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Reliable computation of the points of
intersection of n spheres in IRn

I.D. Coope ∗
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Abstract

The problem of determining the points of intersection of n spheres
in IRn has many applications. Examples in 3-D include problems
in navigation, in positioning of specific atoms in crystal structures,
in reconstructing torso geometries in experimental cardiology, in the
‘Pentacle Problem,’ and in many other problems of distance geometry.
The problem is easily formulated as a system of n nonlinear equations
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in the coordinates of the unknown point(s) of intersection and it is of
interest to determine an efficient and reliable method of solution. It
is shown that apart from a few square roots the problem is usually
easily and robustly solved without iteration by employing standard
techniques from linear algebra. In some applications, however, the
radii of the spheres may not be known accurately and this can lead
to difficulties, particularly when the required point is close to lying in
the affine subspace defined by the n centres of the spheres. In such
cases it is more appropriate to formulate a nonlinear least squares
problem in order to identify a ‘best approximate solution.’ The special
structure of this nonlinear least squares problem allows a solution to
be calculated through an efficient safeguarded Newton iteration.
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1 Introduction

The problem of determining the points of intersection of n spheres in IRn

has many applications. Examples in 3-D include problems in navigation, in
positioning of specific atoms in crystal structures, in reconstructing torso ge-
ometries in experimental cardiology, in the ‘Pentacle Problem,’ and in many
other problems of distance geometry (see, for example, [4]). For example,
if the coordinates of n points in IRn are known and it is required to calcu-
late the coordinates of an unknown point when the distances of the unknown
point from the given points are known then this problem is clearly equivalent
to finding the intersection point(s) of n spheres in IRn. This interpretation
allows an easy geometric proof that usually there will be two points of in-
tersection, because, if x ∈ IRn is a solution to the problem, then clearly the
reflection of x in the affine subspace defined by the n given points will also be
a solution. The Pentacle Problem (see, for example, Mackay [6]) is a slight
variation of this latter problem. In this case there are two unknown points
and it is required to find the distance between them when the distances from
each unknown point to the n known points are given. Of course, there are
two solutions to this problem too, depending on whether or not the two un-
known points lie on the same side or opposite sides of the affine subspace
through the n given points.

Let aj ∈ IRn, j = 1, 2, . . . , n, denote the centres of the n ‘spheres’ and
dj, j = 1, 2, . . . , n, the corresponding radii. Then the intersecting n-spheres
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problem is to find x ∈ IRn satisfying the n nonlinear equations:

‖x − aj‖2
2 = d2

j , j = 1, 2, . . . , n, (1)

or equivalently,

xTx − 2xTaj + aT
j aj = d2

j , j = 1, 2, . . . , n. (2)

If the spheres do not intersect then the Equations (1) will have no solution
and it may be important to be able to detect this efficiently. Sometimes the
radii of the spheres will correspond to distances, as in some of the earlier
examples. Then, even if there is no point of intersection, it may be required
to determine a ‘best approximation’ in the sense of making the residuals of
the Equations (1) small in some appropriate norm. This aspect is considered
again in Section 4. In Sections 2 and 3 solutions via Gaussian elimination
and via orthogonal decomposition are considered when it is known from other
considerations that a solution is guaranteed to exist.

2 Solution by Gaussian Elimination

Let A ∈ IRn×n be the matrix whose columns are the vectors aj , j = 1, 2, . . . , n.
If the vectors {aj}n

1 are linearly independent then this matrix is non-singular
and the following approach provides a simple solution technique. First rewrite
the nonlinear equations (2) as

aT
j x = (r + bj)/2, j = 1, 2, . . . , n, (3)
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where r = xTx and bj = aT
j aj − d2

j , j = 1, 2, . . . , n. In matrix form,

Equations (3) become ATx = (re + b)/2, or

x = (ru + v)/2, (4)

where e ∈ IRn denotes the vector e = [1, 1, . . . , 1]T and

u = A−Te, v = A−Tb. (5)

Hence, r = xTx = 1
4
(ru + v)T (ru + v) or

(uTu)r2 + (2uTv − 4)r + vT v = 0, (6)

which is a quadratic equation in the scalar, r. Solving for r gives,

r =
2 − uTv ±

√
(2 − uTv)2 − (uTu)(vTv)

uTu
, (7)

and the two solutions for x can then be recovered using Equation (4).

