
IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 2, JUNE 2003 245

Reliable Broadcasting in Wormhole-Routed
Hypercube-Connected Networks
Using Local Safety Information

Dong Xiang, Member, IEEE, Ai Chen, and Jie Wu, Senior Member, IEEE

Abstract—This paper presents a method to cope with reliable
broadcasting in faulty hypercubes using local safety information.
A new definition, broadcast subcube, is introduced, with which
various techniques are proposed to improve performance of the
broadcast algorithm. Local safety information is well used in the
fault-tolerant broadcast algorithm by considering only safety of
the broadcast subcube. An unsafe hypercube can be split into a
set of maximal safe subcubes. If these maximal safe subcubes meet
certain requirements (listed in this paper), then broadcasting can
still be done successfully and, in some cases, optimal broadcast is
still possible. The sufficient condition for optimal broadcast of a
message is presented in an unsafe hypercube. Extensive simula-
tion results show that the proposed method outperforms previous
methods, in all cases.

Index Terms—Broadcast subcube, fault-tolerant broadcasting,
hypercube, local safety, maximal safe subcube.

ACRONYMS1

BSC broadcast SC
MSC maximal safe SC
SC subcube.

NOTATION

the Hamming distance between nodesand
Pr , of the faults, fall into an -dimensional SC

SC spanning SC: the smallest SC that contains both
and
the neighbor of along dimensionin the hypercube
a don’t-care (can be assigned both 0 and 1).

I. INTRODUCTION

Definition

Broadcasting: The process of transmitting data from a node
(called the source) to all other nodes, once and only once.

The hypercube architecture can handle a reasonable amount
of message traffic, and also provide some degree of fault-toler-

Manuscript received June 25, 2001; revised December 4, 2001; March 25,
2002. Responsible Editor: W.-T. K. Chien.

D. Xiang is with the School of Software, Tsinghua University, Beijing
100084, PR China (e-mail: DXiang@mail.tsinghua.edu.cn).

A. Chen is with the Institute of Microelectronics, Tsinghua University, Bei-
jing 100084, PR China.

J. Wu is with the Department of Computer Science and Engineering, Florida
Atlantic University, Boca Raton, FL 33431 USA (e-mail: Jie@cse.fau.edu).

Digital Object Identifier 10.1109/TR.2003.810071

1The singular and plural of an acronym are always spelled the same.

ance. Several commercial or research hypercube systems have
been constructed in the past 2 decades [9], [14]. For example,
the recently built SGI Origin 2000 multiprocessor machine of
SGI [9] uses hypercube interconnection structure. References
[5] and [10] present experimental studies and show that hyper-
cubes are quite suitable for distributed shared memory systems
and multi-computers. When some nodes or links fail, communi-
cation between fault-free nodes should still continue. Fault-tol-
erant communication [2]–[4], [8], [11]–[13], [15]–[19] has been
studied extensively.

Efficient broadcasting of data is one of the keys to the perfor-
mance of a multi-computer. Data broadcasting in fault-free net-
works is studied intensively in [6], [7]. One-to-all fault-tolerant
broadcasting passes a message from a source to all fault-free
nodes in a faulty hypercube [8], [12], [13], [15]–[17]. Reference
[13] introduces a reliable broadcast scheme, in which each node
can receive more than 1 copy of the broadcast data. This method
is particularly suitable for critical applications. A free dimen-
sion is defined as a dimension across which both end-nodes
are fault-free [12]. Free dimensions can be used to partition an

-cube into SC such that each SC contains at most 1 faulty
node. Such partitioning helps in designing efficient fault-tol-
erant communication algorithms. Reference [11] presents an
all-to-all broadcast algorithm for hypercube with up to link
failures in a binary -cube, and presents a new concept, free di-
mension, corresponding to link failures.

Several limited-global-fault-information-based methods are
introduced to deal with fault-tolerant communication in hy-
percubes [2], [3], [8], [15]–[19]. Reference [8] proposes a
fault-tolerant broadcast algorithm based on the safe-node con-
cept. Priority-order is determined based on status of neighbors
of the node under process to send the broadcast label and the
message in order to avoid communication difficulties. Ref-
erences [2], [15] refine the safe-node concept. Like [8], a
message can be broadcast reliably only if the binary-cube
is safe, although reliable message-passing is still possible in
an unsafe hypercube in many cases. Reference [16] proposes
a mechanism, safety level, to assist an efficient fault-tolerant
broadcast. Priority-order to forward the broadcast data is de-
termined by the safety-level numbers. Directed safety level [3]
improves performance of the algorithm in [16].

Much further resilience of hypercube topology has not been
used by the above methods. Reference [18], [19] present local
safety to handle fault-tolerant multi-casting and routing in
hypercubes. Local safety is proposed to cope with fault-tol-

0018-9529/03$17.00 © 2003 IEEE

246 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 2, JUNE 2003

erant broadcasting for hypercube multi-computers, which is
completely different from the techniques in [18], [19]. The
definition of local safety is the same as in [18], [19]. An unsafe
hypercube can be split into a unique set of maximal safe SC.
Message-passing inside a maximal safe SC can be completed
reliably. Several techniques are proposed to improve perfor-
mance of the broadcast algorithm. Optimal broadcasting is still
possible in many cases even though the hypercube is unsafe.
The sufficient condition for optimal broadcast of a message is
presented in an unsafe hypercube.

Section II provides definitions. Section III proposes a scheme
to calculate local safety information to assist fault-tolerant com-
munication, and presents properties of local safety information.
Section IV presents techniques for improving performance of
the fault-tolerant broadcasting algorithm. Section V presents a
fault-tolerant broadcast algorithm according to local safety in-
formation. Section VI extends the method to the mixed fault
model. Section VII presents extensive simulation results.

