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Abstract

Past research on facial expressions have used relative-

ly limited datasets, which makes it unclear whether cur-

rent methods can be employed in real world. In this pa-

per, we present a novel database, RAF-DB, which contains

about 30000 facial images from thousands of individuals.

Each image has been individually labeled about 40 times,

then EM algorithm was used to filter out unreliable label-

s. Crowdsourcing reveals that real-world faces often ex-

press compound emotions, or even mixture ones. For all

we know, RAF-DB is the first database that contains com-

pound expressions in the wild. Our cross-database study

shows that the action units of basic emotions in RAF-DB are

much more diverse than, or even deviate from, those of lab-

controlled ones. To address this problem, we propose a new

DLP-CNN (Deep Locality-Preserving CNN) method, which

aims to enhance the discriminative power of deep features

by preserving the locality closeness while maximizing the

inter-class scatters. The benchmark experiments on the 7-

class basic expressions and 11-class compound expression-

s, as well as the additional experiments on SFEW and CK+

databases, show that the proposed DLP-CNN outperforms

the state-of-the-art handcrafted features and deep learning

based methods for the expression recognition in the wild.

1. Introduction

Millions of images are being uploaded every day by user-

s from different events and social gatherings. There is an

increasing interest in designing systems capable of under-

standing human manifestations of emotional attributes and

affective displays. To automatic learn the affective state of

face images from the Internet, large annotated databases are

required. However, the complexity of annotations of emo-

tion categories has hindered the collection of large annotat-

ed databases. On the other side, popular AU coding [12]

requires specific expertise to take months to learn and be

perfected, hence, alternative solutions are needed. And due

to the cultural difference in the way of perceiving facial e-

motion [13], it is difficult for psychologists to define definite

prototypical AUs for each facial expressions. Therefore, it

is also worth to study the emotion of social images from the

judgments of a large common population, besides from the

professional knowledge of a few experts.

In this paper, we propose to study the common ex-

pression perception by a reliable crowdsourcing approach.

Specifically, our well-trained annotators are asked to label

face images with one of the seven basic categories [11],

and each face is annotated enough times independently, i.e.

about 40 times in our experiment. Then, the noisy labels

are filtered by an EM based reliability evaluation algorithm,

through which each image can be represented reliably by a

7-dimensional emotion probability vector. By analyzing 1.2

million labels of 29672 great-diverse facial images down-

loaded from the Internet, these Real-world Affective Faces

(RAF)1 are naturally categorized into two types: basic ex-

pression with single-modal distribution and compound e-

motions with bimodal distribution, an observation support-

ing a recent ground-breaking finding in the lab-controlled

condition [10]. To the best of our knowledge, the real-

world expression database RAF-DB is the first large-scale

database providing the labels of common expression per-

ception and compound emotions in unconstrained environ-

ment.

The cross-database experiment and AU analysis on

RAF-DB indicates that AUs of real-world expressions are

much more diverse than, or even deviate from, those of

lab-controlled ones guided by psychologists. To address

this ambiguity of unconstrained emotion, we further pro-

pose a novel Deep Locality-preserving CNN (DLP-CNN).

Inspired by [17], we develop a practical back-propagation

algorithm which creates a locality preserving loss (LP loss)

aiming to pull the locally neighboring faces of the same

class together. Jointly trained with the classical softmax

loss which forces different classes to stay apart, locality p-

reserving loss drives the intra-class local clusters of each

1http://whdeng.cn/RAF/model1.html
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Figure 1. The distribution of deeply learned features in (a) “DCNN without LP loss” and (b) “DLP-CNN”. As can be seen, locality preserv-

ing loss layer helps the network to learn features with more discrimination. Moreover, it can be clearly seen that non-neutral expressions

which have obvious intensity variations, such as Happiness, Sadness, Fear, Surprise and Anger, change the intensity continuously and

smoothly, from low to high, from center to periphery. And images with Disgust label, which is the most confused expression, are assem-

bled in the middle. With the neighborhood preserving character of DLP-CNN, the deep feature seems to be able to capture the intrinsic

expression manifold structure to a large extent. Best viewed in color.

class to become compact, and thus the discriminative pow-

er of the deeply learned features can be highly enhanced.

