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ABSTRACT

Automated cell tracking in populations is important for re-

search and discovery in biology and medicine. In this paper,

we propose a cell tracking method based on global spatio-

temporal data association which considers hypotheses of

initialization, termination, translation, division and false pos-

itive in an integrated formulation. Firstly, reliable tracklets

(i.e., short trajectories) are generated by linking detection

responses based on frame-by-frame association. Next, these

tracklets are globally associated over time to obtain final

cell trajectories and lineage trees. During global association,

tracklets form tree structures where a mother cell divides

into two daughter cells. We formulate the global association

for tree structures as a maximum-a-posteriori (MAP) prob-

lem and solve it by linear programming. This approach is

quantitatively evaluated on sequences with thousands of cells

captured over several days.

Index Terms— cell tracking, global data association

1. INTRODUCTION

Analysis of stem cell behaviors in populations is important for

research and discovery in biology and medicine. To obtain

the quantitative measurement of cell behaviors, time-lapse

microscopy videos consisting of hundreds of cells over thou-

sands of frames are recorded to track each cell’s dynamic pro-

cess. It is very time consuming for human to analyze this huge

amount of data manually, thus automated cell tracking is re-

quired to meet this demand.

To analyze stem cell behaviors, many cell tracking meth-

ods have been proposed which can be roughly classified into

two groups: model-based contour evolution approaches and

segmentation-based data association approaches. The model-

based contour evolution approaches, in particular level-set

methods, are widely used in cell segmentation and tracking

[1][2]. The tracking is performed by finding the object con-

tour in the current frame given an initial contour from the

previous frame. While these methods can handle changes

in topology, it is hard to handle the dividing cells, cells that

enter/leave the field of view. To handle these cases, Li et al.

[2] associate new cells with its parent cell as daughter cells

by using a local association method.

Segmentation-based frame-by-frame association approaches

have also been shown to be effective for cell tracking [3][4][5].

In [3], Al-Kofahi et al. segment the cell regions using an

adaptive thresholding method, and then, resolve the associa-

tion between two frames by optimizing probabilistic objective

functions based on distance measures. The authors men-

tioned that in some cases, multiple cells merge into a cluster

and eventually split apart, making tracking difficult, and they

did not address cells leaving or entering the field of view.

In [4], Padfield et al. use the graph theoretic minimum cost

flow framework to resolve the data association in which the

hypotheses include various cell behaviors such as migration,

mitosis, overlap, entering and leaving. The method achieved

high accuracy in tracking and detecting cell behaviors for

the experiments. However, the method may confuse the cell

identities when cells touch or overlap for long frames. To

resolve the case in which cells overlapped for long frames, in

[5], Bise et al. proposed the contour tracking method based

on partial contour matching. The method firstly detects a

cluster in which multiple cells touch or overlap, and it then

separates the cell contour as its member cells. The separated

cells maintain their identities for the association problems in

the following frames.

These frame-by-frame association methods achieved high

tracking accuracy based on trajectory-level evaluation (how

well ground-truth cells are followed by computer-generated

tracks). However, it is still challenging to achieve high ac-

curacy based on lineage-level (tree structure) evaluation in-

cluding the correctness of the mother-daughter relationship.

For example, when a false positive segmentation appears near

a mitotic cell, the local temporal association methods may

cause a mother-daughter relationship error. To resolve the

problem, global temporal information is important. If we ob-

serve the cells for several frames after the birth event, we can

easily recognize that one of the children cells is false positive

since false positives usually disappear soon. This allows us to

correct the relationship.

Recently, global spatio-temporal data association ap-

proaches have been proposed for the general object tracking.

To associate multiple trajectories over time, Multi-Hypothesis

Tracking (MHT) [6] and Joint Probabilistic Data Association

Filters (JPDAF)[7] are two representative examples. To re-

duce the computational cost, tracklet stitching [8] is proposed.

Huang et al. [8] first generate reliable tracklets that are frag-

ments of tracks formed by conservative grouping of detection
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Fig. 1. System Overview.

responses. The tracklets are then connected by the Hungar-

ian algorithm [9]. Bonneau et al. [10] proposed a tracklets

linking method in which a minimal path between tracklets

is obtained by using dynamic programming in order to track

quantum dots in a living cell. Zhang et al. [11] proposed a

minimum-cost flow network to resolve the global data associ-

ation of multiple objects over time. These global association

approaches are known as achieving higher accuracy of track-

ing general objects than frame-by-frame association methods.