The above approach is efficient, requiring the solution of two linear sys-
tems of Equations (5) of order n. Because each system involves the coefficient
matrix AT only one matrix factorization (LU decomposition) is required and
the overall cost (ignoring O(n) computations) is about

1
3
n3 + n2 (8)

multiplications (with a similar number of additions) and only one square
root. Unfortunately, it is not sufficiently robust as a little thought reveals.
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First, it is entirely plausible that the origin will be one of the n given points,
resulting in a zero column in the matrix A. Second, in many applications the
n given points will be at the same ‘height,’ which could result in a zero row
in A. Of course, both situations may exist with A having both a zero row
and column (and there are other ways that A may be singular too). In most
applications, though, A will have rank(A) ≥ n − 1 because the given points
aj , j = 1, . . . , n will be affinely independent, so a possible quick remedy in
this case, (when rank(A) = n − 1), is to find a shift of origin which makes
A non-singular. However, a different approach is preferred which always
reduces the original problem to an equivalent one in which the matrix A has
a zero row and column.

3 Solution by Orthogonal Decomposition

A more robust method of solution is to apply a translation and rotation/reflec-
tion of axes and then work in the transformed space. First, shift the origin to
one of the given centres. The point corresponding to the smallest dj is recom-
mended since the required solution is closest to this point. For convenience
it is assumed that this is the last point an. Let Â denote the n × (n − 1)
matrix of shifted points:

Â = [a1 − an, a2 − an, . . . , an−1 − an]. (9)

Now apply an orthogonal transformation that annihilates all entries in the
last row of Â. This is most conveniently done by calculating an orthogonal
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decomposition (QR factorization) of Â. Thus

Â = Q
[
R
0T

]
, (10)

where Q is a n × n orthogonal matrix and R is a (n − 1) × (n − 1) upper
triangular matrix and now x can be written as

x = Q
[
y
z

]
+ an (11)

where y ∈ IRn−1 and z ∈ IR. The advantage of this transformation is that the
operations of translation and rotation/reflection preserve Euclidean length so
that Equations (1) can then be written

‖y − rj‖2
2 + z2 = d2

j , j = 1, 2, . . . , n − 1, (12)

and
‖y‖2

2 + z2 = d2
n. (13)

where rj denotes the jth column of R. Using Equation (13) to replace the
nonlinear terms in Equations (12) by d2

n then gives the system of linear
equations,

RTy = c, (14)

where c ∈ IRn−1 has components cj = 1
2
(d2

n − d2
j + ‖rj‖2

2). The linear
system (14), is easily solved by forward substitution for the vector y and
then (13) gives

z = ±
√

d2
n − ‖y‖2

2 (15)
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and the required points of intersection are then determined by applying the
transformation (11).

The computational cost of this approach is a little higher than the method
of the previous section. Ignoring computations of O(n) the cost is about n2

subtractions for Â, followed by 2
3
n3 multiplications and additions for Q and

R. Then 1
2
n2 for y followed by a further n2 to recover x. In all a total of

about
2
3
n3 + 5

2
n2 (16)

multiplications and additions and n square roots if, for example, the QR
factors are calculated by Householder transformations. For large n this is
about twice as much work as the method of Section 2. In practice, many
applications occur with n = 3 and then the extra scalar products and vector
additions required by the method of Section 2 actually make the method of
this section preferable from both the viewpoints of efficiency, and numerical
accuracy and stability. The amount of computation for the method of this
section can also be reduced further by choosing Q to annihilate only the
elements of the last row of Â (using Givens rotations, for example). Then
R would no longer be upper triangular and the main cost of the computa-
tion would be 1

3
(n − 1)3 multiplications/additions in solving Equation (14)

by Gaussian elimination. Thus the asymptotic cost for the method of this
section could also be reduced to 1

3
n3 + O(n2) as for the method of Section 2.