Moreover, locally neighboring faces tend to share similar e-

motion intensity by using DLP-CNN, which can derive the

discriminative deep feature with smooth emotion intensity

transition. Figure 1 (b) shows the resulting 2-dimensional

deep features learnt from our DLP-CNN model, where we

attach example face images with various intensity in differ-

ent expression classes.

Extensive experiments on RAF-DB and other related

databases show that the proposed DLP-CNN outperform-

s other state-of-the-art methods. Moreover, the activation

features trained on RAF-DB can be re-purposed to new

databases with small-sample training data, suggesting that

the DLP-CNN is a powerful tool to handle the cross-culture

problem on perception of emotion (POE).

2. Related Work

2.1. Expression image datasets

Facial expression recognition largely relies on well-

defined databases, however, several limitations exist.

Many available databases were produced in tightly con-

trolled environments without diversity on subjects and con-

ditions. Subjects in them were taught to act expressions in

a uniform way. Besides, the majority of current databas-

es only include six basic categories or less. However, im-

ages captured in real-life scenarios often present complex,

compound or even ambiguous emotions rather than simple

and prototypical ones [3]. What’s more, labelers in these

databases are too few, which would reduce the reliability

and validity of the emotion labels.

We then focus on discussing image databases with spon-

taneous expressions. SFEW 2.0 [7] contains 700 images

extracted from movies, and images were labelled by two

independent labelers. The database covers unconstrained

facial expressions, varied head poses, large age range, oc-

clusions, varied focus, different resolution of face. FER-

2013 [16] contains 35887 images collected and labelled us-

ing the Google image search API. Cropped images are pro-

vided in 48×48 pixels and converted to grayscale. BP4D-

Spontaneous [47] contains plenty of images from 41 sub-

jects revealing a range of spontaneous expressions elicit-

ed through eight tasks. However, the database organiza-

tion were lab-controlled. AM-FED [30] is collected in real

world with sufficient samples, however, without specifical

emotion labels, it’s more suited for researches on AUs. E-

motioNet [1] is a large database of one million facial expres-

sion images in the wild created by an automatic AU detec-

tion algorithm. Unlike these databases, RAF-DB simulta-

neously satisfies multiple requirements: sufficient data, var-

ious environments, group perceiving on facial expressions

and data labels with the least noise.

2.2. The framework for expression recognition

Facial expression analysis can be generally divided into

three main parts [14]: face aquisition, facial feature extrac-

tion and facial expression classification.

In face aquisition stage, an automatic face detector is

used to locate faces in complex scenes. Feature points are

then used to crop and align faces into a unified template

by geometric transformations. For facial feature extrac-

tion, previous methods can be generally categorized into t-

wo groups: Appearance-based methods [29] and AU-based

methods [42]. The former uses common feature extraction

methods such as LBP [38], Haar [44]. The latter recog-

nizes expression by detecting AUs. Feature classification is

performed in the last stage. The commonly used methods

include SVM, nearest neighbor, LDA, DBN and decision-

level fusion on these classifiers [46]. The extracted facial
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expression information is either classified as a set of facial

actions or a particular basic emotion [34]. Most focus on

the latter and is based on Ekman’s theory of six basic emo-

tions [12]. Indeed, without making additional assumptions

about how to determine what action units constitute an ex-

pression, there can be no exact definition for the expression

category. The basic emotional expressions is therefore not

universal enough to generalize expressions displayed on hu-

man face [37].

2.3. Deep learning for expression recognition

Recently, deep learning algorithms have been applied

to visual object recognition, face verification and detec-

tion, image classification and many other problems, which

achieve state-of-the-art results. So far, there have been a

few deep neural networks used in facial expression recogni-

tion due to the lack of sufficient training samples. In ICM-

L 2013 competition [16], the winner [41] was based on

Deep Convolutional Neural Network (DCNN) plus SVM.

In EmotiW 2013 competition [6], the winner [19] combined

modality specific deep neural network models. In EmotiW

2015 [8], more competitors have tried deep learning meth-

ods: transfer learning was used to solve the problem of

small database in [32], hierarchical committee of multi-

column DCNNs in [20] gained the best result on SFEW

database, LBP features combined with DCNNs structure

were proposed in [22]. In [24], AU-aware Deep Networks

(AUDN) was proposed to learn features with the interpreta-

tion of facial AUs. In [31], a DCNN with inception layers

was proposed to gain comparable results.

