at least 100α lnn−50lnn nodes,
with probability at least 1− 50 lnn

n .
Proof: Please see [15].

VI. RELIABLE BROADCAST WITH PROBABILISTIC

BYZANTINE FAILURES

We present necessary and sufficient conditions for achiev-
ability of reliable broadcast in a grid network. Note that node
degreed(n, p) = 4(r2(n, p)+ r(n, p)) for nodes not near the
edges, and the minimum number of neighbors of any node
(even one located in a corner) is at least1

4d(n, p). In the
following proofs, we shall assume a toroidal network for
ease of explanation. However this assumption can be relaxed
without affecting the results. This is discussed further in
Section IX.



A. Sufficient Condition for Reliable Broadcast

We now present a sufficient condition for the asymptotic
achievability of reliable broadcast.

Theorem 1:In the grid network model, whenp < 1
2, and

d(n, p) = 4r(n, p)(r(n, p)+1)≥ max{dmin,16 lnn
ln 1

2p+ln 1
2(1−p)

} =

max{dmin,8 lnn
D(Q1

2
||P)} , reliable broadcast is asymptotically

achievable with probability 1.

Note that triviallyr(n, p) must be at least 1, else nodes would
have no neighbors. Also when ln12p + ln 1

2(1−p) ≤
16 lnn
n−1 , all

network nodes are neighbors of the source, and thus the suf-
ficient condition degenerates to merely indicating that having
everyone in direct range suffices for reliable broadcast (which
is the trivial sufficient condition for the assumed network and
fault model). Thus the sufficient condition is of interest only
so long as ln1

2p + ln 1
2(1−p) > 16 lnn

n−1 .

a) p= o(1
n): When p = o(1

n), i.e.,np→ 0, the probabil-
ity of even a single node failing approaches 0 asymptotically,
and thus reliable broadcast is trivially ensured even with
r(n, p) = 1, i.e., degreedmin. This may be seen thus:

Pr[No failures] = (1− p)n (6)

lim
n→∞

Pr[No failures;trivial broadcast] ≥ lim
n→∞

(1− p)n (7)

= e− lim(np) = 1 from Fact 2 (8)

b) p = Ω(1
n): We define a term called quarter-

neighborhood (qnbd) of a node (x,y), and denote it by
qnbd(x,y). We associate eight quarter-neighborhoods with
each node:qnbdA, qnbdB, qnbdC, qnbdD, qnbdA′, qnbdB′,
qnbdC′, qnbdD′. The quarter-neighborhoods for a node
(a,b) are depicted in Fig. 1 and 2, and their spatial ex-
tents are tabulated in Table I. Observe thatqnbdB(a,b) =
qnbd′A(a− r −1,b), qnbdC(a,b) = qnbdA(a− r,b+ r +1), and
qnbdD(a,b) = qnbd′A(a,b+ r + 1). Similarly, qnbdB′(a,b) =
qnbdA(a− r−1,b), qnbdC′(a,b) = qnbdA′(a− r−1,b+ r), and
qnbdD′(a,b) = qnbdA(a,b+ r +1). Thus if we simply consider
qnbdA(u) and qnbdA′(u)∀ nodesu, we will have considered
all quarter-neighborhoods, i.e. the number of distinct (but not
disjoint) quarter-neighborhoods is 2n. Henceforth, we shall
sometimes useQ(x,y) to refer toqnbdA(x,y), andQ′(x,y) to
refer to qnbdA′(x,y). The population of anyqnbd is r(r +1),
and sinced = 4r2 +4r = 4r(r +1), the qnbd population = d

4.
We now state and prove the following result which is crucial
to proving our sufficient condition for reliable broadcast:

Theorem 2:If p < 1
2, andd(n, p) = 4r(n, p)(r(n, p)+1) ≥

Region x-extent y-extent
qnbdA(a,b) a≤ x≤ (a+ r) (b− r) ≤ y≤ (b−1)
qnbdB(a,b) (a− r) ≤ x≤ (a−1) (b− r) ≤ y≤ b
qnbdC(a,b) (a− r) ≤ x≤ a (b+1) ≤ y≤ (b+ r)
qnbdD(a,b) (a+1) ≤ x≤ (a+ r) b≤ y≤ (b+ r)
qnbdA′ (a,b) (a+1) ≤ x≤ (a+ r) (b− r) ≤ y≤ b
qnbdB′ (a,b) (a− r) ≤ x≤ a (b− r) ≤ y≤ (b−1)
qnbdC′ (a,b) (a− r) ≤ x≤ (a−1) b≤ y≤ (b+ r)
qnbdD′ (a,b) a≤ x≤ (a+ r) (b+1) ≤ y≤ (b+ r)

TABLE I

SPATIAL EXTENTS OFQUARTER NEIGHBORHOODS

max{dmin,16 lnn
ln 1

2p+ln 1
2(1−p)

} = max{dmin,8 lnn
D(Q1

2
||P))}, then

lim
n→∞

Pr[ ∀(x,y) f aults(Q(x,y)) <
d
8

and f aults(Q′(x,y)) <
d
8
] → 1

Proof: As shown above, the population of anyqnbd
is d

4 . Each node may fail independently with probabilityp.
Let Y(x,y) be a random variable denoting the number of faulty
nodes inQ(x,y). Then E[Y(x,y)] = pd

4 . Using δ = 1
2p −1, we

may then apply the relative entropy form of the Chernoff
bound (Lemma 3) toY(x,y) = ∑

j∈Q(x,y)
I j , whereI j is an indicator

variable that takes value 1 if nodej is faulty. Note that
d ≥ max{dmin,16 lnn

ln 1
2p+ln 1

2(1−p)

} ≥ 16 lnn
ln 1

2p+ln 1
2(1−p)

.

Thus, we obtain:

Pr[Y(x,y) ≥
d
8
] ≤ e

− d
4 ( 1

2 ln 1
2p+ 1

2 ln 1
2(1−p)

)
(9)

≤ e
−( 16 lnn

4(ln 1
2p+ln 1

2(1−p)
)
)( 1

2 ln 1
2p+ 1

2 ln 1
2(1−p)

)

= e−2 lnn =
1
n2 (10)

Similarly, settingY′
(x,y) be a random variable denoting the

number of faulty nodes inQ′(x,y), we obtain that:

Pr[Y′
(x,y) ≥

d
8
] ≤ 1

n2 (11)

By application of union bound over all 2n distinct quarter-
neighborhoods:

∴ lim
n→∞

Pr[∀(x,y),Y(x,y) <
d
8

andY′(x,y) <
d
8
] (12)

≥ 1−2n

(

1
n2

)

= 1− 2
n
→ 1 (13)

We now consider a simple broadcast protocol that is fairly
similar to the protocol described in [3] for the locally-bounded
adversarial model:

• Initially, the sources does a local broadcast of the
message.

• Each neighbori of the source immediately commits to the
thefirst valuev it heard from the source, and then locally
broadcasts it once in aCOMMIT TED(i,v) message.
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qnbdC(a, b) qnbdD(a, b)

Fig. 1. Depiction ofqnbdA, qnbdB, qnbdC, qnbdD
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x=a

y=b

y=b−r

y=b+r

(a, b)

x=a−r−1 x=a+r+1

x=a−1 x=a+1

y=b+1
y=b−1

qnbdC′

qnbdA′qnbdB′

qnbdD′

Fig. 2. Depiction ofqnbdA′ , qnbdB′ , qnbdC′ , qnbdD′

• Hereafter, the following protocol is followed by all nodes
j /∈ nbd(s):
If 1

2r(r +1)+1= d
8 +1 COMMIT TED(i,v) messages are

received for a certain valuev, from neighborsi all lying
within a singleqnbd, commit tov, and locally broadcast
a COMMIT TED( j,v) message.

Theorem 3: (Probabilistic Correctness)The probability
that a node shall commit to a wrong value by following the
above protocol diminishes to 0 asymptotically.