The method of this section, however, has the added advantage of reveal-
ing, precisely, the conditions under which solution(s) to the problem exist.



4 The Effects of Errors C469

4 The Effects of Errors

In this section we assume that the points aj , j = 1, 2, . . . , n are affinely
independent (this should be the case in all practical applications) so that
the matrix R in Equation (14) will have full rank and y is uniquely defined.
Thus, provided that the calculated solution satisfies

‖y‖2 ≤ dn, (17)

there will always be a solution to the problem. Moreover, it is easily seen
that the spheres will have one point of intersection if and only if ‖y‖2 = dn,
in which case z = 0 and the required point lies in the affine subspace defined
by the centres of the n n-spheres. However, in practical applications the
distances dj, j = 1, 2 . . . , n may correspond to measurements and there will
be errors.

The effect of errors can be particularly severe when the required point
is close to lying in the affine subspace defined by the given centres of the
spheres as the following example shows. Consider the case where n = 3 and
the centres of the spheres are the columns of the matrix

A =


 9 9 1

1 2 3
8 6 3




and the true distances (radii of the spheres) are the elements of the vector

d = [5.8518, 7.0837, 8.2641]T ,
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Figure 1: Cross-section of 3 spheres intersecting at a point (left) and not
intersecting (right).
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but the measured distances are given by the elements of the vector d̂ where

d̂ = [5, 8, 8]T .

The elements of d were chosen so that the spheres intersect at a single
point (to 4 d.p. accuracy) and a cross-section of the spheres taken through
the plane defined by their centres is displayed in Figure 1(left). (Note that
this plane corresponds to setting z = 0 in (11).) In Figure 1(right), the
centres remain the same as in Figure 1(left), but now the radii are given
by the elements of the vector d̂ (the errors have been exaggerated for extra
visual effect). It can be seen that the effect of decreasing the radius of the
first sphere and increasing the radius of the second sphere is to cause the first
sphere to lie completely inside the second so that there can be no points of
intersection for the three spheres.

Intuitively, a good approximation to the required point (accepting that
errors have been made in the measurements) would lie in the affine subspace
defined by the centres of the spheres somewhere near the point marked ‘+’ in
Figure 1(right). Of course, an easy way to generate an ‘approximate solution’
in such a case is simply to argue that because the negative value of z2 is due
to errors in the measurements of dj, j = 1, . . . , n, it is reasonable to set
z = 0 in the method of calculation outlined in Section 3. Unfortunately, this
simple device does not always provide an acceptable approximation. For the
example given above, setting z = 0 results in the computed approximation
to the ‘point of intersection’ as the point indicated by ‘×’ in Figure 1(right).
Clearly, this point is unacceptable.
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The point ‘+’ is, in fact, the solution to the nonlinear least squares prob-
lem

minS(x), x ∈ IRn, where S(x) =
n∑

j=1

{‖x − aj‖2 − dj}2 , (18)

which explains why this gives a visually acceptable approximation. It is easy
to see that the solution to problem (18) lies in the appropriate affine subspace
(corresponding to z = 0) by inspecting the gradient vector of S(x).

∇S(x) = 2
n∑

j=1

(x − aj)αj , (19)

where

αj ≡ αj(x) =

(
1 − dj

‖x − aj‖2

)
.