3. Real-world Expression Database: RAF-DB

3.1. Creating RAFDB

Data collection. At the very beginning, the images’

URLs collected from Flickr were fed into an automat-

ic open-source downloader to download images in batch-

es. Considering that the results returned by Flickr’s im-

age search API were in well-structured XML format, from

which the URLs can be easily parsed, we then used a set

of keywords (for example: smile, giggle, cry, rage, scared,

frightened, terrified, shocked, astonished, disgust, expres-

sionless) to pick out images that were related with the six

basic emotions plus the neutral emotion. At last, a to-

tal of 29672 real-world facial images are presented in our

database. Figure 2 shows the pipeline of data collection.

Database annotation. Annotating nearly 30000 images

of expression is an extremely difficult and time-consuming

task. Considering the compounded property of real-world

expressions, multiple views of images’ expression state

should be collected from different labelers. We therefore

employed 315 annotators (students and staffs from univer-

sities) who have been instructed with one-hour tutorial of

Figure 2. Overview of construction and annotation of RAF-DB.

psychological knowledge on emotion for an online facial

expression annotation assignment, where they were asked

to classify the image into the most apparent one from seven

classes. We developed a website for RAF-DB annotation,

which shows each image with exclusive attribute options.

Images were randomly and equally assigned to each label-

er, ensuring that there were no direct correlation among the

images labeled by one person. And each image was assured

to be labeled by about 40 independent labelers. After that,

a multi-label annotation result is obtained for each image,

i.e., a seven dimensional vector that each dimension indi-

cates the votes of relevant emotion.

Metadata. The data is provided with precise locations

and size of the face region, as well as the manually located

five landmark points (the central of two eyes, the tips of the

nose and two corners of the mouth) on the face. Besides, an

automatic landmark annotation mode without manual label

is included: 37 landmarks were picked out from the annota-

tion results provided by Face++ API [18]. We also manual-

ly annotated the basic attributes (gender, age (5 ranges) and

race) of all RAF faces. In summary, subjects in our database

range in age from 0 to 70 years old. They are 52% female,

43% male, and 5% remains unsure. For racial distribution,

there are 77% Caucasian, 8% African-American, and 15%

Asian. The pose of each image, including pitch, yaw and

roll parameters, is computed from the manually labeled lo-

cations of the five facial landmarks.

Reliability estimation. Due to subjectivity and varied

expertise of labelers and wide ranging levels of images’ d-

ifficulty, there were some disagreements among annotators.

To get rid of noisy labels, motivated by [45], a Expectation

Maximization (EM) framework was used to assess each la-

beler’s reliability.

Let D = {(xj , yj , t
1

j , t
2

j , ..., t
R
j )}

n
j=1

denote a set of n la-

beled inputs, where y
j

is the gold standard label (hidden

variable) for the jth samples x
j

, tij ∈ {1, 2, 3, 4, 5, 6, 7} is

the corresponding label given by the ith annotator. The cor-

rect probability of tij are formulated as a sigmoid function:

p(tij = yj |αi, βj) = (1 + exp(−αiβj))
−1, where 1/βj is

the difficulty of the jth images, αi is the reliability of ith
annotators.

Our goal is to optimize the log-likelihood of the given
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Figure 3. Examples of six-class basic emotions and twelve-class compound emotions from RAF-DB. Detailed data distribution of RAF-DB

has been attached to each expression classes.

labels:

max
β>0

l(α, β) =
∑

j

ln p(t|α, β) =
∑

j

ln
∑

y

p(t, y|α, β)

=
∑

j

ln
∑

y

Qj(y)
p(t, y|α, β)

Qj(y)

≥
∑

j

∑

y

Qj(y) ln
p(t, y|α, β)

Qj(y)

where Qj(y) is a certain distribution of hidden variable y,

Qj(yj) =
p(tj , yj |α, β)

∑
y
p(tj , yj |α, β)

=
p(tj , yj |α, β)

p(tj |α, β)
= p(yj |tj , α, β)

After revision, 285 annotators’ labels have been remained

and Cronbach’s Alpha score of all labels is 0.966.