However, these approaches cannot be applied to cell tracking

directly, since they do not consider cell division (a mother

cell divides into two daughter cells to form a tree structure in

the trajectory).

In this paper, we propose a global spatio-temporal data

association method for the tree structure to obtain cell trajec-

tories and lineage trees. Reliable tracklets (i.e., short trajecto-

ries) are firstly generated by linking detection responses based

on frame-by-frame association. The global tracklet associa-

tion for the tree structures is then formulated as a maximum-

a-posteriori (MAP) problem. The MAP problem is solved by

a linear programming to provide the cell trajectories and lin-

eage trees. This approach is evaluated on five sequences with

thousands of cells captured over several days. The results

show an improvement of the tracking performance compared

to our previous method [2] that used the level-set technique

for tracking.

2. ALGORITHM

Fig. 1 shows the overview of our cell tracking method. First,

cell detection module segments cell blobs from input images

that may include false positives and false negatives, and mi-

tosis detection module locates birth events where and when

one cell divides into two cells. Next, the detected cell blobs

are associated to reliable tracklets by a frame-by-frame data

association. Finally, the global association module associates

the tracklets to obtain cell trajectories and lineage trees.

2.1. Cell Detection

Due to the interference optics of a phase contrast microscope,

cells are surrounded by bright halos, and cellular fluid inside

the membrane has similar intensity as the background. To fa-

cilitate segmentation, we have adopted the image restoration

technique recently developed in [12]. The technique utilizes

Fig. 2. Examples of tracklets.

the optophysical principle of image formation by phase con-

trast microscope, and transforms an input image to an artifact-

free image by minimizing a regularized quadratic cost func-

tion. In the restored image, cells appear as regions of pos-

itive values against a uniformly-zero background. A simple

thresholding method, such as Otsu thresholding, can segment

out the cell regions. We denote the set of detection results as

R = {Ri} where Ri represents the ith cell blob.

2.2. Cell Mitosis Event Detection

To detect the birth events (time and location at which one cell

divides into two cells), we have adopted the mitosis detection

technique recently developed in [13]. Firstly, as a mitosis

event generally exhibits an increase of brightness, bright

regions are extracted as patches, and then candidate patch

sequences are constructed by associated patches. Next, the

gradient histogram features are extracted from the patches.

Finally, a probabilistic model named Event Detection Con-

ditional Random Field (EDCRF) is applied to determine

whether each candidate patch sequence contains a birth event

and which frame the birth event is located in. The set of the

detected mitosis events is represented as M = {Mi} where

Mi is a detected mitosis event.

2.3. Tracklet Generation

Since a long trajectory obtained via frame-by-frame associa-

tion may include more failures, such as drift and occlusion,

than a short trajectory, we firstly associate the detected blobs

to make reliable tracklets. A tracklet is considered reliable

when cell blobs in consecutive frames are close enough, and

there are no extra confusing blobs near the cell. Fig. 2 shows

examples of extracted tracklets in which two cells migrate.

In this example, when the occlusions occur, it is not clear

if a detection response right after the occlusion is associated

with tracklet 1 or 2, so tracklet 1 and 2 are terminated at that

time. False negatives and large distance between the blobs

1005



Fig. 3. An example of a tree structure hypothesis. Bottom il-

lustration shows zooming of an edge which consists of track-

lets.

also cause uncertain association, so tracklets 3 and 4 are also

terminated at that time.

For the implementation, we use a frame-by-frame asso-

ciation method to generate tracklets. The cell association al-

gorithm makes hypotheses of all possible cell translation and

computes their likeliness as:

Plink(bj |ci) = e−
‖f(ci)−f(bj)‖

σ

where ci represents the ith cell in the previous frame and bj
represents the jth blob in the current frame. f(·) computes an

object’s feature vector where different types of features can be

incorporated such as appearance histogram, shape and motion

history. Then, the optimal association from the hypothesis set

is found by solving an integer optimization problem which

is similar to an optimization approach used by [2] for track

linking. The detected blob is linked to a cell if and only if

their likeliness is higher than a threshold.