Proof: If all Q(x,y)(Q′(x,y)) have strictly less thand8
faults, the correctness of the protocol proceeds as follows:

By thereliable local broadcastassumption, fault-free nodes
in nbd(s) are guaranteed to be able to commit to the correct
value. The proof for the remaining nodes is by contradiction.
Consider the first fault-free node, sayj, that makes a wrong
decision to commit to a valuev. This implies thatd

8 + 1 of
its neighbors within someqnbd broadcast aCOMMIT TED
message forv (the COMMIT TED messages were directly
heard, leaving no place for doubt). All of these nodes cannotbe
faulty, as less thand8 nodes in anyqnbdare faulty. Thus there
was at least one fault-free node that committed tov. Since j
is the first fault-free node to make a wrong decision, none of
the fault-free nodes amongst thed

8 +1 nodes could have made
a wrong decision. Thusv must indeed be the correct value.

We know that allqnbd have less thand8 faults with proba-
bility 1 asymptotically, and hence the protocol also functions
correctly with probability 1 asymptotically.

Theorem 4: (Probabilistic Completeness)Each node is
eventually able to commit to the (probabilistically) correct
value.

Proof:
The proof proceeds by induction.
Base Case:

All non-faulty nodes innbd(0,0) are able to commit to the

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

(a, b)

x=a

P

x=a+l

(a−r+l, b+r+1)

x=a−r+l

x=a−r−1 x=a+r+1

y=b+r+1

y=b−r−1

y=b+1
y=b

Fig. 3. Node at P has aqnbd in nbd(a,b)

correct value. This follows trivially since they hear the origin
directly, and we assume that address-spoofing is impossible.

Inductive Hypothesis:
If all non-faulty neighbors of a node located at(a,b) i.e.
all non-faulty nodes innbd(a,b) are able to commit to the
correct value, then all non-faulty nodes inpnbd(a,b) are able
to commit to the correct value.

Proof of Inductive Hypothesis:
We show that each nodeP in pnbd(a,b)− nbd(a,b) has
one ofqnbdA(P), qnbdB(P), qnbdC(P), qnbdD(P), qnbdA′(P),
qnbdB′(P), qnbdC′(P), qnbdD′(P) fully contained innbd(a,b).
Since less thand8 of the nodes in aqnbdare faulty with prob-
ability 1 (asymptotically), this guarantees that the node will
become aware ofd8 +1 nodes innbd(a,b) having committed to
a (the correct) value, and will also commit to it. The situation
is depicted in Fig. 3 forP∈ {(a− r + l ,b+ r +1)|1≤ l ≤ r},
for which qnbdA(P) lies in nbd(a,b). For all other locations,
a similar argument holds.

B. Necessary Conditions for Reliable Broadcast

Theorem 5:If a node not innbd(s) has at least half faulty
neighbors, it can be made to commit to an erroneous value



Fig. 4. Division of network into disjoint neighborhoods

with probability at least12.

Proof: Assume that the message is drawn from{0,1}. A
node which is not an immediate neighbor of the source must
rely on messages received from its neighbors.

First, consider any function that takes as argument messages
received from all neighbors and outputs one of 0 or 1. Then
corresponding to each fault configurationC1 with t ≥ d

2 in
nbd(u), there is another configurationC2 with t faults, such
that all non-faulty nodes inC1 are faulty in C2, while the
non-faulty nodes inC2 were all faulty inC1. Then, the faulty
nodes can modulate their message-sending behavior so thatu
is unable to distinguish between the case where the correct
broadcast value was 0 and configuration wasC1 and the case
when the correct value was 1 and the configuration wasC2

(recall that once failure has happened, the faulty nodes can
exhibit worst-case behavior). Thus, there are two equally likely
possibilities for a given set of received messages, andu cannot
expect to choose the correct one with a probability greater than
half. If the message can have more than two possible values,
it cannot increase the probability of correct choice.

For a more detailed proof, please see [15].
Theorem 6:When failure probabilityp satisfies:1

2 ≤ p ≤
1 − ε, and lim

n→∞
n
d → ∞ (this happens whend = o(n)),

lim
n→∞

Pr[ reliable broadcast fails] → 1.