Subset Partitions. Let Gj = {g1, g2, ..., g7} denotes

the 7-dimensional ground truth of the jth image, where

gk =
R
∑

i=1

αi1ti
j
=k (αi means the ith annotators reliabili-

ty. 1A is an indicator function that evaluates to “1” if the

Boolean expression A is true and “0” otherwise.), and label

k ∈ {1, 2, 3, 4, 5, 6, 7} refer to surprise, fear, disgust, hap-

piness, sadness, anger and neutral, respectively. We then

divided RAF-DB into different subsets according to the 7-

dimensional ground truth. For Single-label Subset, we first

calculated the mean distribution value gmean =
7
∑

k=1

gk/7

for each image, then picked out label k w.r.t. gk > gmean

as the valid label. Images who have single valid label are

classified into Single-label Subset. For Two-tab Subset, the

partition rule is similar. The only difference is that we took

out images with neutral label before partition. Figure 3 ex-

hibits specific samples of 6-class basic emotions and 12-

class compound emotions.

3.2. CK+ and RAF CrossDatabase Study

We then conducted a CK+ [26] and RAF cross-database

study to explore the specific difference between expression-

Algorithm 1 Label reliability estimation algorithm.

Input: Training set D = {(xj , t
1
j , t

2
j , ..., t

R
j )}

n
j=1

Output: Each annotator’s reliability α∗

i

Initialize:

∀j = 1, ..., n, initialize the true label yj using majority voting

βj := −
R∑

i=1

p(tij) ln p(t
i
j), αi := 1,

The initial value of βj is image j’s entropy. The higher the en-

tropy, the more uncertain the image.

Repeat:

E-step:

Qj(yj) :=
∏

i

p(yj |tj , αi, βj)

M-step:

αi := argmax
αi

∑

j

∑

yj

Qj(yj) ln
p(tj , yj |αi, βj)

Qj(yj)

We also optimize βj along with αi during M-step. However, the

goal is to get each labeler’s reliability, so we didn’t include it in

this step. For optimization, we take a derivative with respect to

βj and αi respectively.

Until convergence

s of real-world affective face and the lab-controlled posed

face guided by psychologist. Here, “cross-database” mean-

s we use all of the images from one database for training

and the images from the other for testing. In order to elimi-

nate the bias caused by different training size, the single-tab

subset of RAF-DB has been sub-sampled for experiment to

balance the size of two databases.

To ensure the generalization capabilities of the classifier-

s, we applied support vector machine for classification and

tried HOG descriptor [5] for representation. Specifically,

original images were first aligned to the size of 100×100.

Then, we got a 4000-dimensional HOG feature vector per

aligned image. Finally, SVM with RBF kernel implemented
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Figure 4. Confusion matrixes for cross-database experiments using

HOG features. The true labels (training data) are on the vertical

axis, the predicted labels (test data) are on the horizontal axis.

by LibSVM [4] was applied for classification. Parameters

were optimized using grid search.

We then performed a cross-database experiment based

on six-class expression. Multiclass support vector machine

(mSVM) and confusion matrix were used as the classifica-

tion method and the assessment criteria respectively. Fig-

ure 4 shows the results of this experiment.

Analyzing the diagonal of these two matrixes, we can

see that surprise, happiness and disgust are the top three

that have the highest recognition rates in both cases. This

result is in line with many single database tests based on

CK+, such as [26], [35] and [38]. After calculating the

average of the diagonals, Matrix I was detected with 62%

accuracy while Matrix II with only 39%, which indicates

that data collected from real world is more multiple and ef-

fective than lab-controlled one. This is particularly evident

in the expression of sadness, then happiness and surprise.

Besides, anger and disgust are usually confused with each

other in both cases, which conforms to the survey in [2].

In order to explain the phenomena above, a more de-

tailed research must be conducted to find out the specifical

differences of each expression between these two databas-

es. Therefore, a facial action coding system (FACS) anal-

ysis has been employed. FACS was first presented in [12],

where the changes on facial behaviors are described by a

set of action units (AUs). AUs of sub-sampled images in

RAF-DB were first labeled by our FACS coders. We then

quantitatively analyzed the AU presence for different emo-

tions in CK+ and RAF. Some examples from CK+ and RAF

are shown in Figure 5. Besides, probabilities of AUs’ oc-

currence for each expression from sub-sampled images in

RAF-DB have been shown in Table 1.

