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it converges to the(n� 3)-dimensional subspace of the eigenvectors
with then� 3 largest eigenvalue magnitudes, and so on. Eventually,
the trajectory converges to a one-dimensional attractor, spanned by
the eigenvector of matrixA0

i(X
�

i ;  
�

i ) with the maximal eigenvalue
magnitude, and finally to the zero-dimensional vertex of the limit
cycle which corresponds to the setup change under consideration.

V. CONCLUSION

The dynamics of the one-machinen-part-type setup scheduling
problem have been studied analytically. The study is conducted in
the phase space of both state and costate variables. Making use
of necessary optimal setup change conditions allows us to derive
an operator which maps a point in the phase space into another
point of the same space along the solution of both state and costate
differential equations. Expressed analytically, the operator maps the
optimal switching surface out of a specific setup to itself and therefore
provides insight into the optimal behavior of the system and proves
various properties of the optimal schedule including the existence of
attractors driving its dynamics.

Different procedures for numerical construction of the switching
surfaces inX-space can be suggested on the basis of our results.
For example, one can collect points that lie close to the switching
surface in the manner described below and then spline them to
build its approximation. The collection of those points is obtained by
applying the operatorA�1

i
to the points that belong to the hyperplane

which approximates the switching surface in the vicinity of the
limit cycle. Since this hyperplane and operatorA�1

i
are expressed

analytically, the procedure may locate points that are arbitrarily
close to the switching surface for a particular setup. This and other
ideas for numerical development of the presented approach constitute
interesting objectives of future research.
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Reliable Control Using Redundant Controllers

Guang-Hong Yang, Si-Ying Zhang, James Lam, and Jianliang Wang

Abstract—This paper presents a methodology for the design of reliable
control systems by using multiple identical controllers to a given plant.
The resulting closed-loop control system is reliable in the sense that it
provides guaranteed internal stability andH1 performance (in terms of
disturbance attenuation), not only when all controllers are operational
but also when some controller outages (sensor and/or actuator) occur. A
numerical example is given to illustrate the proposed design procedures.

Index Terms—Algebraic Riccati equations, control system design, re-
liable control.

I. INTRODUCTION

Recently, the design problems of reliable centralized and decen-
tralized control systems achieving various reliability goals have been
treated by several authors; see [1]–[4] and references therein. One
such goal is the reliable stabilization problem for a given plant.
Vidyasagar and Viswanadham [1] discuss the reliable stabilization of
a plant by two controllers summed together by means of factorization
methods and given any stabilizing controller for a plant, a procedure
of designing a second stabilizing controller such that the sum of the
two controllers also stabilizes the plant. Gundes and Kabuli [2] inves-
tigate the reliable stabilization problem for two-channel decentralized
control systems and present reliable decentralized controller design
methods for strongly stabilizable plants. Another reliability goal is to
provide guaranteed system performance. Veilletteet al. [3] present a
new methodology for the design of reliable centralized and decentral-
ized control systems by using the algebraic Riccati equation approach,
where the resulting designs provide guaranteed closed-loop stability
andH1 performance not only when all control components are oper-
ating, but also in case of some admissible control component failures.

In [4], Siljak investigated reliability of control structures using
more than one controller for a given plant, which is a natural way to
introduce redundancy into a control scheme for enhancing reliability.
In this paper, we consider the reliable multicontroller design problem
in the special case where all the control channels are identical.
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II. PROBLEM FORMULATION

Consider the linear time-invariant plant withq identical control
channels described by

_x = Ax +

q

i=1

Bui +Gw0 (q > 1) (1)

yi = Cx+ wi; i = 1; � � � ; q (2)

z = x
T

H
T

u
T
1 � � � u

T
q

T
(3)

where x 2 Rn is the state,yi (i = 1; � � � ; q) are the measured
outputs,z is an output to be regulated,wi (i = 0; 1; � � � ; q) are the
square-integrable disturbances, andui (i = 1; � � � ; q) are the control
inputs.