II. PRELIMINARIES

A binary -cube (or simply -cube) has nodes (or
processors). Each node can be represented by a sequence of
binary bits , where . An SC
of a hypercube can be represented by a sequence ofbits

, where . Two nodes are
connected by a bidirectional link if and only if the binary rep-
resentations of the two nodes differ in exactly 1 bit. This paper
considers only message-passing between fault-free nodes.

A path is feasible if there is no faulty node or link in the
path.

A path is minimum if the length of the path equals the
Hamming distance from the source to the destination.

This paper first considers only node faults; then it is extended
to cases where the system contains both node and link faults.

Definition 1 [2], [15]: A fault-free node in an -cube is un-
safe if it has at least 2 faulty neighbors, or 3 unsafe or faulty
neighbors. An unsafe-node is ordinarily unsafe if it has at least
1 safe neighbor; otherwise, it is strongly unsafe. A faulty hyper-
cube is unsafe if it contains no safe-node; otherwise, it is a safe
cube.

A broadcasting based on incomplete spanning binomial tree
[15]–[17] is the following: when a node receives a broadcast
label (which is initialized to all 1’s), it resets a 1-bit in the broad-
cast label (say at dimension) and sends the updated broadcast
label to its fault-free neighbor along dimension. This process is
repeated until all 1-bits in the original broadcast label are reset.

Definition 2: The BSC of a node is an SC to which this node
should broadcast the message.

The BSC at can be derived by replacing certain bits of’s
address by don’t-cares. These bits correspond to 1-bits in the
broadcast label. For example, let node 10100 in a 5-cube re-
ceive a broadcast label [11 010]. The BSC of node 10 100 is then
**1*0.

III. L OCAL SAFETY

Any -cube is safe if the number of faulty nodes is no more
than . It is quite possible for an -cube to be unsafe when it

Fig. 1. Local safety for fault-tolerant broadcasting.

contains at least faulty nodes [2], [15]. Reliable broadcasting
inside an unsafe-cube is impossible according to the safe-node
concept [2], [8], [15]. The safety level [16] and directed safety
level [3] consider safety in the-distance neighborhood.

The definition of local safety is completely different from
the refined safe-node concept presented in Definition 1. Local
safety considers safety in a specific SC where the message of
a node should be distributed, but the refined safe-node con-
cept [2], [15] considers safety in the whole hypercube. Local
safety has been used to guide fault-tolerant multi-casting [18]
and routing [19]. However, techniques adopted in this paper are
completely different from those in [18], [19]. The safety level in
[16] and directed safety level in [3] consider safety in the-dis-
tance neighborhood. A scheme to calculate local safety infor-
mation is presented. And several properties of local safety are
introduced.

A. Definition of Local Safety

Definition 3: A node in an -cube is locally unsafe inside an
SC if it has at least 2 faulty neighbors, or at least 3 locally unsafe
or faulty neighbors inside the SC; otherwise, it is locally safe
in the SC. The SC is unsafe if it contains no locally safe-node;
otherwise, it is a safe SC. Locally unsafe-nodes inside an SC are
classified as: A locally unsafe-node is locally ordinarily unsafe
if it has at least 1 locally safe neighbor in the SC; otherwise, it
is a locally strongly unsafe-node.

An SC can still be safe even though all nodes outside of it
are faulty. Fig. 1 presents an unsafe 5-cube with 9 faulty nodes.
Node 00 000 is locally safe in SC ****0, ***0*, and **0**. One
node can have different local safety parameters in different SC.

Definition 4: An -dimensional SC is a maximal safe SC if
it is safe, and any-dimensional () SC that contains
it is unsafe.

XIANG et al.: RELIABLE BROADCASTING IN WORMHOLE-ROUTED HYPERCUBE-CONNECTED NETWORKS USING LOCAL SAFETY INFORMATION 247

The faulty 5-cube in Fig. 1 contains 7 4-dimensional maximal
safe SC:

1****, *0***, **0**, **1**, ***0*, ***1*, ****0.
Fig. 1 shows that each fault-free node keeps the maximal safe
SC that contain it. Labels of the MSC correspond to their se-
quence. Each node keeps local safety information of itself and
its fault-free neighbors. A scheme to calculate local safety in-
formation is introduced first, and then properties of local safety
are presented.

B. Calculation of Local Safety Information

This scheme is used to obtain local safety information for
all nodes concurrently if the-cube is unsafe. For each node

(binary representation), check local safety
of the node in , , , ,

concurrently. If the node has at least 2 faulty neigh-
bors or at least 3 locally unsafe or faulty neighbors inside an
SC, then the node is locally unsafe in the SC. The node stores
local safety information of its neighbors and itself if the SC has
been found to be safe. When an -dimensional SC that
contains the node is found unsafe, local safety of all
SC that contains the node should be checked, and so on. This
system does not consider local safety of SC that are contained
in a maximal safe SC. This process continues until local safety
of all maximal safe SC with sizes greater than the given limit
has been obtained. More details on calculation of local safety
information are in [17]–[19]. The faulty 5-cube in Fig. 1 con-
tains 7 4-dimensional maximal safe SC: 1****(1), *0***(2),
0(3), **1**(4), ***0*(5), ***1*(6), ****0(7); the num-
bers in the parentheses represent the corresponding labels of all
maximal safe SC. Fig. 1 shows that each fault-free node keeps
the maximal safe SC that contain it. Each node keeps local safety
information of itself and its fault-free neighbors. The following
lists present local safety information of 00 000 and its fault-free
neighbors.