Proof: Note that in this case,ε can be an arbitrarily small
constant, but must be independent ofn. Consider a particular
node j in the network. Then, ifj is non-faulty, but more than
half of its neighbors are faulty, reliable broadcast fails with
probability at least half. Given that there ared neighbors, and
each may fail independently with probabilityp, let Yj denote
the number of failed neighbors ofj. Then,Yj takes values from
0,1, ...,d, andE[Yj ] ≥ d

2 . Thus⌊E[Y]⌋ ≥ ⌊d
2⌋ = d

2 (sinced =

4r2+4r is always even). Thus,Pr[Y ≥ d
2 ]≥ Pr[Y ≥ ⌊E[Y]⌋]≥

1
2 (from Lemma 1). Let us call this probabilityq. When p≤
1− ε, we have 1− p≥ ε > 0. Thus:

Pr[ j alive; has half+ faulty neighbors] ≥ (1− p)q≥ ε
2

> 0

Let us mark out a subset of nodesj such that the neigh-
borhoods of these nodes are all disjoint, as in Fig. 4. Then
the number of such nodes that we may obtain is at least
(⌊ ⌊

√
n⌋

2r+1⌋)2 (whered = 4r2 +4r), which for largen is at least
n
2d . Let I j be an indicator variable that takes value 1 ifj is

non-faulty but has at least half faulty neighbors, and commits
to the wrong value. ThenPr[I j = 1] ≥ 1

2( ε
2) = ε

4 > 0, and all
I j ’s are independent. Note thatn

d → ∞. Let X be a random
variable indicating the number of non-faulty nodes with at
least half faulty neighbors that resultantly commit to the wrong
value. ThenE[X] = ∑ j Pr[I j = 1]≥ ε

4( n
2d )→ ∞ (sinceε > 0 is

a constant independent ofn). Thus from the Chernoff Bound
in Lemma 2, for any 0< β < 1 (e.g., setβ = 1

2):

Pr[X ≤ (1−β)E[X]]≤ e−
β2E[X]

2 (0 < β < 1)

lim
n→∞

Pr[X > (1−β)E[X]]≥ lim
n→∞

1−e−
β2E[X]

2 = 1

(∵ E[X] → ∞)

Thus, asn→ ∞, the number of non-faulty nodes isolated by
half or more faulty neighbors, and which commit to the wrong
value, will also tend to infinity with probability 1.

Theorem 7:In a grid network, when 0≤ p ≤ 1
2 − ε

(ε > 0), and node degreed(n, p) = 4r(n, p)(r(n, p) + 1) <
max{dmin,c lnn

ln 1
2p+ln 1

2(1−p)

} (for suitable constantc< 1), reliable

broadcast asymptotically fails with probability 1.2

Proof: It is immediately obvious thatr(n, p) must be at
least 1 (i.e.d must at least bedmin), else nodes will have no
neighbors. We therefore focus on the cased ≥ dmin = 8, and
consider thec lnn

ln 1
2p+ln 1

2(1−p)

term. Suppose failure probability

p≤ 1
2 −ε, whereε is an arbitrarily small constant independent

of n. Take f (n) = (lnn)2, and n to be large enough so that
ln 1

2p + ln 1
2(1−p) ≥

1
lnn. Choose a suitableconstant0 < c < 1

such thatc2 lnn≤ lnn−3lnlnn−2ln f (n), i.e., c
2 lnn≤ lnn−

7lnlnn, for sufficiently largen (e.g. c = 0.9 would work).
Setting d < c lnn

ln 1
2p+ln 1

2(1−p)

, for this choice ofc, and large

enoughn, we obtaind < c(lnn)2 < (lnn)2.
Consider a particular nodej in the network. Then, if j

is non-faulty, but more than half of its neighbors are faulty,
reliable broadcast fails with probability at least half (asj
commits to an erroneous value with probability at least1

2,
from Theorem 5). Given that there ared neighbors, and each
may fail independently with probabilityp, let I jk(1≤ k ≤ d)
denote the indicator variable corresponding to neighbork of
j (enumerated in some order), such thatI jk = 1 if k is faulty,
and 0 otherwise. ThenYj = ∑ I jk denotes the number of failed
neighbors ofj. Y takes values from 0,1, ...,d, andE[Y] = pd.