The problem is to designq identical controllers for the plant, where
the ith controller uses the measurementyi to generate the controlui.
The q controllers are described by

_�i = Ac�i + Lyi (4)

ui = K�i; i = 1; � � � ; q (5)

whereK is the feedback gain,L is the observer gain,Kw is the
disturbance estimate gain, and

Ac = A +BK +GKw � LC: (6)

Applying theq controllers of (4) and (5) to the plant of (1)–(3), the
resulting closed-loop system is as follows:

_xq = Aqxq +Gqwq (7)

z = Hqxq (8)

wherexq = [xT �T1 � � � �Tq ]
T ; wq = [wT

0 wT
1 � � � wT

q ]
T

Aq =

A BK BK � � � BK

LC Ac 0 � � � 0
LC 0 Ac � � � 0
� � � � � � �
� � � � � � �
� � � � � � �

LC 0 0 � � � Ac

(9)

Gq = diag G L L � � � L

q

(10)

Hq = diag H K K � � � K

q

: (11)

The failure of a controller is modeled as the measurement outage
(yi = 0) or the control input outage(ui = 0). The design objective
is to select the feedback gainK, the observer gainL, and the
disturbance estimate gainKw so that for anyp controller failures
(0 � p � q � 1), the resulting closed-loop system is internally
stable and theH1-norm of the closed-loop transfer function matrix
is bounded by some prescribed constant� > 0.

Remark 2.1: It should be noted that the closed-loop system of
(7) and (8) is very similar to the state model of symmetrically
interconnected systems discussed in [5] and [6]. By the results in [5],
Aq is Hurwitz if and only if both[ A

LC

qBK

A
] andAc are Hurwitz.

So, all controllers of (4) and (5) must be guaranteed to be open-loop
stable in the design procedure in order to ensure closed-loop internal
stability and system performance. In other words, the system must be
strongly stabilizable. This necessary condition for the above reliable
control problem is due to the symmetry in the closed-loop system.

The problem formulation given above in (1)–(6) has the following
characteristics. First, identical channels (with identical sensors and

identical actuators) are used to improve the reliability of the closed-
loop system. This is motivated by the common practice in (e.g.,
aircraft) industry to use identical sensors, actuators, subsystems
and/or channels to prove high reliability [9, Sec. 5.4]. Second, the
redundant channels are introduced in a purepassiveway [9, Sec.
3.4]. Namely, there is no control system reconfiguration involved
when any of the allowable outages occurs. The resulting controller
provides guaranteed internal stability and system performance (in
the sense ofH1 disturbance attenuation) not only when all control
channels are operating correctly, but also when some control channels
experience breakdowns/outages. This formulation is related to the
multimodel approach (simultaneous stabilization) of [7] and [8] but is
different from theactiveapproaches of redundancy of fault detection,
fault location, and fault recovery [9]–[12]. In the active approaches,
system malfunction has to be allowed for a finite amount of time to
facilitate fault detection, location, isolation, and recovery. But such a
malfunction does not exist in the passive approach proposed here in
this paper, making our method suitable for applications where even
a temporary malfunction is not allowed.

The next section will present a design procedure for the reliable
controller design problem by using the algebraic Riccati equation
approach.

III. M AIN RESULTS

Let E = f1; 2; � � � ; qg denote the set of theq controllers of (4)
and (5) subject to failures. The problem is to compute a control
law which guarantees closed-loop stability and anH1-norm bound
in spite of controller failures corresponding to any proper subset
e � E. By the symmetry of the matrixAq, we may assume that
e = fr+1; r+2; :::; qg = eo[ec with r � 1, whereeo = fj : yj =
0; j = r + 1; � � � ; qg, andec = fj : uj = 0; j = r + 1; � � � ; qg. Let

weo = w
T
0 w

T
1 � � � w

T
r tr+1w

T
r+1 � � � tqw

T
q

T
(12)

zeo = x
T

H
T

u
T
1 � � � u

T
r pr+1u

T
r+1 � � � pqu

T
q

T

(13)

where

tj =
0; j 2 eo
1; j 6= eo

pj =
0; j 2 ec
1; j 6= ec:

(14)

When the controller failures corresponding to the subsete = eo [ ec
occur, the closed-loop system matrices then take the form

Aqe =

A BK � � � BK tr+1BK � � � tqBK

LC Ac � � � 0 0 � � � 0
� � � � � � � � � � �
� � � � � � � � � � �

LC 0 � � � Ac 0 � � � 0
pr+1LC 0 � � � 0 Ac � � � 0

� � � � � � � � � � �
� � � � � � � � � � �

pqLC 0 � � � 0 0 � � � Ac

(15)