Based on the frame-by-frame association, we generate a

set of reliable tracklets X = {Xi}. Xi = {Rij} is a track-

let consisting of an order list of detection results where Rij

indicates the jth detection result on the tracklet Xi. Any iso-

lated detection response that is not linked with any other one

is considered as a tracklet and also included in X. Unclear

associations are solved on the next step by using the global

data association.

2.4. Global Data Association

In this section, we propose a global data association method

which addresses the tree structure association problem.

Let T = {Tk} be a hypotheses set of cell trajectory trees

over the entire video. Each tree Tk, corresponding to a cell

family from the ancestor to all of its descendents, is formed

by associated tracklets. We define a tree structure hypothesis

on Tk using the following notations (Fig. 3):

1. Ek = {Eki
}: a set of edges of the tree Tk. Each edge is

defined as an order list of tracklets, i.e., Eki
= {Xj

ki
}

where X
j
ki

is jth tracklet on the edge Eki
. Specifically,

Ek0 denotes the root edge of the tree.

2. Bk = {Bki
}: a set of branch nodes of tree Tk. Each

branch node Bki
defines a parent-children relationship,

Bki
= {Ekpi

, Ekci1
, Ekci2

} (Ekpi
is a parent, and

Ekci1
, Ekci2

are children.)

3. Lk = {Ekli
}: a set of leaf edges of tree Tk.

Given the observation tracklet set X, we maximize the

posteriori probability to solve for the best hypothesis T∗.

T
∗ = argmax

T

P (T|X)

= argmax
T

P (X|T)P (T)

= argmax
T

∏

Xi∈X

P (Xi|T)
∏

Tk∈T

PTree(Tk) (1)

In Eq. 1, we assume that the likelihoods of input tracklets

are conditionally independent given T, and Tk ∈ T can not

overlap with each other, i.e., Tk ∩ Tl = φ, ∀k �= l. The

likelihood of observed tracklet Xi is

P (Xi|T) =

{

PTP (Xi), if ∃Tk ∈ T, Xi ∈ Tk

PFP (Xi), otherwise
(2)

where PTP (Xi) is the probability forXi being a true positive,

and PFP (Xi) is the probability for Xi being a false alarm.

Ptree(Tk) is modeled as a Markov chain:

PTree(Tk) = Pini(Ek0)×
∏

Eki
∈Tk

Pedge(Eki
)

×
∏

{Ekpi
,Ekci1

,Ekci2
}∈Bk, Bk∈Tk

Pdiv(Ekci1
, Ekci2

|Ekpi
)

×
∏

Ekli
∈Lk, Lk∈Tk

Pterm(Ekli
) (3)

where Pini is an initialization probability on the root of the

tree, and Pterm is a termination probability on a leaf of the

tree. Pdiv(Ekci1
, Ekci2

|Ekpi
) is an edge dividing probabil-

ity in which edge Ekpi
divides into two edges Ekci1

, Ekci2
.

Under the Markov assumption, the edge probability can be

formulated as:

Pedge(Eki
) =

∏

j=1:Nki
−1

Plink(X
j
ki
|Xj−1

ki
) (4)

where Plink(X
j
ki
|Xj−1

ki
) is the probability to link tackletsX

j
ki

and X
j−1
ki

together, Nki
is the number of tracklets on the edge

Eki
. Let X0

ki
be the first tracklet of Eki

, and Xend
ki

be the last

tracklet of Eki
. Under the Markov assumption, the initial-

ization, termination, and dividing probabilities can be formu-

lated as:

Pini(Ek0) = Pini(X
0
k0
), (5)

Pterm(Ekli
) = Pterm(Xend

kli
), (6)

Pdiv(Ekci1
, Ekci2

|Ekpi
) = Pdiv(X

0
kci1

, X0
kci2

|Xend
kpi

) (7)
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After substituting Eqs. 2-7 into Eq. 1, we take a logarithm on

the objective function:

T
∗ = argmax

T

{
∑

Xi /∈Tk, ∀Tk∈T

logPFP (Xi)

+
∑

Xi∈Tk, ∀Tk∈T

logPTP (Xi)

+
∑

X0
k0

∈Ek0
, Ek0

∈Tk, ∀Tk∈T

logPini(X
0
k0
)