4. Deep Locality-Preserving Feature Learning

Besides the “in-the-wild” difficulties such as variable

lighting, poses and occlusions, real-world affective faces

at least pose two challenges that demand new algorithm-

AU24

AU4
AU7

AU17

AU1,4

AU7

AU20,

AU25

AU6

AU12
AU25

AU9

AU17

AU4

AU7

AU15

AU17

AU1,4

AU1,2

AU5

AU25,

AU27

AU1,2

AU5

AU1,2

AU5

AU25 AU25,

AU26

AU1,2 AU1,2

AU26

AU4

AU5

AU1,4

AU7

AU26

AU27

AU1,4
AU1

AU5

AU26

AU27AU20,

AU25

AU12

AU6

AU25

AU12

AU6

AU26AU26

AU12

AU6

AU12

AU6

AU17

AU4

AU7

AU24

AU5

AU10

AU25

AU26
AU25

AU9

AU7

AU10
AU26

AU27

AU4
AU7

AU1,4

AU15
AU15

AU17

AU7

AU25
AU17

AU1,4

AU25
AU10

AU4

AU7
AU9

AU17

AU5

AU10

AU4

AU5

AU10

RAFCK+

Surprise

Sadness

Disgust

Anger

Fear

Joy

AU20,

AU25

AU7

Figure 5. Comparison of six basic emotions from CK+ and RAF.

It’s evident that expression AUs in RAF are more diverse than

those in CK+.

Table 1. Probabilities of AUs’ occurrence for each expression in

RAF-DB

(%) AU1 AU2 AU4 AU5 AU6 AU7 AU9 AU10 AU12 AU15 AU 17 AU20 AU25 AU 26 AU27

Sur 97 97 84 98 53
∗

Fea 78 42 74 79 50 30
∗

61
∗

43
∗

Dis 51 34
∗

89
∗ 82 26 55

∗

Hap 98 85 97 23

Sad 88 84 21
∗ 54 49

∗

Ang 96 72
∗ 94 36 87 79

∗
72

∗

The empty data indicates the probability is less than 10%

An asterisk(*) indicates the AU’s probability is quite different from CK+’s (at least 40% disparity).

s to address. First, as indicated by our cross-database s-

tudy, real world expression may associate with various AU

combinations that require classification algorithms to model

the multi-modality distribution of each emotion in the fea-

ture space. Second, as suggested by our crowdsourcing re-

sults, a large amount of real-world affective faces express

compound, or even multiple emotions. So traditional hand-

engineered representations which perform well on the lab-

controlled databases are no longer suitable for expression

recognition tasks in the wild.

Nowadays, DCNN has been proved to outperform hand-

crafted features on lager-scale visual recognition tasks. N-

evertheless, conventional DCNN uses only the softmax loss

layer to supervise the training process. The softmax layer

helps keeping the deeply learned features of different class-

es separable, however, still remains serious intra-class vari-

ation. On the contrary, facial expressions in real world show

significant intra-class difference on account of varied occlu-

sions, illuminations, resolutions and head positions. What’s

more, individual variation can also lead to big difference for

the same category expression, for example, laugh v.s. smile.

Hence, we proposed a novel DLP-CNN to address the am-

biguity and multi-modality of real-world facial expression-

s. In DLP-CNN, we added a new supervised layer on the

fundamental architecture shown in Table 2, namely locali-

ty preserving loss (LP loss), to improve the discrimination

ability of the deep features.

The basic idea is to preserve the locality of each sample

xi and make the local neighborhoods within each class as
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Table 2. The configuration parameters in the fundamental architecture (baseDCNN).

Layer

Type

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Conv ReLu MPool Conv ReLu MPool Conv ReLu Conv ReLu MPool Conv ReLu Conv ReLu FC ReLu FC

Kernel 3 - 2 3 - 2 3 - 3 - 2 3 - 3 - -

output 64 - - 96 - - 128 - 128 - - 256 - 256 - 2000 - 7

Stride 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1

Pad 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0

compact as possible. To formulate our goal:

min
W

∑

i,j

Sij ||xi − xj ||
2

2
(1)

where W is the network parameters, and the matrix S is a

similarity matrix. The deep feature x ∈ R
d denotes Deep

Convolutional activation features (DeCaf) [9] taken from

the final hidden layer, i.e., just before the softmax layer that

produces the class prediction. A possible way of defining S
is as follows.