Each item, , represents local safety information of the
node in the maximal safe SCis . Values of can be

locally safe

locally ordinarily unsafe

locally strongly unsafe

faulty

Each node has a label, as shown in Fig. 1, which indicates the
labels of maximal safe SC that contain the node.

C. Properties of Local Safety

Let faulty nodes be contained in an-dimensional hyper-
cube; the nodes are distributed randomly,ie, each fault-free node

has the same probability to be the next faulty node. Theorem 1
presents a lower bound of the probability for an SC to be safe.

Theorem 1: Let , , and faulty nodes be
distributed randomly inside a faulty-cube. The probability for
an -dimensional SC to be safe is not less thanif the -cube
contains faults,

Property 1: If a node is locally unsafe in a-dimensional
SC, , it is still locally unsafe in an -dimensional ()
SC, , if contains .

Property 2: Let node be locally safe in an -dimensional
SC, ; then it is locally safe in a -dimensional SC, ,
() if contains .

Property 3: Let be locally strongly unsafe in an SC, then
there exists at least 1 locally ordinarily unsafe neighbor ofin
the SC if the SC is safe.

Chiu [2] proved a strongly unsafe-node has at least 1 ordi-
narily unsafe neighbor in a safe hypercube. Property 3 can be
extended easily.

Property 4: There always exists a minimum feasible path
between 2 fault-free nodesand if the SC is safe even
though the hypercube is unsafe.

Property 5: A minimum feasible path between the source
and destination, is available using local safety of the MSC that
contains the SC if one of and is locally safe in MSC
even though the hypercube is unsafe.

There might still exist a feasible path of length no more than
even if SC is unsafe, where SC is

contained in an MSC.
Property 6: A feasible path of length no more than
between the sourceand the destination using local safety

information of an MSC that contains the SC if both and
are locally unsafe in the MSC even if the hypercube and SC

are unsafe.
There might still exist a minimum feasible path between the

source and destination although the conditions in Property 5 are
not met; for simplicity, this is not stated in this paper. Properties
5 and 6 can be extended from [2], detailed proofs of which are
in [17]–[19].

IV. TECHNIQUES FORIMPROVING PERFORMANCE OF

FAULT-TOLERANT BROADCASTING

Broadcasting in a fault-free hypercube can be completed
easily and systematically. The regular structure for broad-
casting in a faulty hypercube can be destroyed. The number of
steps required to broadcast a message depends on the relative
fault-positions and the source node. Most broadcast algorithms
pass messages by attaching a broadcast label [3], [7], [8],
[15]–[17], which indicates the area that the message from the
node should be distributed in. The sourcehas a label with all
bits assigned the value 1. When the message is passed to the
next node along dimension, the bit of the broadcast label

248 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 2, JUNE 2003

Fig. 2. Avoid forwarding message and label to nodes with at least 2 faulty
neighbors in the BSC.

is reset, which is also sent to . The most important thing
is how to determine the priority order to forward the message
from each node in a broadcast algorithm.

Lemma 1: If a node has at least 2 faulty neighbors in the
BSC, the broadcasting message starting from that node cannot
always be sent along the minimum feasible paths.

Proof: It is clear that the distance betweenand the source
is 2, where is connected with both faulty nodes. There exists

no minimum feasible path betweenand because both min-
imum feasible paths are blocked by faulty nodes.

Let each node keep local safety-information of itself and its
neighbors. Consider a message being broadcast with the source
1101 inside the faulty hypercube as shown in Fig. 2(a). Because
node 1000 receives a broadcast label [0101], according to which
its BSC should be 1*0*. The node 1000 has 2 faulty neigh-
bors, 1100 and 1001, in the BSC; therefore, the message from
1000 is unable to reach 1101. The message is unable to be broad-
cast successfully according to algorithms in [8], [15]. Actually,
1101 is unreachable from 1000 using the label-sending scheme.
The following procedure modifies the label-sending broadcast
scheme in order to make the message reach all fault-free nodes
when the BSC of a node is contained in an MSC. The procedure
adopts the following 2 efficient schemes:

Scheme 1. Try to avoid sending the broadcast label and
message to fault-free neighbors which have at least 2 faulty
neighbors in the BSC.

Scheme 2. If the source has at least 2 faulty neighbors in the
BSC, then send the broadcast label to the last fault-free neighbor
along dimension without resetting the bit.

The node receiving the unmodified label does not send the
message back to its predecessor. A fault-free node has knowl-
edge of status of its neighbors. In order to implement scheme
1, it is reasonable for each nodeto keep an matrix
to record its faulty neighbors. if the neighbor of

along dimension is faulty; otherwise, . The

Fig. 3. Fault-tolerant broadcasting using the modified label-sending scheme.

following matrix records the faulty neighbors of node 00 000 in
the 5-cube as given in Fig. 1.

The scheme to avoid sending the message to nodes which have
at least 2 faulty neighbors in the BSC is quite useful. Consider
the broadcast problem with the source 1010 in the faulty hy-
percube in Fig. 2. It is clear that the message should be sent to
0010 with broadcast label [0111] first, because 0010 is safe in
the 4-cube. The message can be passed optimally in its BSC
0***. The message should be sent to 1000 with label [0101] ac-
cording to the safety information of 1010’s neighbors, because
1000 is ordinarily unsafe and 1011 is strongly unsafe [2], [15].
This makes the message not reach 1101 as shown in Fig. 2(a).
The message should be sent to 1011 with label [0110] according
to the first scheme, because 1000 has 2 faulty neighbors in its
BSC, which makes the message reach all nodes along minimum
feasible paths as shown in Fig. 2(b). The reason why this scheme
can reach node 1101 as shown in Fig. 2(b), but the procedure in
[15] cannot, is that an ordinarily unsafe-node in the hypercube
can be locally strongly unsafe in an SC, while a strongly unsafe
node in the hypercube can be locally safe in the SC.