Pr[Yj ≥ d
2 ] =

d
∑

i= d
2

(d
i

)

pi(1− p)(d−i). Let us simply consider the

eventYj =
d
2 . Then we can apply the lower bound from Lemma

4. The variablesI jk(1 ≤ k ≤ d) are drawn fromχ = {0,1}
as per distributionP = Bernoulli(p), and the distributionQ
corresponding toYj = d

2 is Bernoulli(1
2) (we shall refer to

this asQ1
2
).

2We have a new result extending this theorem to a larger range of p values.
For specific details, please see [15].



|χ| = 2, and 1
(d+1)|χ|

= 1
(d+1)2 > 1

3
2d2 =

2
3e−2 lnd (sinced ≥ 8). Thus, we obtain:

q = Pr[Yj ≥
d
2
] ≥ Pr[Yj =

d
2
] ≥ 1

(d+1)|χ|
e
−d(D(Q1

2
||P))

=
1

(d+1)2e
−d(D(Q1

2
||P))

=
2
3

e
−d(D(Q1

2
||P))−2 lnd

>
2
3

e
−(c lnn

ln 1
2p ln 1

2(1−p)

)( 1
2 ln 1

2p+ 1
2 ln 1

2(1−p)
)−4 lnlnn

(sincen large enough to ensure ln
1

2p
+ ln

1
2(1− p)

≥ 1
lnn

, andc < 1, leading tod < c(lnn)2 < (lnn)2 )

=
2
3

e−
c
2 lnn−4 lnlnn ≥ 2(lnn)3

3n
from our choice ofc

(14)

Pr[ j alive; at least halfnbd( j) faulty ] ≥ (1− p)q

>
1
2

2(lnn)3

3n
=

(lnn)3

3n

(15)

Let us mark out a subset of nodesj such that the neigh-
borhoods of these nodes are all disjoint, as in Fig. 4. Then, as
noted earlier, the number of such nodes that we may obtain

is k ≥
(

⌊ ⌊
√

n⌋
2r+1⌋

)2
≥ n

2d for large n. Let I j be an indicator
variable that takes value 1 ifj is non-faulty but has at least
half faulty neighbors. ThenPr[I j = 1]≥ (lnn)3

3n , and allI j ’s are
independent. We have chosenn large enough to ensure that
ln 1

2p + ln 1
2(1−p) ≥

1
lnn, i.e. d ≤ c(lnn)2. Let I ′j be an indicator

variable that takes value 1 ifj is non-faulty but commits to a
wrong value. From Theorem 5, we know that if a non-faulty
node has half or more faulty neighbors, it will commit to the
wrong value with probability at least12. Thus Pr[I ′j = 1] ≥
1
2Pr[I j = 1] ≥ (lnn)3

6n . Let X be a random variable indicating
the number of non-faulty nodes with half or more faulty
neighbors that commit to the wrong value. ThenX = ∑ I ′j ,

and E[X] = ∑Pr[I ′j = 1] ≥ (lnn)3

6n

(

n
2d

)

= (lnn)3

12d > lnn
12 → ∞ (as

d < (lnn)2). Thus we can choose any constant 0< β < 1 (e.g.,
setβ = 1

2) and apply the Chernoff bound in Lemma 2 to obtain:

lim
n→∞

Pr[X > (1−β)E[X]]≥ lim
n→∞

1−e−
β2E[X]

2 = 1 ∵ E[X] → ∞
(16)

Thus, asn→ ∞, the probability that some non-faulty node(s)
fail to commit to the correct value tends towards 1:

lim
n→∞

Pr[ reliable broadcast fails] → 1

VII. SUFFICIENT CONDITION FOR RANDOM NETWORKS

We obtain a sufficient condition for a network ofn nodes
deployed uniformly at random, based on the sufficient con-
dition for the grid network model. To maintain consistency
with the grid network formulation, we assume a toroidal
region of area

√
n x

√
n, with n nodes located uniformly

at random. The average degree of a node is the average
number of the remainingn− 1 nodes that fall within its
neighborhood (recall we are usingL∞ distance metric), i.e.,
davg(n, p) =

(n−1)(2r(n,p))2

n ≈ 4r2(n, p) for largen.