Sij =







1, xj is among k nearest neighbors of xi

or xi is among k nearest neighbors of xj

0, otherwise

(2)

where xi and xj belong to the same class of expression, k
defines the size of the local neighborhood.

This formulation effectively characterizes the intra-class

local scatters. Note that xi should be updated as the itera-

tive optimization of the CNN. To compute the summation of

the pairwise distance, we need to take the entire training set

in each iteration, which is inefficient to implement. To ad-

dress this difficulty, we do the approximation by searching

the k nearest neighbors for each sample xi, and the locality

preserving loss function of xi is defined as follow:

Llp =
1

2

n
∑

i=1

||xi −
1

k

∑

x∈Nk{xi}

x||2
2

(3)

where Nk{xi} denotes the ensemble of the k nearest neigh-

bors of sample xi with the same class.

The gradients of Llp with respect to xi is computed as:

∂Llp

∂xi

= xi −
1

k

∑

x∈Nk{xi}

x (4)

In this manner, we can perform the update based on mini-

batch. Note that, the recently proposed center loss [43] can

be considered as a special case of the locality preserving

loss, if k = nc−1 (nc is the number of the training samples

in class c to which xi belong). While center loss simply

pulls the samples to a single centroid, the proposed locality

preserving loss is more flexible especially when the class

conditional distribution is multi-modal.

We then adopt the joint supervision of softmax loss

which characterizes the global scatter and the locality p-

reserving loss which characterizes the local scatters within

class, to train the CNNs for discriminative feature learning.

The objective function is formulated as follow: L =
Ls + λLlp, where Ls denotes the softmax loss and Llp de-

notes the locality preserving loss. The hyper parameter λ is

used to balance the two loss functions. Algorithm 2 sum-

marizes the learning process in the deep locality preserving

CNN.

Algorithm 2 Optimization algorithm of DLP-CNN.

Input: Training data {xi}
n
i=1,

n is the size of mini-batch

Output: Network layer parameters W

Initialize: t = 0
Network learning rate µ, hyper parameter λ, Network layer pa-

rameters W , softmax loss parameters θ, neighboring nodes k.

Repeat:

1: t = t+ 1
2: Computer the center of k-nearest neighbor for xi:

Ct
i = 1

k

∑n

j=1
xt
jS

t
ij

3: Update the softmax loss parameters:

θt+1 = θt − µt ∂Lt
s

∂θt

4: Update the backpropagation error:

∂Lt

∂xt
i

=
∂Lt

s

∂xt
i

+ λ
∂Lt

lp

∂xt
i

5: Computer the network layer parameters:

W t+1 = W t − µt ∂Lt

∂W t = W t − µt
∑n

i=1

∂Lt

∂xt
i

∂xt
i

∂W t

Until convergence

5. Baseline System

To facilitate translating the research from laboratory en-

vironments to the real world, we performed two challenging

benchmark experiments on RAF-DB: 7-class basic expres-

sion classification and 11-class compound expression clas-

sification, and presented affiliated baseline algorithms and

performances. We also conducted comparative experiments

on two small and popular datasets, CK+ and JAFFE [28].

We followed up the experimental setup in cross-database

experiments, and tried LBP [33], HOG [5] and Gabor [23]

features. The LBP descriptor applied the 59-bin LBPu2
8,2

operator, and then concatenated the histograms from 10×10

pixel cells, generating a 5,900 dimensional feature vector.

The HOG feature used this shape-based segmentation di-

viding the image into 10×10 pixel blocks of four 5×5 pixel

cells with no overlapping. By setting 10 bins for each his-

tograms, we extract a 4000-dimensional HOG feature vec-

tor for each image. For Gabor wavelet, we used a bank of
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Table 3. Basic expression class performance comparison of CK+,

JAFFE and RAF along with Compound expression performance

of RAF, based on LBP, HOG and Gabor descriptors, and SVM,

LDA+kNN classification. The metric is the mean diagonal value

of the confusion matrix.

basic compound

CK+ JAFFE RAF RAF

mSVM

LBP 88.92 78.81 55.98 28.84

HOG 90.50 84.76 58.45 33.65

Gabor 91.98 88.95 65.12 35.76

LDA

LBP 85.84 77.74 50.97 22.89

HOG 91.77 80.12 51.36 24.01

Gabor 92.33 83.45 56.93 23.81

40 Gabor filters at five spatial scales and eight orientation-

s. The downsample image’s size was set to 10*10, yielding

4000-dimensional features.