+
∑

Xj

ki
, Xj−1

ki
∈Eki

, ∀Eki
∈Tk, ∀Tk∈T

logPlink(X
j
ki
|Xj−1

ki
)

+
∑

{Xend
kpi

, X0
kci1

, X0
kci1

}∈Bk, Bk∈Tk, ∀Tk∈T

logPdiv(X
0
kci1

, X0
kci2

|Xend
kpi

)

+
∑

Xend
kli

∈Ekli
, ∀Ekli

∈Lk, Lk∈Tk, ∀Tk∈T

logPterm(Xend
kli

)} (8)

The above MAP problem is solved by linear program-

ming. Let NX be the number of tracklets in the entire se-

quence, vector ρ stores the likelihoods of every possible hy-

pothesis and matrix C stores the constraints to avoid conflict

hypotheses, where each row of C has 2NX columns and each

column indicates tracklet index on the association between

two tracklets. We compute the entries of ρ and C based on

the following hypotheses.

1. Initialization hypothesis:

If the first blob of a tracklet Xk appears in the begin-

ning of the sequence or appears near the boundary of

the field of view, the tracklet is a candidate of a initial

tracklet. Let h be the index of a new hypothesis, we

append a new row to C and a corresponding likelihood

to ρ:

C(h, i) =

{

1, if i = NX + k

0, otherwise.

ρ(h) = logPini(Xk) + 0.5 logPTP (Xk)

2. Termination hypothesis:

If the last blob of a tracklet Xk appears in the end of the

sequence or appears near the boundary of the field of

view, the tracklet is a candidate of a termination track-

let. We define new entries for C and ρ as:

C(h, i) =

{

1, if i = k

0, otherwise.

ρ(h) = logPterm(Xk) + 0.5 logPTP (Xk)

3. Translation hypothesis:

If the time and space distances between the last blob of

tracklets Xk1 and the first blob of Xk2 are less than

thresholds, Xk1 → Xk2 is a candidate of a tracklet

Fig. 4. An integer programming example where the optimal

solution is highlighted by orange.

translation. We define new entries for C and ρ as:

C(h, i) =

{

1, if i = k1 or i = NX + k2
0, otherwise.

ρ(h) = logPlink(Xk2 |Xk1)

+ 0.5 logPTP (Xk1) + 0.5 logPTP (Xk2)

4. Dividing hypothesis:

If the last blob of a tracklet Xp is near a birth event

detected by mitosis detection module, the tracklet is a

candidate of the parent tracklet, and if the first blobs

of some other tracklets Xc1, Xc2 are near the candi-

date parent tracklet, these tracklets are candidates of the

children tracklets, we define new entries for C and ρ as:

C(h, i) =

⎧

⎨

⎩

1, if i = p or i = NX + c1,

or i = NX + c2
0, otherwise.

ρ(h) = logPdiv(Xc1 , Xc2 |Xp) + 0.5 logPTP (Xp)

+ 0.5 logPTP (Xc1) + 0.5 logPTP (Xc2)

5. False positive hypothesis:

All of the tracklets can be false positive. When Xk is

a candidate of a false positive on the hypothesis h, we

define new entries for C and ρ as:

C(h, i) =

{

1, if i = k or i = NX + k

0, otherwise.

ρ(h) = logPFP (Xk)

A true positive tracklet appears in two and only two asso-

ciations in the optimal solution: the first blob of the tracklet

appears in an initialization, translation or dividing hypothe-

sis, and the last blob of the tracklet appears in a translation,

dividing or termination hypothesis. Thus, logPTP (Xk) in

the second term of Eq. 8 is divided into two halves that are

integrated into the two neighboring transition hypotheses re-

spectively, as described in hypotheses 1-4.
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After making M hypotheses over NX tracklets, the MAP

problem in Eq. 8 can be considered as selecting a subset of

rows of C such that the sum of corresponding elements in ρ is

maximized, under the constraint where any trees can not over-

lap with each other. This can be formulated as the following

integer optimization problem:

x∗ = argmax
x

ρTx, s.t. CTx = 1 (9)

where x is a M × 1 binary vector, and xk = 1 means the

kth hypothesis is selected in the global optimal solution. The

constraint CTx = 1 guarantees that each tracklet ID appears

in only one associated tree or false positive tracklet. Fig. 4

shows a simple example of the linear programming where the

number of tracklets is 7 and the number of hypotheses is 18.