Gqeo = diag G L � � � L

r

tr+1L � � � tqL (16)

Hqec = diag H K � � � K

r

pr+1K � � � pqK (17)

whereAc = A + BK + GKw � LC.
The result given in the following theorem presents a procedure for

output feedback controller design to guarantee thatAqe is Hurwitz
and thatTe(s) = Hqec(sI�Aqe)

�1Gqeo, the transfer function matrix
from weo to zec, satisfieskTek1 � �.
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Theorem 3.1: Let (A;H) be a detectable pair and� be a positive
constant. Suppose

K = �BTX0; Kw =
1

�2
GTX0 (18)

whereX0 � 0 is symmetric and satisfies the state-feedback design
algebraic Riccati equation

ATX0 +X0A+
1

�2
X0GG

TX0 �X0BB
TX0

+HTH + (q � 1)�2CTC = 0 (19)

with A + BK + GKw Hurwitz. Suppose also

L = q(I � Y X0=�
2)�1Y CT (20)

whereY > 0 is symmetric and satisfies the observer design algebraic
Riccati equation

A1Y + Y AT
1 +

1

�2
Y HTHY � Y CTCY +GGT

+
2q

�2
Y KTKY +

3

2
q � 1 �2BBT = 0 (21)

and whereA1 = A � qBBTX0, and �fY X0g < �2. Then,
for controller failures corresponding to any proper subsete � E,
the closed-loop system is asymptotically stable andkTek1 � �.
Furthermore, all controllers are open-loop stable (Ac Hurwitz).

The following preliminaries will be used in the proof of Theo-
rem 3.1.

Lemma 3.2 [3]: Let T (s) = H0(sI � F )�1G0, with (F;H0) a
detectable pair. If there exists a real matrixX � 0 and a positive
scalar� such that

F TX +XF +
1

�2
XG0G

T
0X +HT

0 H0 � 0 (22)

thenF is Hurwitz andT (s) satisfieskTk1 � �.
Consider the matrixT (n; s) 2 R(s+1)n�(s+1)n given by

T (n; 1) = diag[In In]

T (n; s) =

In 0 0 0 � � � 0
0 In �In �In � � � �In
0 In In 0 � � � 0
0 In 0 In � � � 0
� � � � � � � �
� � � � � � � �
� � � � � � � �
0 In 0 0 � � � In

(s > 1)

where In is an n � n identity matrix. Let the matrixT 2
R(q+1)n�(q+1)n be defined as follows:

T = T (0) T (1) � � � T (q � 1) (23)

where

T (i) = diag In � � � In
i

T (n; q � i) ; i = 0; 1; :::; q � 1:

Lemma 3.3: Let F 2 R(q+1)n�(q+1)n be given by

F =

f00 f01 f01 � � � f01
f10 f11 0 � � � 0
f10 0 f11 � � � 0
� � � � � � �
� � � � � � �
� � � � � � �
f10 0 0 � � � f11

wheref00; f11 2 Rn�n. Then the following equalities hold.

3.3-1) T�1FT = diag[f1; f11; � � � ; f11], where

f1 =
f00 qf01
f10 f11

:

3.3-2) T TFT = diag[f2; q(q � 1)f11; � � � ; 6f11; 2f11], where

f2 =
f00 qf01
qf10 qf11

:

3.3-3) T�1F (T�1)T =diag[f3;
1

q(q�1)f11;� � � ; 1
3�2f11;

1
2�1f11],

where

f3 =
f00

1
q
f01

1
q
f10

1
q
f11

:

Lemma 3.4: Let

G+ = [G q � 1�B]; H+ = [HT q � 1�CT ]T : (24)

Then, under the assumptions of Theorem 3.1

AT
q X +XAq +

1

�2
XGq+G

T
q+X +HT

q+Hq+ � 0 (25)

whereAq is given by (9)

Gq+ = diag G+ L L � � � L
q

(26)

Hq+ = diag H+ K K � � � K
q

(27)