Theorem 8:When failure probabilityp < 1
2, and r(n, p) ≥

√

100 lnn
1
2−p+ 1

2 ln 1
2(1−p)

, reliable broadcast is asymptotically achiev-

able in the random network model with high probability.

Proof: At the outset, we make the observation that if
r(n, p) =

√
n, all nodes are neighbors, and trivially broadcast

is achievable. Thus this result is of interest only so long as
r(n, p) <

√
n.

In light of Fact 1:

D(Q1
2
||p) =

1
2

ln
1

2p
+

1
2

ln
1

2(1− p)

≥ 1
2
(1−2p)+

1
2

ln
1

2(1− p)
=

1
2
− p+

1
2

ln
1

2(1− p)

(17)

Also, since 0≤ p < 1
2:

0 <
1
2
− p+

1
2

ln
1

2(1− p)
≤ 1

2
(1− ln2) <

1
2

(18)

Similar to grid networks, we use a notion of quarter-
neighborhoods. For a given broadcast instance, we again use
relative coordinates by treating the source’s coordinatesas
(0,0). With some abuse of the grid network notation intro-
duced in Section III, we can extend the notion ofnbd(x,y), to
include all nodes within distancer of point (x,y) (regardless of
whether or not there is a node at(x,y)), wherex andy are real
numbers. The notion ofpnd(x,y) is also similarly extended to
imply nbd(x−1,y)∪nbd(x+1,y)∪nbd(x,y−1)∪nbd(x,y+
1) for all points (x,y).

Note again that in this model, a node’s (or point’s) coor-
dinates are real numbers. We thus associate eight quarter-
neighborhoods with eachnode, with spatial extents as in
Table I, except that nowx and y must be treated as real
numbers. Also, now it is not possible to assert that there are
only 2n distinct quarter-neighborhoods. Thus, all eight quarter-
neighborhoods of a node must be treated as distinct3, yielding
8n quarter-neighborhoods in all.

The quarter-neigborhoods are axis-parallel rectangles of
area r(n, p)(r(n, p) − 1) ≥ r2(n,p)

2 (for r(n, p) ≥ 2). Then,
if 4r2(n, p) ≥ 400 lnn

1
2−p+ 1

2 ln 1
2(1−p)

, then we can apply Lemma 6

for all axis-parallel rectangles of arear(n, p)(r(n, p)− 1) ≥
50 lnn

1
2−p+ 1

2 ln 1
2(1−p)

≥ 100 lnn
1−ln2 , to obtain that they all have at least

50 lnn
1
2−p+ 1

2 ln 1
2(1−p)

−50lnn > 25 lnn
1
2−p+ 1

2 ln 1
2(1−p)

> 50 lnn
1−ln2 nodes, with

probability at least 1− 50 lnn
n → 1.

Thus all such rectangles arenon-empty. Also:

25 lnn
1
2 − p+ 1

2 ln 1
2(1−p)

≥ 25lnn
D(Q1

2
||p)

>
8lnn

D(Q1
2
||p)

(19)

3Note that distinct does not mean disjoint.
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Hence all the quarter-neighborhoods have at least8 lnn
D(Q1

2
||p)

nodes (which is the quarter-neighborhood population in the
grid network case). Then using a proof argument similar to
Theorem 2, one can prove the following theorem:

Theorem 9:If p < 1
2, andr(n, p) ≥

√

100 lnn
1
2−p+ 1

2 ln 1
2(1−p)