In the optimal solution, initial tracklet 1 is linked to tracklet 3

(i.e., tracklets 1, 3 are associated as a single edge tree). Initial

tracklet 4 divides into 5 and 6, tracklet 5 is linked to tracklet 7,

and tracklets 6 and 7 are termination tracklets (i.e., tracklets

4, 5, 6 and 7 are associated as a binary tree).

2.5. Implementation Details

In this section, we describe the estimation of the probabilities

in our framework. Let α be the miss detection rate of the cell

detector, and |Xi| be the number of total detection responses

in a tracklet Xi. The probabilities of false positive and true

positive are defined as:

PFP (Xi) = α|Xi| (10)

PTP (Xi) = 1− PFP (Xi) (11)

The initialization probability is defined based on the time

distance between the beginning of the sequence and the first

appearance frame of the tracklet, or the spatial distance be-

tween the boundary of the field of view and the cell centroid

for the cell entering case.

Pini(Xi) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e
−

dt0(Ri0
)

λ1 , if dt0(Ri0) < θt

e
−

ds(Ri0
)

λ2 , if ds(Ri0) < θs
η otherwise (η is small)

(12)

where Ri0 is the first detection response of the tracklet Xi,

dt0(Ri) is the time distance between the first frame of the

sequence and the frame when the detection response Ri ap-

pears. ds(Ri) is the distance between the centroid of the de-

tection response Ri and the image boundary. λ1 and λ2 are

free parameters to adjust the distribution. If the first detection

response of the tracklet appears in both beginning of the se-

quence and near the boundary, we take a maximam one for

the probability.

The termination probability is defined in a similar way as

the initialization probability.

Pterm(Xi) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e
−

dtend(Riend
)

λ1 , if dtend(Riend
) < θt

e
−

ds(Riend
)

λ2 , if ds(Riend
) < θs

η, otherwise (η is small)

(13)

Fig. 5. Example images of tracking results. Green contours

are segmented cell boundaries. Red color boxes are detected

mitosis events. The numbers in the images are cell ID. The

number on the top and bottom of the images are frame in-

dexes. The colors of cell IDs indicate their family identity.

Cells with the same color have the same ancestor.

where Riend
is the last detection response of the tracklet Xi,

dtend(Ri) is the time distance between the last frame of the

sequence and the frame when the detection response Ri ap-

pears.

The link probability between two tracklets and the divid-

ing probability that one tracklet divides to two tracklets are

defined as:

Plink(Xj |Xi) = e−‖g(Rj0 )−g(Riend
)‖)/λ3 (14)

Pdiv(Xc1, Xc2|Xp)

= e−(‖g(Rpend
)−g(Rc10 )‖+‖g(Rpend

)−g(Rc20 )‖)/2λ3 (15)

where g(·) computes an object’s feature vector in which dif-

ferent types of features can be incorporated such as appear-

ance time and motion history. λ3 is a free parameter to adjust

the distribution. Based on the cell movement history, we set

these parameter as: λ1 = 5, λ2 = 30, λ3 = 25, θt = 15,
θs = 40.

3. EXPERIMENTAL RESULTS

3.1. Tracking Results

Fig. 5 shows an example sequence of tracking results. The

cell 771 on the center of the image spreads out and the bound-

ary is ambiguous, thus, from frame 580 to 585, the cell are

segmented to multiple regions some of which are false posi-

tives. These false positives disappear in several frames, and

only one region can be associated with the tree. Since our

global association framework uses not only space and appear-

ance information but also temporal information, our method

tracks the cells well and recognizes the false positives. Using

the detected mitosis event information (red box in Fig. 5), the

proposed method makes a hypothesis of cell division, thus,

the two children cells 1928 and 1929 are correctly associated

to the parent cell 771.
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Fig. 6. An example of space-time trajectory plot of a cell fam-

ily. (a) Tracklets. (b) A tree in which tracklets are associated

by global data association.

Fig. 7. Evaluation of mitosis branching.

Fig. 6(a) shows the tracklets before the global association

and Fig. 6(b) shows the associated tree after the global as-

sociation. There are 38 tracklets in Fig. 6(a) including false

positives and false negatives. The true positive tracklets are

well associated to a tree and false positive tracklets are re-

moved by global data association as shown in Fig. 6(b).