X =

X0 +X1 � 1
q
X1 � 1

q
X1 � � � � 1

q
X1

� 1
q
X1

1
q
X1 0 � � � 0

� 1
q
X1 0 1

q
X1 � � � 0

� � � � � � �
� � � � � � �
� � � � � � �

� 1
q
X1 0 0 � � � 1

q
X1

(28)

with X1 = (�2Y �1 � X0)
�1, whereX0 and Y are as given in

Theorem 3.1.
Proof: By Lemma 3.3, (9), and (26)–(28), we have

T T AT
q X +XAq +

1

�2
XGq+G

T
q+ +HT

q+Hq+ T

= T TAT
q (T

T )�1TTXT + T TXTT�1AqT

+
1

�2
T TXTT�1Gq+G

T
q+(T

�1)TT TXT + T THT
q+Hq+T

= diag[41 q(q � 1)42 � � � 642 242] (29)

where

41 = AT
t Xt +XtAt +

1

�2
XtGtG

T
t Xt +HT

t Ht (30)

with

At =
A qBK
LC Ac

; Xt =
X0 +X1 �X1

�X1 X1

Gt = diag G+
1p
q
L ; Ht = diag[H+

p
qK]

42 = AT
c X1 +X1Ac +

1

�2q
X1LL

TX1 + qKTK: (31)

In the following, we shall show that41 � 0 and42 � 0. Let

Mt =
I 0
I I

:

Then, from (18), (19), and (24)

MT
t 41Mt =

U1 0
0 U2

(32)
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where

U1 = A
T
X0 +X0A+

1

�2
X0G+G

T

+X0

� qX0BB
T
X0 +H

T

+H+ = 0 (33)

U2 = A +
1

�2
G+G

T

+X0 � LC

T

X1

+X1 A+
1

�2
G+G

T

+X0 � LC +
1

�2q
X1LL

T
X1

+
1

�2
X1G+G

T

+X1 + qK
T
K: (34)

By (20) and (28), we have

L = q�
2
X
�1

1 C
T
; X1 +X0 = �

2
Y
�1
: (35)

Thus, from (21), it follows that

U2=(X1 +X0)A+ A
T (X1 +X0)

+
1

�2
(X1 +X0)G+G

T

+(X1 +X0) +H
T

+H+ � q�
2
C
T
C

+
1

�
p
q
X1L�pq�CT 1

�
p
q
L
T
X1 �pq�C

=�2Y �1 AY + Y A
T +

1

�2
Y H

T
HY � Y C

T
CY

+ GG
T + (q � 1)�2BBT

Y
�1

=�2Y �1 A1Y + Y A
T

1 +
1

�2
Y H

T
HY � Y C

T
CY

+GG
T+(q � 1)�2BBT�qBKY �qY KT

B
T
Y
�1

� �
2
Y
�1

A1Y + Y A
T

1 +
1

�2
Y H

T
HY � Y C

T
CY

+ GG
T +

2q

�2
Y K

T
KY +

3

2
q � 1 �

2
BB

T
Y
�1

= 0:

Hence

41 = M
T

t

�1 U1 0
0 U2

M
�1

t � 0: (36)

Similarly, from (19), (21), (24), (34), and (35)

42 = X1A1 + A
T
1X1 +

1

�2
X1G+G

T
+X0

+
1

�2
X0G+G

T
+X1 �X1LC � C

T
L
T
X1

+
1

�2q
X1LL

T
X1 + qK

T
K

= X1A1 + A
T
1X1 +

1

�2
X1G+G

T
+X0 +

1

�2
X0G+G

T
+X1

�X1LC � C
T
L
T
X1 +

1

�2q
X1LL

T
X1

+X0A1 +A
T
1X0 +

1

�2
X0G+G

T
+X0

+H
T
+H+ � qX0BK � qK

T
B
T
X0

� (X1 +X0)A1 + A
T
1 (X1 +X0) +

1

�2
(X1 +X0)G+

�G
T
+(X1 +X0) +H

T
H � C

T
C + 2qX0BB

T
X0

= �
2
Y
�1

A1Y + Y A
T
1 +

1

�2
Y H

T
HY � Y C

T
CY

+ GG
T +

2q

�2
Y K

T
KY + (q � 1)�2BBT

Y
�1

� 0: (37)

From (29), (36), and (37), and a nonsingularity of the matrix of (23),
it follows that inequality (25) is true.