, then

lim
n→∞

Pr[ all 8n qnbdshave non-faulty majority] → 1

Thus, one can use a broadcast protocol similar to that for
grid networks (a node commits to a value if it is received
from half or more nodes in some quarter-neighborhood), and,
for all broadcast sources, and instances, the correctness and
completeness continue to hold, as follows:
Correctness: Relying on Theorem 9, we can apply a proof
argument similar to Theorem 3.
Completeness: The proof uses the an inductive argument
similar to the proof of Theorem 4, except that the terms
nbd(x,y), pnd(x,y) and quarter-neighborhood must be inter-
preted as per their re-definition in this section. In the base
case, all neighbors of the source (which is at(0,0)) commit to
the correct value trivially. In the inductive step, one can show
that if all nodes innbd(x,y) (as per extended notation) have
comitted to the correct value, all nodes inpnd(x,y)−nbd(x,y)
have someqnbd contained innbd(x,y), and can thus commit
to the value received from a majority of nodes in thisqnbd.

Since the area within range of a node is(2r)2 = 4r2 (for the
valid domain ofr values) in theL∞ metric, the result indicates
that an average node degreedavg of 400 lnn

1
2−p+ 1

2 ln 1
2(1−p)

suffices

for reliable broadcast. Hence thecritical average node degree
davg

critical is O( lnn
1
2−p+ 1

2 ln 1
2(1−p)

). 4

VIII. C ONDITIONS IN EUCLIDEAN METRIC

Our results derived forL∞ metric continue to hold forL2

metric, with only the constants in the asymptotic notation
changing. A similar argument was used in [3].

Lemma 7: If reliable broadcast is achievable inL∞ for all
r ≥ rmin, then it is achievable inL2 for all r ≥ rmin

√
2.

Proof: The proof is by contradiction. Suppose that, for a
given failure configuration, broadcast is achievable inL∞ for
all r ≥ rmin but is not achievable for allr ≥ rmin

√
2 in L2.

Observe that it is possible to circumscribe aL∞ neighborhood

4A more intuitive way of viewing the result is thatcritical degree is
O(max{lnn, lnn

D(Q 1
2
||P)

}).

of ranger by aL2 neighborhood of ranger
√

2 (Fig. 5). Hence
the non-faulty nodes in anL2 network of transmission range
r
√

2 can be made to simulate the operation of nodes in a
L∞ network with ranger (as theL∞ neighborhood is fully
contained within theL2 neighborhood). Also, given that this
is a network of known topology, with no address spoofing
allowed, the faulty nodes cannot gain any unfair advantage
by not simulating the theL∞ network. This implies that if
broadcast is achievable in theL∞ network of ranger , so
must it be in theL2 network of ranger

√
2. If there is some

r ≥ rmin for which we can achieve broadcast in theL∞ network
asymptotically, but not in the theL2 network of ranger

√
2,

we obtain a contradiction, as achievability in theL∞ network
would imply achievability in theL2 network.

Lemma 8: If reliable broadcast fails inL∞ for all r ≤ rmin,
then it fails inL2 for all r ≤ rmin.

Proof: The proof is by contradiction. Suppose there is a
failure configuration in which broadcast fails inL∞ for range
r, but does not fail inL2 for range r. Observe that anL∞
neighborhood of transmission ranger circumscribes anL2

neighborhood of ranger (Fig. 5). Thus, for any given failure
configuration, if broadcast succeeds in the theL2 network
of range r, so can it in theL∞ network of radiusr, as we
could simply make the fault-free nodes in theL∞ network
simulate the behavior of nodes in theL2 network. This yields
a contradiction.

IX. N ON-TOROIDAL NETWORKS

We used the assumption that the network is toroidal to
avoid edge effects. However, our Byzantine failure results
continue to hold even if the network were spread over a non-
toroidal rectilinear domain. The necessary conditions continue
to hold since the degree of nodes at the edges can be no
more more than the degree of nodes towards the center; if
reliable broadcast is impossible even with the assumption of
equal degree for all nodes, it must certainly be impossible
when some nodes (those at the edges) have a smaller degree.
The sufficient condition for Byzantine failures continues to
hold since the described protocol relies on information from
quarter-neighborhoods, and it can be seen that even the nodes
at the edges have at least one quarter-neighborhood within the
network region.