Therefore
∇S(x) = 0 ⇐⇒ x

∑
αj =

∑
αjaj , (20)

and hence, if αj 6= 0, j = 1, 2, . . . , n, then x must lie in the affine subspace
defined by the points aj , j = 1, . . . , n. Although problem (18) is very similar
in structure to the ‘circle fitting problem’ discussed in [3], the transformations
that were successful in reducing this latter problem to a linear least squares
problem do not work in the current context and problem (18) is essentially
nonlinear and must be solved by iterative techniques. However, the results
of Section 3 are still useful in reducing the amount of computation of this
nonlinear least squares problem because it is known that the solution has
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z = 0. Therefore, it is only required to find the nonlinear least squares
solution for y ∈ IRn−1. Thus the iterative method can be applied to the
following problem in n − 1 variables.

min S(y), y ∈ IRn−1, where S(y) =
n∑

j=1

{‖y − rj‖2 − dj}2 , (21)

where rj, j = 1, 2, . . . , n − 1, denotes the jth column of R, as before, and
rn ≡ 0. Although this is only a small saving, it is still worthwhile and the
solution to Equation (14) gives a suitable initial approximation. Of course,
this problem is only solved when ‖y‖2 > dn because the original problem
has a well-defined solution otherwise. First and second derivatives of S(y)
defined by (21) are easily computed,

∇S(y) = 2
n∑

j=1

(1 − γj)(y − rj), (22)

where γj denotes the scalar

γj ≡ γj(y) = dj/‖y − rj‖2,

and

∇2S(y) = 2


I n∑

j=1

(1 − γj) +
n∑

j=1

γjwjw
T
j


 . (23)

where wj is the unit vector,

wj = (y − rj)/‖y − rj‖2, j = 1, 2, . . . , n. (24)
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Inspection of the form for ∇2S(y) also reveals that this matrix is certainly
positive definite for all values of y satisfying ‖y − rj‖2 > dj, j = 1, 2, . . . , n,
and this region always includes the recommended starting point. Thus a
safeguarded Newton method (see, for example, Fletcher [5]) is particularly
well-suited. This was the approach taken for solving the problem illustrated
in Figure 1(right). Usually, good accuracy is obtained in 2 or 3 iterations.

5 Discussion

Techniques for solving the nonlinear equations arising from the intersecting
n-spheres problem have been described and compared and apart from a few
square roots the problem has been shown to be most effectively solved by
employing standard techniques from linear algebra. Unlike many realistic ap-
plications it is a problem that requires very little by way of introduction and is
easily described mathematically. In particular the problem provides an excel-
lent example for instructors of undergraduate linear algebra (& applications)
courses since it allows the concepts of linear independence, affine indepen-
dence, affine sub-spaces, and orthogonal transformations to be employed in a
context which allows for easy geometric interpretation. All the calculations
and diagrams of this paper were produced very easily using Matlab which
is available in most university computing environments.

Although the problem arises most naturally in three dimensions, the so-
lution techniques described apply to any finite dimensional case. In some
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situations it may be preferable to ‘over-sample’ in order to assess more re-
liably (and quantitatively) the effects of errors. Then the problem becomes
a non-linear least squares problem with m > n measured distances from m
given points in IRn. The technique of Section 3 may still be used here to pro-
vide a ‘reasonable’ initial estimate, simply by choosing only n of the points
in the first instance.

In navigational problems and problems relating to crystal structures it is
usual to have measurements corresponding to bearings or angles as well as
distances. In this situation the use of the orthogonal decomposition would
no longer be successful in reducing the problem to a simple system of linear
equations.

Finally, it should be noted that in the problem considered here there is
only one point whose coordinates are unknown. Such problems frequently
arise when measuring devices are fixed at known positions and observations
are then made to determine the appropriate distances from the required
unknown point. In many other problems (e.g. molecular conformation) the
coordinates of all points are unknown but the distances between all possible
points are known although usually with errors present. In this case the
problem is sometimes referred to as the “fundamental problem of distance
geometry” and this has received much recent interest. A good overview of
this latter problem is given in [4] and more recent developments can be found
in [1, 2, 7], and the references therein.
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