Lemma 3.5: Under the assumptions of Theorem 3.1, the matrix
Ac = A + BK + GKw � LC is Hurwitz.

Proof: From (31) and (37), it follows:

X
�1

1 (A+BK +GKw � LC)T + (A+BK +GKw

� LC)X�11 +
1

�2q
LL

T � X
�1

1 42X
�1

1 � 0: (38)

Let v 6= 0 satisfy(A+BK+GKw�LC)Tv = �v. Then (38) gives
2Re(�)v�X�11 v+ 1

� q
v�LLT v � 0, and it implies thatRe(�) � 0.

If Re(�) = 0, then LT v = 0. Thus, (A + BK + GKw)
T v =

(A+BK+GKw�LC)Tv = �v. SinceA+BK+GKw is Hurwitz,
it follows thatRe(�) < 0, which is in contradiction withRe(�) = 0.
Hence, ifRe(�) < 0, it further implies thatA+BK +GKw �LC

is Hurwitz.
Proof of Theorem 3.1:Let e = fr + 1; r + 2; � � � ; qg = eo [

ec(r � 1) correspond to a subset of controllers subject to outages.
From (9)–(11) and (15)–(17), we have

Aqe = Aq �BecKec � LeoCeo

Hqec = Hq �Kec

Gqeo = Gq � LeoL
T
eo

where

Bec =

0 � � � 0 (1� tr+1)B � � � (1� tq)B
0 � � � 0 0 � � � 0
� � � � � � � � � �
0 � � � 0 � � � � 0

C
T
eo =

0 � � � 0 (1� pr+1)C
T � � � (1� pq)C

T

0 � � � 0 0 � � � 0
� � � � � � � � � �
0 � � � 0 � � � � 0

Kec = diag[0 � � � 0 (1� tr+1)K � � � (1� tq)K]

Leo = diag[0 � � � 0 (1� pr+1)L � � � (1� pq)L]:

By Lemma 3.2, this closed-loop system with sensor and/or actuator
outages is internally stable and has anH1 disturbance attenuation
of � > 0 if

�qe A
T
qeX+XAqe+

1

�2
XGqeoG

T
qeoX+HT

qecHqec � 0: (39)

It is easy to see that

H
T
qecHqec = H

T
q Hq �K

T
ecKec

GqeoG
T
qeo = GqG

T
q � LeoL

T
eo

BecB
T
ec � diag[(q � 1)BBT 0 � � � 0]

C
T
eoCec � diag[(q � 1)CT

C 0 � � � 0]:

Then by Lemma 3.4 and (26)–(28), we have that

�qe = A
T
q X +XAq +

1

�2
XGqG

T
q X +H

T
q Hq

�K
T
ecB

T
ecX � C

T
eoL

T
eoX �XBecKec �XLeoCeo

� 1

�2
XLeoL

T
eoX �K

T
ecKec

= A
T
q X +XAq +

1

�2
XGq+G

T
q+X +H

T
q+Hq+

�Xdiag[(q � 1)BBT 0 � � � 0]X

� diag[(q � 1)CT
C 0 � � � 0]�K

T
ecB

T
ecX �XBecKec

�K
T
ecKec �XLeoCeo � C

T
eoL

T
eoX � 1

�2
XLeoL

T
eoX

� � 1

�
XLeo + �C

T
eo

1

�
L
T
eoX + �Ceo

� XBec +K
T
ec B

T
ecX +Kec � 0:
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Provided that(Aqe; Hqec) is a detectable pair, Lemma 3.2 guarantees
thatAqe is Hurwitz and thatTe(s) = Hqec(sI � Aqe)

�1Gqeo, the
transfer function matrix fromweo to zec, satisfieskTek1 � �. To
prove detectability of(Aqe; Hqec), assume thatvT = (vT1 ; v

T
2 ) 6= 0

satisfiesAqev = �v and Hqecv = 0. Then Av1 = �v1 and
Hv1 = 0. From detectability of(A;H), it follows that either
Re(�) < 0 or v1 = 0. If v1 = 0, then Aqev = �v gives
(A + BK + GKw � LC)v2 = �v2. By Lemma 3.5, we have that
Re(�) < 0. Thus, the proof of Theorem 3.1 is completed.