3.2. Quantitative evaluation

3.2.1. Data

We recorded five sequences captured at the resolution of

1040× 1392 pixels where C2C12 muscle stem cells growing

from 30+ to 600+ are imaged every 5 minutes by ZEISS Ax-

iovert 135TV phase contrast microscope at 5X magnification

over 65 hours (780 images). For one image sequence, all cells

are annotated. Since it is extremely time-consuming to anno-

tate all cells, for the other four image sequences, three cells

are randomly selected in the initial frame and their progeny

cells are manually tracked. The total number of annotated

cells in the five sequences is 124621.

3.2.2. Metrics

We use three quantitative criteria to assess the system per-

formance: track purity, target effectiveness [14], and mitosis

branching correctness.

To compute target effectiveness, we first assign each tar-

get (human annotated) to a track (computer-generated) that

contains the most observations from that ground-truth. Then

target effectiveness is computed as the number of the assigned

track observations over the total number of frames of the tar-

get. It indicates how many frames of targets are followed by

computer-generated tracks. Similarly, we define track purity

as how well tracks are followed by targets.

Track
Purity

Target

Effectiveness

Mitosis Branching

Correctness

Li et al. [2] 0.62 0.70 0.46

Ours 0.81 0.87 0.65

Table 1. Comparison of our system with [2] on a sequence

with all cells annotated.

Target

Effectiveness

Mitosis Branching

Correctness

ours Li et al. ours Li et al

exp1 0.96 0.75 0.75 0.25

exp2 0.87 0.7 0.65 0.63

exp3 0.87 0.68 0.59 0.39

exp4 0.78 0.6 0.57 0.2

average 0.87 0.68 0.64 0.37

Table 2. Comparison of our system with [2] on four se-

quences.

The mitotic branching correctness measured the accuracy

of mother-daughter relationships between tree branches. Fig.

7 shows an example of a mitosis branch, black lines indicate

ground truth trajectory, and red dotted lines indicate tracking

results. In the ground truth, there is a birth event at time t in

which cell i divides into cell j and k. If the automatic track-

ing results include a birth event of the cell i′ that corresponds

to cell i, and children j′,k′ of the cell i′ are also corresponded

to cell j and k, and the time distance between the two birth

events, ε = ‖t−t′‖, is close enough (i.e., ε < θε), it is consid-

ered as a correctly detected mitosis branching. The correct-

ness of mitotic branching is the number of the correctly de-

tected mitosis branching over the total number of the mitotic

events. In the evaluation, we set the parameter as θε = 10.

3.2.3. Performance evaluation

Fig. 8 shows an example image of cell tracking with track

IDs and segmented regions. Cells are well segmented and

tracked in the population. Fig. 9 shows the space-time tra-

jectory plot of the whole sequence. It represents the complete

history of the cell population: motions of all the cells and

their lineage information. Fig. 10 shows examples of the lin-

eage trees compared to human annotated ones. Horizontal red

lines indicate tracks that follow the ground-truth, vertical red

lines indicate that the mitosis branching is correctly detected

on the branch nodes of the lineage tree. The results show that

the lineage trees are well constructed.

As shown in Table 1, our system achieves higher accuracy

on all of the performance metrics than the method presented

in [2] on the full-annotated sequence. Table 2 summarizes the

target effectiveness and mitotic branching correctness com-

parison on four image sequences1. On average, we improved

19% on target effectiveness and 27% on mitosis branching

correctness compared with [2].

1We are not able to compute track purity for the four partially-annotated

sequences because it needs all cells to be annotated.
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Fig. 8. An example of tracking result image with track IDs

and segmented regions.

Fig. 9. A space-time trajectory plot of the whole sequence. X

and Y axes represent 2D space, Z axis represents time.

4. CONCLUSION

We proposed a global data association framework for cell

tracking problem. The proposed method can associate track-

lets to form not only sequential structures but also tree struc-

tures. The results of the data association provide the full cell

trajectories and lineage trees. Experimental results on a chal-

lenging data set show that the proposed method significantly

improves the tracking performance including target effective-

ness, track purity, mitosis branching correctness by globally

associating tracklets.
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