In order to objectively measure the performance for the

followers entries, we split the dataset into a training set

and a test set with the idea of five-fold cross-validation,

which means the size of training set is five times larger than

test set, and expressions in both sets have a near-identical

distribution. Considering expressions in the wild have

imbalanced distribution, the accuracy metric which is

especially sensitive to bias and no longer effective for

imbalanced data [15], is no longer used in RAF. Instead,

we use the mean diagonal value of the confusion matrix as

the ultima metric.

Basic emotions. In this experiment, seven basic

emotion classes were detected using the whole 15339

images from the single-label subset. The best classification

accuracy (output by SVM) was 72.71% for LBP, 74.35%

for HOG, and 77.28% for Gabor. Results declined to

55.98%, 58.45% and 65.12% respectively when using the

mean diagonal value of the confusion matrix as metric. To

assess the reliability of the basic emotion labels, we also

assigned a uniform random label to each sample, which

we call a naive emotion detector. And the best result for

the naive classifier was 16.07% when using Gabor feature,

which is much lower than the former value.

For comparison, we employed the same methods on

CK+ with person-independent 5-fold cross-validation and

JAFFE with leave-one-subject-out strategy. The results

shown in Table 3 certify that expressions in real world

are more difficult for recognition and the current common

methods which perform well on the existing databases

cannot solve the expression recognition problem in the

challenging real-world condition.

To evaluate effectiveness of different classifiers, we have

also trained LDA with nearest neighbor (NN) classification.

We found that LDA+NN were inferior to mSVM obviously

when training on RAF, a extremely large database. Nev-

ertheless, it performed better when training on small-scale

datasets (CK+ and JAFFE), even outperformed mSVM in

some cases. Concrete results can be viewed in Table 3.

Compound emotions. For compound emotions clas-

sification, we got rid of fearfully disgusted emotion as it’s

too few, leaving 11 classes of compound emotion, 3954

in total. The best classification accuracy (output by SVM)

was 45.51% for LBP, 51.89% for HOG, and 53.54% for

Gabor. Results declined to 28.84%, 33.65% and 35.76%

respectively when using the mean diagonal value of the

confusion matrix as metric. Again, to demonstrate the

reliability of the compound emotion labels, we computed

the baseline for the naive emotion detector, which declined

to 5.79% when using Gabor feature.

As expected, the overall performance dropped sig-

nificantly when more expressions are involved for

classification. The significantly lower results compared to

that of basic emotions indicate that compound emotions

are more difficult to detect and new methods should be

invented to solve this problem. Besides the multi-modality,

lack of training samples of compound expressions from

real world is another great technical challenge.

6. Deep Learning System

Nowadays, deep learning has been applied to lager-scale

visual recognition tasks and perform exceedingly well with

lager amounts of training data. However, fully-supervised

deep models are easy to be overfitting on facial expression

recognition task due to the insufficient training samples for

the model learning. Therefore, most deep learning frame-

works employed on facial expression recognition [22, 32,

36] are base on pre-trained models. These pre-trained mod-

els, such as VGG network [40] and AlexNet [21], are ini-

tially designed for face recognition, which are short of dis-

crimination ability of expression characteristic. So in this

paper, we directly trained our deep learning system on the

big enough self-collected database RAF from scratch, with-

out using other databases.