For the decentralized reliable control problem, the outage of all
sensors in a control channel is the same as the outage of all actuators
in that control channel. As the system under consideration is single-
input/single-output (SISO) in each control channel, a controller failure
can be modeled as either an actuator outage or a sensor outage in that
channel. By modeling controller failures only as actuator outages in
the corresponding control channels and by using similar arguments
as in Theorem 3.1, we have the following design procedure.

Corollary 3.6: Let (A;H) be a detectable pair and� be a positive
constant. Suppose thatK andKw are as given in (18) withX0 � 0
being symmetric and satisfying the following state-feedback design
algebraic Riccati equation:

A
T
X0+X0A+

1

�2
X0GG

T
X0�X0BB

T
X0+H

T
H = 0 (40)

and withA+BK+GKw Hurwitz. Suppose also thatL is as given in
(20) with Y > 0 being symmetric and satisfying the observer design
algebraic Riccati equation

A1Y + Y A
T
1 +

1

�2
Y H

T
HY � qY C

T
CY +GG

T

+
2q

�2
Y K

T
KY +

3

2
q � 1 �

2
BB

T = 0 (41)

whereA1 = A�qBBTX0 and�fY X0g < �2. Then, for controller
failures corresponding to any proper subsete � E, the closed-loop
system is asymptotically stable andkTek1 � �.

Similarly, by modeling controller failures only as sensor outages
in the corresponding control channels, we have the following design
procedure.

Corollary 3.7: Let (A;H) be a detectable pair and� be a positive
constant. Suppose thatK andKw are as given in (18) withX0 � 0
being symmetric and satisfying the state-feedback design algebraic
Riccati equation

A
T
X0 +X0A+

1

�2
X0GG

T
X0 � qX0BB

T
X0

+H
T
H + (q � 1)�2CT

C = 0 (42)

with A + BK +GKw Hurwitz. Suppose also thatL is as given in
(20) with Y > 0 being symmetric and satisfying the observer design
algebraic Riccati equation

A1Y + Y A
T
1 +

1

�2
Y H

T
HY � Y C

T
CY +GG

T

+
2q

�2
Y K

T
KY +

q

2
�
2
BB

T = 0 (43)

with A1 = A� qBBTX0 and�fY X0g < �2. Then, for controller
failures corresponding to any proper subsete � E, the closed-loop
system is asymptotically stable, andkTek1 � �.

It can be seen easily that the controller designs in Corollaries 3.6
and 3.7 are less conservative than that in Theorem 3.1. The proofs
for the above two corollaries are quite similar to that of Theorem 3.1
and are hence omitted.

Remark 3.8: It should be noted that a solution to the above reliable
controller design problem could be derived directly from the work of
Veillette et al. [3]. This is done by setting all the B’s and C’s equal
in their design equations for reliable decentralized control, where the
decentralized design for the case of redundant controllers is achieved
with a combined observer-design equation of dimensionsqn � qn;1

which can be reduced to an algebraic Riccati-like equation (ARLE) of
dimension2n� 2n by using a method similar to that of Lemma 3.4.

Similar to the approach of Veilletteet al. to reliable control
[3], sensor and/or actuator failures (outages) are also treated as
plant uncertainty in our approach here. However, by using the
symmetry in the closed-loop system, our design approach in this
paper involves twon � n design equations only, as opposed to
the higher order design equations of Veilletteet al. [3] (order
2n�2n). The design given by Theorem 3.1 requires only a standard
algebraic Riccati equation (ARE) of dimensionsn � n for the
observer design. Hence computational procedure in Theorem 3.1 is
much simpler than that of Veilletteet al. Furthermore, the redundant
controllers themselves are automatically guaranteed to be stable. The
design method in [3] for decentralized reliable control (for actuator
outages) guarantees only that some of the controllers are open-loop
stable, unless more complicated design equations are used. In the
context of our (decentralized) design problem here, all controllers
are guaranteed to be open-loop stable. This is equivalent to any one
of the decentralized controllers being open-loop stable because all
controllers are assumed identical here.