Scheme 2 is important because it makes the message deroute
inside some small SC. The total broadcast steps can still be no
more than the size of the hypercube according to this scheme, al-
though the message is not broadcast optimally. Let a message be
broadcast from 1101 based on techniques in [8], [15] as shown
in Fig. 3(a). The source sends the message with a label [0111] to
0101 because 0101 is safe. The message received by 0101 can be
optimally sent to all fault-free nodes inside its BSC as shown in
Fig. 3(a). The node 1101 then sends the message to 1111 with a

XIANG et al.: RELIABLE BROADCASTING IN WORMHOLE-ROUTED HYPERCUBE-CONNECTED NETWORKS USING LOCAL SAFETY INFORMATION 249

label [0101]. It is clear that the message cannot reach 1000 based
on techniques in [8], [15]. As shown in Fig. 3(b), 1101 sends the
label [0111] to the node 0101, and sends the label [0111] to node
1111 (the last processed fault-free neighbor of 1101) without re-
setting bit #2. The node 1111 does not send the message back
to 1101. Up to now, node 1000 is reachable from the source al-
though the message is not broadcast optimally. The message at
the source 1101 can be broadcast in 4 steps although it is der-
outed inside the 3-dimensional SC 1***. These techniques can
be used to improve performance of a broadcast algorithm when
the BSC is contained in a maximal safe SC.

Procedure: Broadcast1()/* Fault-tolerant broadcasting in a
safe SC MSC */

1. Let be the broadcast source; set the broadcast label of
as . If has no more than 1 faulty neighbors in the

BSC, then 2 5, otherwise 6.
2. For to

a) if label , and node is locally safe, then (b);
b) label , send the message and label via dimension.
3. For to

a) if label and node is locally ordinarily unsafe,
then (b),

b) if the node has at most 1 faulty neighbor inside the
BSC, then (c);

c) label , send the message and label via dimension.
4. For to

a) if label and node is locally strongly unsafe,
then (b),

b) if node has at most 1 faulty neighbor inside the BSC,
then (c);

c) label , send the message and label to nodevia
dimension .

5. For to

a) if label , then (b);
b) label , send the message and label to nodevia

dimension .
6. Do the same steps as ; each time check only whether

the node is the latest unprocessed fault-free neighbor of.
If it is not, send the message and label by resetting label; if
node is the last unprocessed fault-free neighbor of, send
the message and label to node without resetting label .

The node in Procedure broadcast1() is the neighbor of
along dimension. This procedure supports-port broadcasting
in an -cube,ie, a message can be broadcast to its neighbors
concurrently. When has at least 2 faulty neighbors, then send
the message and the broadcast label without resetting labelto
the latest unprocessed fault-free neighbor.

Theorem 2: The procedure broadcast1() can always opti-
mally pass a message if nodeis locally safe in an MSC that
contains the BSC of the node.

Theorem 3: The procedure broadcast1() always broadcasts a
message to all fault-free nodes in its BSC at most once no matter
whether the message can be successfully broadcast or not.

Proof: Each fault-free neighbor of passes the mes-
sage inside its own BSC if it receives a broadcast label with the

bit reset. Let the fault-free neighbor receive the unmodi-
fied label, it will not send the message back tobecause the BSC
of does not contain any feasible path going back to. The
situations for all and are similar. Thus, any visited node
by the procedure broadcast1 will never be revisited.

There still exist some cases where broadcast1() cannot find a
successful broadcast, although there exists an MSC that contains
the BSC. For example, the procedure broadcast1() cannot suc-
cessfully broadcast a message if the BSC of one of the source’s
neighbors gets a disconnected BSC. However, the procedure
broadcast1() can broadcast a message successfully inside its
BSC in most cases if BSC is contained in a maximal safe SC.

V. FAULT-TOLERANT BROADCASTING VIA LOCAL SAFETY

INFORMATION

Assume each fault-free node keeps local safety of its
fault-free neighbors and itself by using the scheme introduced
in Section III. Optimal broadcasting is still possible in many
cases even though the hypercube is unsafe. This section
presents:

the sufficient condition for the existence of an optimal
broadcasting,

a fault-tolerant broadcast algorithm,
the sufficient condition for optimal broadcasting by the

Algorithm.

A. Sufficient Condition for Existence of Optimal Broadcasting

Theorem 4: An optimal broadcast exists from a nodeif
is locally safe in its BSC.

Theorem 4 implies that a message can be broadcast opti-
mally even though the-cube is unsafe. Construct several BSC
starting from the source. Consider the source has at most 1 faulty
neighbor in the -cube. Let , , , be BSC of
the fault-free neighbors, , , , ()
of the source, where ; the sub-
scripts indicate the sizes of the corresponding BSC. Theorem
5 presents the sufficient condition for existence of an optimal
broadcasting inside an unsafe-cube.

Theorem 5: There exists an optimal broadcasting if ,
, , are safe; and , , , are locally

safe in the corresponding BSC, respectively, even though the
-cube is unsafe.

Proof: There exists an optimal broadcasting from in
the BSC because is locally safe in according
to theorem 4. There exists an optimal broadcasting from in
the BSC because is locally safe in , and similar
cases for other BSC. Therefore, there exists an optimal broad-
casting from the sourceeven though the-cube is unsafe.

B. Algorithm

Algorithm broadcast2() broadcasts a message using
local safety information. When the-cube is unsafe,broad-
cast2() tries to find a fault-free neighbor of along
dimension , whose BSC is contained in a maximal safe SC.
The message can be broadcast reliably if the BSC is contained
in a maximal safe SC in many cases.