When conducting experiments, we followed the same

dataset partition standards, image processing methods and

classification methods as in the baseline system. Related

researches [9, 39] have proved that well-trained deep con-

volutional network can work as a feature extraction tool

with generalization ability for the classification task. Fol-

lowing up this idea, we first trained each DCNNs for basic

emotion recognition task, and then directly used the already

trained DCNN models to extract deep features for both ba-

sic and compound expressions. 2000-dimensional deep fea-

tures learnt from raw data were extracted from the penulti-

mate fully connected layer of the DCNNs and then classi-

fied by SVM.
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Table 4. Expression recognition performance of different DCNNs on RAF. The metric is the mean diagonal value of the confusion matrix.

basic compound

Anger Disgust Fear Happiness Sadness Surprise Neutral Average Average

mSVM

VGG 68.52 27.50 35.13 85.32 64.85 66.32 59.88 58.22 31.63

AlexNet 58.64 21.87 39.19 86.16 60.88 62.31 60.15 55.60 28.22

baseDCNN 70.99 52.50 50.00 92.91 77.82 79.64 83.09 72.42 40.17

center loss 68.52 53.13 54.05 93.08 78.45 79.63 83.24 72.87 39.97

DLP-CNN 71.60 52.15 62.16 92.83 80.13 81.16 80.29 74.20 44.55

LDA

VGG 66.05 25.00 37.84 73.08 51.46 53.49 47.21 50.59 16.27

AlexNet 43.83 27.50 37.84 75.78 39.33 61.70 48.53 47.79 15.56

baseDCNN 66.05 47.50 51.35 89.45 74.27 76.90 77.50 69.00 28.23

center loss 64.81 49.38 54.05 92.41 74.90 76.29 77.21 69.86 27.33

DLP-CNN 77.51 55.41 52.50 90.21 73.64 74.07 73.53 70.98 32.29

From the results in Table 4, we have the following obser-

vations. First, DCNNs which achieve quite reasonable re-

sults for large-scale image recognition setting, such as VGG

network and AlexNet, are not efficient for facial expression

recognition. Second, all of the deep features learnt on RAF-

DB outperform the unlearned features used in the baseline

system by a significant margin, which indicates that deep

learning architecture is more robust and applicable for both

basic and compound expression. At last, our new locali-

ty preserving loss model achieves better performance than

the based one and the center loss one. Note that, the center

loss, which efficiently converges unimodal class, can help

enhance the network performance on basic emotion, but it

fails on compound emotion. This shows the advantage of

the locality preserving loss on multi-modal facial expres-

sion recognition, including both basic and compound one.

To see the generalization ability of our well-trained DLP-

CNN model on other databases, we then employed it to di-

rectly extract fixed-length feature of CK+ and SFEW 2.0

without finetune. For the lab-controlled databases CK+, we

followed the experimental principle in the baseline system.

For the real-world database SFEW 2.0, we followed the rule

in EmotiW 2015 [8], and the “SFEW best” is the result of

the single best model used in the winner [20] of EmotiW

2015. Note that, in [20], the Authors trained their model

with extra data from SFEW. From the comparison results

in Table 5, we can see that our network can also achieve

comparable or even better performance than other state-of-

the-art methods, not only for RAF, but also other databases.

This indicates that our proposed network can be used as an

efficient and effective feature extraction tool for facial ex-

pression databases, without a significant amount of time to

execute in traditional DCNNs.

7. Conclusions and Future Work

The main contribution of this paper is presenting a novel

optimized algorithm for crowdsourcing and a new locali-

Table 5. Comparison results of DLP-CNN and other state-of-the-

art deep learning methods on CK+ and SFEW 2.0.

AUDN

[25]

FP+SAE

[27]
[31]

SFEW best

[20]

DLP-CNN

(without finetune)

CK+ 93.70 91.11 93.2 – 95.78

SFEW 2.0 30.14 – 47.7 52.5 51.05

ty preserving loss layer for deep learning, based on a real-

world publicly available facial expression database RAF-

DB. The optimized algorithm helps to keep the best anno-

tated results from labelers. The new DCNN can learn more

discriminative feature for expression recognition task. The

RAF-DB contains, 1) 29672 real-world images labeled for

different expressions, age range, gender and posture fea-

ture, 2) a 7-dimensional expression distribution vector for

each image, 3) two different subsets: single-label subset,

including seven classes of basic emotions; two-tab subset,

including twelve classes of compound emotions, 4) loca-

tions of five manually accurate detect landmark points, 5)

baseline classifier outputs for basic emotions and compound

emotions. We hope that the release of this database will en-

courage more researches on the effect of real-world expres-

sion distribution or detection and be a useful benchmark re-

source for researchers to compare the validity of their facial

expression analysis algorithms in challenge conditions.
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