Remark 3.9: For simplicity, only results for SISO systems are
given. The generalization to multi-input/multi-output (MIMO) sys-
tems is straightforward, except that the notations will get complicated.
But in the MIMO case, Corollaries 3.6 and 3.7 may only apply to
actuator outages and sensor outages, respectively.

IV. A N EXAMPLE

Now we look at an example to illustrate the design procedure given
in the previous section. The plant is of the form (1)–(3) and has two
identical control channels(q = 2). The plant matrices are given as
follows:

A =

�2 1 1 1
3 0 0 2
�1 0 �2 �3
�2 �1 2 �1

; G =

1

2

0
0
0

; B =

0
0
0
1

H = 0 0
1

2
0 ; C = [1 0 0 0]; q = 2:

It is easy to check that the open-loop system is unstable, and(A;H)
is a completely observable pair, and hence, detectable. By solving
the ARE’s in (40) and (41) in Corollaries 3.6, we have an output
feedback controller�a of the form (4) and (5) with

Ac =

�261:5469 1:0223 1:0153 1:0097
�651:5013 0 0 2:0000
�300:5297 0 �2:0000 �3:0000
337:4229 �2:0018 1:3165 �1:4850

L =

259:5615
654:5013
299:5297
�340:0691

K = [�0:6462 � 1:0018 � 0:6835 � 0:4850]:

1This high-order design equation is similar to but not the same as the
algebraic Riccati equation (ARE) and it is referred to as algebraic Riccati-like
equation (ARLE).



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 11, NOVEMBER 1998 1593

TABLE I
RELIABLE CONTROLLER DESIGN RESULTS

Similarly, by solving the ARE’s in (42) and (43) in Corollaries 3.7,
we have an output feedback controller�s of the form (4) and (5) with

Ac =

�23:9136 1:0316 1:0271 1:0169
�21:1069 0 0 2:0000
�53:4086 0 �2:0000 �3:0000
36:2765 �2:1497 1:1114 �1:5931

L =

21:9833
24:1069
52:4086
�39:5770

K = [�1:3005 � 1:1497 � 0:8886 � 0:5931]:

Both of these two controllers�a and�s can provide internal stability
and guaranteed disturbance attenuation for the closed-loop system not
only when both control channels are operational but also when any
of these two control channels experiences an outage.

The design results are given in Table I. The two values of the
closed-loop disturbance attenuation are computed for each of the two
controllers. Namely:

�o: when there is no outage;

�c: when there is a controller failure.

The “Design�” in Table I is the value of� used in solving the two
corresponding design equations.

The actual achievable values of� (namely �o and �c) for
the closed-loop system are all less than and quite close to the
value of � for which the design equations have solutions and the
conditions in the Corollaries are satisfied. This indicates that degree
of conservativeness in the design method is not very severe.

From Table I, it would seem that the actual system performance
would be better when some controller failure occurs, contrary to the
desirable property of graceful degradation of performance. This is so,
however, because a controller failure (modeled as an actuator outage
and/or sensor outage) effectively eliminates one column and/or one
row of the closed-loop transfer function matrix. This is similar to an
observation made in [3].
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Design of Performance Robustness for Uncertain
Linear Systems with State and Control Delays

J. S. Luo, P. P. J. van den Bosch, S. Weiland, and A. Goldenberge

Abstract—The linear systems considered in this paper are subject to
uncertain perturbations of norm-bounded time-varying parameters and
multiple time delays in system state and control. The time delays are
uncertain, independent of each other, and allowed to be time-varying.
The integral quadratic cost criterion is employed to measure system
performance. Using solutions of Lyapunov and Riccati equations, a linear
state feedback control law is proposed to stabilize the perturbed system
and to guarantee an upper bound of system performance, which is
applicable to arbitrary time delays.

Index Terms—Algebraic Riccati equation, delay effects, linear–
quadratic control, Lyapunov matrix equation, robustness, stability,
uncertain systems.

I. INTRODUCTION

The problem of stabilizing uncertain systems with time-varying and
bounded parametric uncertainties has attracted a considerable amount
of interest in recent years. Among different approaches, Lyapunov
and Riccati equation descriptions of uncertainty are important ways
to deal with the problem. Based on linear optimal control theory
with quadratic cost criteria and using Lyapunov stability theory, many
methods have been proposed for finding a linear state feedback law
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