250 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 2, JUNE 2003

Let size be the size of the maximal safe SCthat contains
the node , in which the local safety information of the node is
safety ;

5 for locally safe,
3 for locally ordinarily unsafe,
2 for locally strongly unsafe,
0 for faulty.

The safety measure is calculated using:

safe size safety

Algorithm broadcast2() /* Broadcasting via
Local Safety Information */
1. If node is the broadcast source, for

to , label ; do 2, 3, 4;
2. If the BSC of is contained in a max-

imal safe SC MSC, then call broadcast1
based on the local safety information

of MSC; otherwise ; if has at
least two faulty neighbors in its BSC,
then 5, otherwise 3, 4.

3. While , do
a. , for to

i. if label and the BSC of is
contained in a maximal safe SC, in which

is locally safe, then ii.
ii. label , send the message

and label to ; call broadcast1();
.

b. , for to
i. if label and the BSC of is

contained in a maximal safe SC, and
has at most 1 faulty neighbor inside the
BSC, then (ii),

ii. label , send the message and
the label to ; call broadcast1();

.
c. , for to

i. if label and the BSC of
is contained in a maximal safe SC, then
(ii),

ii. label , send the message
and label to ; call broadcast1();

.
4. If there still exists at least 1

fault-free neighbor of , which has
not received the message and broadcast
label, for each ()
a. if is fault-free and has the most
safety measure as given in 1) [has
greater priority if it has at most 1
faulty neighbor inside its BSC], then
(b);
b. label ; send the message, label
to via dimension ; , go to
step 3.

5. Do the same steps as 3,4, each time;
but check whether the node is the
last unprocessed fault-free neighbor of
, if it is not, send the message and

label by resetting label ; if is the
last unprocessed fault-free neighbor
of , send the message and label to
without resetting label .

End Algorithm

A flag is adopted to guide whether the broadcast should
be continued or not; it is set at 0 initially. The way to generate
the BSC of in step 3 is: For example, the node
has a broadcast label [11 011], the BSC of 00 101 () should
be 0*1**, while the BSC of 10 100 () is **1*0.

Theorem 6 presents a sufficient condition for optimal broad-
casting inside an unsafe-cube.

Theorem 6: The algorithmbroadcast2() can optimally
broadcast the message of the sourcein steps if has at
most 1 faulty neighbor and a sequence of fault-free neigh-
bors , , , () are locally
safe in a sequence of maximal safe SC which contain the
BSC of the nodes , , , respectively, where

.
Proof: Assume the BSC of , , , are con-

tained in maximal SC MSC, MSC , , MSC , in which ,
, , are locally safe. The message of , , ,
can be broadcast optimally inside their BSC according to

local safety information of the maximal safe SC MSC, MSC ,
, MSC respectively, as illustrated in theorem 2.
The algorithmbroadcast2() can still find a successful

broadcast in many cases even though the conditions in theorem
6 are not met.

C. A Case Study

This example illustrates how the algorithmbroadcast2()
works. Fig. 4 presents the same faulty 5-cube with 9 faulty
nodes as in Fig. 1, which is unsafe. There are 7 4-dimensional
MSC in the faulty 5-cube: 1****, *0***, **0**, **1**, ***0*,
1*, *0. Consider broadcasting from the source 00 010.
The algorithmbroadcast2() sends the message and the
label [11 101] to 00 000 from the source, because 00000 is
locally safe in the MSC ***0* (step 3a). The message can be
broadcast optimally inside the SC ***0* according to theorem
2 usingbroadcast1() . The source then sends the message
and the label [11 100] to 00 011 from the source. The BSC of
node 00 011 is ***11, which is contained in the MSC ***1*,
and 00 011 is locally safe in ***1* (step 3a). The message can
thus be broadcast optimally in ***11 according to theorem 2.
The message and the label [10 100] are sent to 01010, and the
BSC of 01 010 is *1*10, which is contained in the MSC ****0.
Node 01 010 is locally safe inside ****0, in which the message
can be broadcast optimally according to theorem 2 (step 3a).
After these processes, the message and label [00 100] are sent to
10 010. There is only 1 fault-free node inside 10*10. Therefore,
the message from 00010 can be broadcast optimally in the
unsafe 5-cube in Fig. 4. The message is broadcast optimally
along minimum feasible paths, which is quite compatible with
theorem 6.

XIANG et al.: RELIABLE BROADCASTING IN WORMHOLE-ROUTED HYPERCUBE-CONNECTED NETWORKS USING LOCAL SAFETY INFORMATION 251

Fig. 4. Optimal fault-tolerant broadcasting with local safety.

Fig. 5. Fault-tolerant broadcasting in hypercubes with node and link faults.

Actually, a message can be nonredundantly broadcast to all
fault-free nodes in no more than 7 steps with the source being
any one of the fault-free nodes in the faulty 5-cube, as in Fig. 4.
The message can be broadcast optimally if the source is any one
of 00000, 00010, 00011, 10 011.

VI. EXTENSION TO RELIABLE BROADCASTING FOR

HYPERCUBESWITH BOTH NODE AND LINK FAULTS

This section shows that it is quite easy to extend the local-
safety-based broadcast procedure to the case when the hyper-
cube system contains node and link faults. The faulty 4-cube
in Fig. 5 contains 4 faulty nodes, 0011, 1100, 1110, 1001, and
2 link failures 000- and 01-0 (000- indicates the link that con-
nects nodes 0000 and 0001). While the safety of a hypercube
system is identified, the following schemes like those in [2] are
adopted:

1. The end nodes of a link failure are considered as faulty
nodes.

2. The end nodes of a link failure are considered as unsafe
after safety information of the hypercube system has been
determined.