X. CRASH-STOP FAILURES

As mentioned in Section IV, broadcast in presence of
crash-stop failures is equivalent to connectivity under failure.
We have also derived results for crash-stop failures in a
grid network. These are closely related to the results of [1],
discussed in Section IV. However, we prove that, given a
failure probability p, the critical degree isΘ(dmin+ lnn

ln 1
p
) for

connectivity (please see [15] for details). Our results aremore
accurate than those of [1] whenp → 0, and our necessary
condition holds in a certain subdomain where that of [1]
does not. To illustrate, whenp = 0, their condition yields



a degree of the order of logn while our condition yields a
degreedmin, which is accurate, since in absence of failure, the
minimum transmission range for a non-empty neighborhood
suffices. However, both our necessary conditions and those
of [1] will fail to apply when p becomes very close to 1.
Besides, the necessary condition derived in [1] was actually a
necessary condition for coverage, and hence a joint condition
for connectivity and coverage. Also relevant to the connectivity
issue is analysis presented in [16] regarding the feasible rate
in a sensor network, which may potentially be adapted to yield
similar connectivity results.

XI. D ISCUSSION

An interesting observation is that the form of the results
for Byzantine failures is very similar to the results for crash-
stop failures/connectivity. For Byzantine failures, we have
obtained that the critical node degree for grid networks is
Θ(dmin+ lnn

ln 1
2p+ln 1

2(1−p)

), which may be re-stated asΘ(dmin+

lnn
D(Q1

2
||P)

) whereQ1
2

denotes theBernoulli(1
2) distribution,P

denotes theBernoulli(p) distribution, andD(Q||P) denotes
the relative entropy(or Kullback-Leibler distance) between
distributionsQ andP. Similarly, the node degree for crash-stop
failures/connectivity isΘ(dmin+

lnn
ln 1

p
), and may be viewed as as

Θ(dmin+ lnn
lim
q→1

D(Q||P) ), whereQ is theBernoulli(q) distribution,

andP is theBernoulli(p) distribution.
Recall that we derive the necessary condition from isolated

failure events, and this is found to match the sufficient con-
dition within a constant factor. Thus, possibly failure events
involving isolated nodes not receiving correct broadcast may
be the dominant failure events5. Focusing on these isolated
failure events, the obtained expressions for node degree can
be explained in the light of Sanov’s Theorem [14]. As per
Sanov’s Theorem, the probability of occurrence of the event-
set E = { half or more neighbors faulty} is dominated by
the probability of the event inE closest in relative en-
tropy to the governing fault distributionP. Since we are
considering the regimep < 1

2, the closest event is that of
exactly half the neighbors faulty, corresponding toQ1

2
. In

light of this, the critical degree expression for Byzantine
failures is quite intuitive. One can similarly explain the crash-
stop results.

The necessary and sufficient condition for connectivity
in a sensor network where nodes sleep with probability
p was shown in [11] to beΘ( ln (n(1−p))

1−p ) (when expressed
in our notation) for the case of a randomly deployed net-
work. This problem is equivalent to that of crash-stop fail-
ures in random networks. Our sufficient condition for ran-
dom networks with Byzantine failure probabilityp < 1

2 is
O( lnn

1
2−p+ 1

2 ln 1
2(1−p)

). There is a similarity of form in the two

results, and one may interpret the critical node degree as
being O(max{lnn(1− p), lnn(1−p)

D(Q||P)
}) where q = 1 for the

5Note that in [17], it was found that the primary disconnection events in
non-faulty randomnetworks are those involving single isolated nodes.

sleeping/crash-stop case in [11], andq = 1
2 for the Byzantine

failure case.
Also note that both our grid network and random network

results (for Byzantine failure) have similar structural form,
involving a minimum term required for connectivity without
disruptive (Byzantine) behavior, and a second term required
to ensure broadcast even in presence of failure.

XII. CONCLUSIONS

We considered the problem of reliable broadcast in wireless
networks with permanent probabilistic failures, and obtained
tight bounds for asymptotic achievability of broadcast in a
grid deployment. We also presented a sufficient condition for
Byzantine failures in a random network. In recent work, we
have also obtained a necessary condition for random networks.
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