These schemes are different from the ones in [2] because the
method in this paper considers safety inside SC. Any link and
node faults outside an SC do not have any influence on safety
of the SC. The scheme to identify states of nodes in a faulty
hypercube is similar to that in Section III. Nodes 0110, 0100,
0000, 0001 are thought of as faulty, in order to determine safety
of the 4-cube in Fig. 5. The 4-cube is fully unsafe. Now local
safety of the 4-cube can be determined with the schemes intro-
duced in Section III. The faulty nodes or link failures are not
considered when they are not contained in the SC under consid-
eration. Consider the local safety of the SC ***0, nodes 0000,
0010, 1000, 1010 are locally safe, while nodes 0100, 0110 are
locally ordinarily unsafe. The following MSC exists in the fully
unsafe 4-cube in Fig. 5: 1***, *1**, **1*, ***0, ***1, 0*0*.
Theorems 2 6 and Properties 17 still hold when the mixed
fault model is considered. A message should never be routed
to a node whose shortest paths leading to the destination are
blocked by faulty links.

The message can be routed to a locally safe node in the MSC
if the source is locally safe in the MSC, and (
is the destination). The message should be routed to a fault-free
neighbor whose link leading tois not blocked by a link failure
in a minimum path from the sourceto if . To
implement this scheme, each node keeps fault information (in-
cluding faulty node and link failure) of its fault-free neighbors
just like the scheme in Section IV. The schemes in Section IV
should be modified as follows:

1. Try to avoid sending the message and the broadcast label
to fault-free neighbors which have at least 2 faulty neighbors or
are connected with a faulty link in the BSC.

2. If the source has 1 connected faulty link or at least 2 faulty
neighbors inside the BSC, send the broadcast label to the last
fault-free neighbor along dimensioninside the BSC without
resetting the bit .

The node receives the unmodified label: do not send the mes-
sage back to its predecessor. The algorithm broadcast2() still
works with slight modification by combining these modified
schemes. Also, the safety measure in 1) is adopted to forward
the broadcast message when the condition in theorem 6 is not
satisfied.

Consider the broadcast problem with the source 0111 in
Fig. 5. Node 0111 sends the message and the broadcast label
[0111] to 1111, because 1111 is locally safe in the MSC 1***.
The message of 1111 can be optimally passed inside 1***. The
source 0111 can send a label [0101] to 0101 or a label [0110]
to 0110. The broadcast label [0110] cannot be sent to 0110,
which might cause node 0110 to be connected with a faulty
link in the BSC according to the modified scheme illustrated
in Section IV. Node 0111 should send the label [0101] to
node 0101. The message can be optimally passed inside 0*0*
because 0101 is locally safe in the MSC 0*0*. Node 0101 can
send the message to 0001 with a label [0001], or to 0100 with a
label [0100]. Let 0101 send the message with the label [0001]
to 0001. The message cannot be passed to 0000 in this case.
Node 0101 should not send the message with the label [0001] to

252 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 2, JUNE 2003

Fig. 6. Performance evaluation in the 6-cubes.

Fig. 7. Performance evaluation in the 7-cubes.

0001 because 0001 is connected with a faulty link 000- inside
the BSC according to the scheme introduced in this section.
The node should send the message with the label [0100] to
node 0100. Fig. 5 presents the time-optimal broadcast result.

VII. SIMULATION RESULTS

Two types of experiments have been done. Type #1 selects
each of the fault-free nodes as the broadcast source, which
obtains broadcast ratio (fraction of nodes can broadcast a
message to all other fault-free nodes) and minimum broadcast
ratio (fraction of sources broadcast a message along the
minimum paths). Type #2 are flit-level simulations, which
presents latency, throughput, broadcast ratio, and minimum
broadcast ratio under various conditions. A flit-level simulator
is an event-driven one, which emulates wormhole-routed
systems with respect to message-passing, deadlock avoidance,

Fig. 8. Performance evaluation in the 8-cubes.

Fig. 9. Performance evaluation in the 10-cubes.

etc. These conditions include the number of faulty nodes, the
message length, and load rate. All simulation results for the
flit-level simulators are obtained for systems in a centralized
environment [1].

Figs. 6–9 present type #1 of simulation results on 6-cube,
7-cube, 8-cube, 10-cube by comparing local safety with safety
level [16] and directed safety level [3], respectively. Safety level
and directed safety level present only minimum broadcast ratio.
However, minimum broadcast ratio based on local safety is also
better than broadcast ratio according to safety level and directed
safety level in almost all cases. Local safety obtains up to 60%
broadcast ratio more than safety level. It is observed that the
difference between two metrics is even more obvious as the size
of the system increases.

XIANG et al.: RELIABLE BROADCASTING IN WORMHOLE-ROUTED HYPERCUBE-CONNECTED NETWORKS USING LOCAL SAFETY INFORMATION 253

Fig. 10. Performance comparison in the 6-cubes.

Fig. 11. Performance comparison in the 7-cubes.

Fig. 12. Performance comparison in the 8-cubes.

Figs. 10 through 13 present flit-level performance evaluation
of local safety, safety level, and directed safety level. Message
length is 16 flits, load rate (flit/node/cycle data inserted) is set
at 1.0, and buffer size is 64 flits for each node. The results are
average ones of various fault patterns. Results of each pattern
are obtained by running the system 30 000 cycles, where
the start-up cycles (the first 10 000 cycles) are not included.
Figs. 10–13 present latency, throughput, broadcast ratio and
minimum broadcast-ratio comparison between local safety and
the 2 metrics. Throughput is obtained by using:

throughput

number of delivered messages
message length
cycles
number of fault-free nodes.

Local safety consistently obtains better results than safety
level and directed safety level on latency to broadcast a mes-
sage. Latency of a message based on safety level and directed
safety level is more than that of local safety in all cases. The
difference of latency between local safety and the two metrics
becomes greater as the number of faults increases in a system.

Safety level needs at most 2 cycles more than local safety
to broadcast a message in the 6-cube.

254 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 2, JUNE 2003

Fig. 13. Performance comparison in the 10-cubes.

Fig. 14. Performance evaluation of 10-cube with various load rates.

Safety level needs up to 4 cycles more than local safety to
broadcast a message in the 7-cube.

Up to 7 more cycles is required for safety level to broadcast
a message than local safety in the 8-cube.

up to 10 more cycles is required for safety level than local
safety to broadcast a message in the 10-cube.

Generally, latency of directed safety level is between local
safety and safety level. Latency differences between local safety
and directed safety level reach up to

2 cycles in 6-cubes,
3 cycles in 7-cubes,
3 cycles in 8-cubes,
4 cycles in 10-cubes.

Local safety consistently obtains better results than safety
level on throughput to broadcast a message. Let the load rate be
1.0. Throughputs of safety level and local safety in the 6-cube
are 0.183 and 0.494, respectively when the system contains
20 faulty nodes. Throughputs of safety level and local safety
in the 7-cube are 0.1 and 0.472, respectively when the system
contains 28 faulty nodes. For the 8-cube, throughput difference
between two metrics is up to 0.43 when the system contains
44 faults. Throughputs for local safety and safety level are
0.769 and 0.220 when the 10-cube contains 100 faults. Directed
safety level obtains a little better throughput than safety level
in the 6-cube, 7-cube, and 8-cube in almost all cases, but a bit
worse throughput than safety level in the 10-cube. Local safety
gets better throughput than directed safety level in all cases.

Local safety also obtains better broadcast ratio and minimum
broadcast ratio in all cases than safety level. Broadcast ratio dif-
ferences for both metrics reach

31% for the 6-cubes,
36% for the 7-cubes,
43% for the 8-cubes,
54.9% for the 10-cubes.

Minimum broadcast ratio differences between two metrics
are up to

10.0% for the 6-cubes,
14.4% for the 7-cubes,
17.1% for the 8-cubes,
22.5% for the 10-cubes.

The broadcast ratio and minimum broadcast ratio differences
between local safety and directed safety level reach

26% and 5% for the 6-cubes,
32% and 9% for the 7-cubes,
34% and 9% for the 8-cubes,
57% and 21% for the 10-cubes.

The difference between performance of local safety and the
other 2 metrics is even clearer when the size of the system
increases.

Fig. 14 presents performance of local safety when the mes-
sage length is 64 flits and buffer size is 256 flits when the system
has various load rates. The latency of a broadcast message in-
creases drastically when load rate reaches 1.4 for the faulty

XIANG et al.: RELIABLE BROADCASTING IN WORMHOLE-ROUTED HYPERCUBE-CONNECTED NETWORKS USING LOCAL SAFETY INFORMATION 255

Fig. 15. Performance evaluation of 10-cube with various message lengths.

10-cube with 80 faulty nodes. For the fault-free 10-cube, latency
increases greatly when the load rate is about 1.6.

Fig. 15 presents performance of local safety for messages
of various sizes in a faulty 10-cube with 80 faulty nodes. The
throughput and broadcast ratio of the system are not sensitive to
the size of the messages.

APPENDIX

PROOFS OFSOME THEOREMS

A. Proof of Theorem 1

The probability for the -dimensional SC to containof the
faults is (),

The -dimensional SC contains no more than faults which
are separate events. Therefore, the probabilityfor the SC to
contain no more than faults is,

The SC might still be safe even though it contains greater
than faulty nodes [2]. That is, this equation presents a
lower bound of the probability for an-dimensional SC to be
safe.

B. Proof of Theorem 2

The theorem is proved by induction of the size of the node’s
BSC. Let the size of the BSC of be 2. Node has at most
1 faulty neighbor according to Definition 2; therefore, broad-
cast1() can optimally pass the message by using the local safety
information of the MSC in this case.

Assume the theorem holds when the size of the BSC of node
is (). The theorem also holds when the size of the BSC

of is . The node has at least 1 safe neighbor inside its
BSC along a dimension(where is the least important dimen-
sion to meet the above conditions). The procedure broadcast1()
passes the message and the broadcast label by resetting label.
The size of the BSC of is , therefore, the message from

can be passed along minimum feasible paths according to
the assumption. The size of the BSC ofis reduced to , where

has the same broadcast label as the node. The message of
node can also be passed optimally by broadcast1() according
to the assumption.

C. Proof of Theorem 4

The theorem is proved by induction of the size of the BSC.
Let the size of the BSC be 2. At most, 1 neighbor ofinside
the BSC is faulty according to Definition 3; the theorem clearly
holds in this case.

Let the theorem hold when the size of the BSC is(),
then the theorem also holds when the size of the BSC is .
The message and the label of the sourcecan be sent to a locally
safe neighbor of [is always available according to
Definition 3] inside BSC by resetting label. Therefore, and

have new BSC: BSCand BSC of size , inside which,
and are locally safe according to Property 2, respectively.

The message ofand can thus be broadcast optimally inside
BSC and BSC, respectively, according to the assumption.

REFERENCES

[1] R. V. Boppana and S. Chalasani, “A framework for designing dead-
lock-free wormhole routing algorithms,”IEEE Trans. Parallel and Dis-
tributed Syst., vol. 7, no. 2, pp. 169–183, 1996.

[2] G. M. Chiu and P. S. Wu, “A fault-tolerant routing strategy in hypercube
systems,”IEEE Trans. Comput., vol. 45, no. 2, pp. 143–155, 1996.

[3] G. M. Chiu, “Fault-tolerant broadcasting algorithm for hypercubes,”In-
form. Proc. Lett., vol. 66, no. 2, pp. 93–99, Apr. 1998.

[4] J. Duato, “A theory of fault-tolerant routing in wormhole networks,”
IEEE Trans. Parallel and Distributed Syst., vol. 8, no. 8, pp. 790–802,
1997.

[5] J. Duato and M. P. Malumbres, “Optimal topology for distributed
shared-memory multiprocessors: Hypercubes again?,” inProc. 2nd Int.
Euro-Par Conf., 1996, pp. 205–212.

[6] S. L. Johnsson and C. T. Ho, “Optimum broadcasting and personalized
communication in hypercubes,”IEEE Trans. Comput., vol. 38, no. 9, pp.
1249–1268, 1989.

[7] H. P. Katseff, “Incomplete hypercubes,”IEEE Trans. Comput., vol. 37,
no. 5, pp. 604–608, 1988.

256 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 2, JUNE 2003

[8] T. C. Lee and J. P. Hayes, “A fault-tolerant communication scheme
for hypercube computers,”IEEE Trans. Comput., vol. 41, no. 10, pp.
1242–1256, 1992.

[9] J. Laudon and D. Lenoski, “The SGI origin: A ccNUMA highly scalable
server,” inProc. Int. Symp. Computer Architecture, 1997, pp. 241–251.

[10] M. Ould-Khaoua, “On optimal network for multicomputers: Torus or
hypercube?,” inProc. 4th Int. Euro-Par Conf., 1998, pp. 989–992.

[11] S. Park and B. Bose, “All-to-all broadcasting in faulty hypercubes,”
IEEE Trans. Comput., vol. 46, no. 7, pp. 749–755, 1997.

[12] C. S. Raghavendra, P. J. Yang, and S. B. Tien, “Free dimensions—An
effective approach to achieving fault tolerance in hypercubes,”IEEE
Trans. Comput., vol. 44, no. 9, pp. 1152–1157, 1995.

[13] P. Ramanathan and K. G. Shin, “Reliable broadcast in hypercube multi-
computers,”IEEE Trans. Comput., vol. 37, no. 12, pp. 1654–1657, 1988.

[14] C. L. Seitz, “The cosmic cube,”Commun. ACM, vol. 28, no. 1, pp.
22–33, 1985.

[15] J. Wu and E. B. Fernandez, “Reliable broadcasting in faulty hypercube
computers,” Microprocessing and Microprogramming, vol. 46, pp.
241–247, 1993.

[16] J. Wu, “Safety levels—An efficient mechanism for achieving reliable
broadcasting in hypercubes,”IEEE Trans. Comput., vol. 44, no. 5, pp.
702–706, 1995.

[17] D. Xiang and J. Wu, “Fault-tolerant broadcasting in hypercube multi-
computers using local safety information,” Florida Atlantic Univ., Tech-
nical Report TR-CSE-99-36, 1999.

[18] D. Xiang and J. Wu, “Reliable multicasting in hypercube multicom-
puters using local safety information,” inProc. 13th Int. Conf. Parallel
and Distributed Computing Systems, 2000, pp. 529–534.

[19] D. Xiang, “Fault-tolerant routing in hypercube multicomputers using
local safety information,”IEEE Trans. Parallel and Distributed Syst.,
vol. 12, no. 9, pp. 942–951, 2001.

Dong Xiang received the B.S. in 1987 and the M.S. in 1990 in Computer
Science from Chongqing University. He received the Ph.D. in 1993 in
Computer Engineering from the Institute of Computing Technology, the
Chinese Academy of Sciences, Beijing. He visited Concordia University,
Montreal, Canada as a post-doctor from 1994 to 1995, and the University of
Illinois, Urbana Champaign from 1995 to 1996. He has been with Institute
of Microelectronics, Tsinghua University since 1996 October as an Associate
Professor, and is now with the School of Software at Tsinghua University.
His research interests include design and test of digital systems (design
for testability, testability analysis, and BIST) and fault-tolerant computing,
distributed computing, and computer networking. He authoredDigital Systems
Testing and Design for Testability(in Chinese, Science Press, 1997).

Ai Chen received the B.S. in 2001 in Electronic Engineering from Tsinghua
University. He is working toward the M.S. degree at the Institute of Microelec-
tronics, Tsinghua University. His research interests include fault-tolerant com-
puting and distributed computing.

Jie Wu received the B.S. in 1982 and the M.S. in 1985 from Shanghai Univer-
sity of Science and Technology (now Shanghai University), and the Ph.D. in
1989 from Florida Atlantic University. He is a Professor in the Department of
Computer Science and Engineering at Florida Atlantic University. He has pub-
lished more than 150 papers in various journals and conference-proceedings.
His research interests are in mobile computing, routing protocols, fault-tolerant
computing, and interconnection networks. He serves on many conference com-
mittees and editorial boards. He was a co-guest-editor of IEEE TRANSACTIONS

PARALLEL AND DISTRIBUTED SYSTEMSand Journal of Parallel and Distributed
Computing. He authored the textDistributed System Design, CRC press. Dr.
Wu received the 1996–1997 and 2001–2002 Researcher-of-the-Year Award at
Florida Atlantic University. He served as an IEEE Computer Society Distin-
guished Visitor, and is a Member of ACM and a Senior Member of IEEE.

