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According to the clonal evolution model, tumour growth is driven by competing subclones in 

somatically evolving cancer cell populations, which gives rise to genetically heterogeneous 

tumours. Here we present a comparative targeted deep-sequencing approach combined with  

a customised statistical algorithm, called deepSNV, for detecting and quantifying subclonal 

single-nucleotide variants in mixed populations. We show in a rigorous experimental assessment 

that our approach is capable of detecting variants with frequencies as low as 1/10,000 alleles. 

In selected genomic loci of the TP53 and VHL genes isolated from matched tumour and normal 

samples of four renal cell carcinoma patients, we detect 24 variants at allele frequencies 

ranging from 0.0002 to 0.34. Moreover, we demonstrate how the allele frequencies of known 

single-nucleotide polymorphisms can be exploited to detect loss of heterozygosity. Our 

findings demonstrate that genomic diversity is common in renal cell carcinomas and provide 

quantitative evidence for the clonal evolution model. 
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C
ancer is a somatic evolutionary process in which mutations 
render cells non-cooperative and overly proliferative1–3. 
Selectively advantageous driver mutations accumulate in 

multiple rounds of clonal expansions together with hitch-hiking, 
selectively neutral passenger mutations1,4. �e driving forces of 
evolution include mutations in single cells and selection of the most 
proliferative clones. Mutation diversi�es an evolving population by 
generating novel variants, whereas selection has a purifying e�ect. 
Genomic diversity resulting from the interplay of mutation and 
selection is thus a key signature of evolution.

Studying genomic diversity in heterogeneous cell populations 
became possible with second-generation sequencing technologies 
that process millions of DNA molecules in a single run5. �ey ena-
ble direct sequencing of mixed samples, such as virus populations6,7, 
bacterial communities8, tumours9–11 and pooled samples12,13, and 
the reconstruction of their genomic composition. However, sin-
gle-nucleotide errors resulting from target enrichment, library 
preparation and base calling are frequent on all current sequencing  
platforms5, and they are di�cult to separate from true low- 
frequency single-nucleotide variants (SNVs). Sequencing error 
rates vary across genomic sites, o�en reaching up to 1%, and they 
challenge accurate calling of SNVs present at frequencies below  
this rate.

To overcome these limitations, we employ a comparative sequenc-
ing strategy, where the same genomic region is compared between 
a heterogeneous test sample and a homogeneous control sample, 
using a customised statistical algorithm (Fig. 1a). �e control sam-
ple allows for estimating the local error rate, which increases the 
power for calling true variants at a given false-positive rate. Unlike 
true variants, sequencing errors depend on the directionality of 
sequencing and tend to occur more o�en on one DNA strand than 
the other, which can be used to further increase the speci�city of 
variant calling14,15. Batch-library preparation and sequencing in the 
same run ensure identical noise characteristics of test and control, 
an important prerequisite for reliable variant detection.

Results
deepSNV algorithm. Comparing test and control experiment 
requires estimation of inter-experimental variation. For each 
genomic position, we model the number of observed nucleotide 
counts on the two strands in both experiments with a hierarchical 
binomial model and derive a likelihood ratio test for each base to 
quantify the excess of the SNV in the test over the control sample 
(Fig. 1b–d; Methods). We aggregate the test results from both strands 
into a single P-value that quanti�es how likely it is that an observed 
nucleotide is a sequencing error, rather than a true variant (Fig. 1e–i). 
P-values are corrected for the number of tests performed, controlling 
either the family-wise error rate (FWER; Bonferroni method) or 
the false discovery rate (FDR; Benjamini–Hochberg)16. We have 
implemented the testing procedure in the R package ‘deepSNV’, 
which is freely available at http://www.bioconductor.org.

Experimental analysis of speci�city and sensitivity. An initial 
analysis of two Illumina GAIIx sequenced replicates of the phiX 
genome con�rmed the accuracy of the P-values computed by deep-
SNV as a measure of type-1 errors (Fig. 1i). Accurate P-values are 
critical, because the algorithm assesses all four minor alleles on each 
position in the genome, resulting in thousands or even millions  
of tests, and multiple testing schemes fail if P-values are biased.  
Speci�city is lost if sequencing is performed in di�erent runs 
because of dissimilar error distributions, but can partially be recov-
ered by data normalisation (Supplementary Fig. S1).

To assess the power of comparative sequencing followed by 
variant calling by deepSNV, we generated synthetic test samples by 
mixing six plasmids containing known clones of a 1.5 kb fragment 
of the HIV pol gene at relative frequencies 10 − 5, 10 − 4, 10 − 3, 10 − 2 

and 10 − 1, respectively, together with a majority clone at frequency 
0.89999 (Supplementary Table S1). �e majority clone also served as 
a control sample. �e �ve low-frequency clones contained approx-
imately 100 SNVs relative to the control clone. As some variants 
are present on multiple clones and can be masked by clones with 
higher frequencies, the number of unique variants is between 36 
and 101 (Table 1). PCR target enrichment was simulated by ampli-
fying the inserts from the two samples and resulted in elevated noise 
levels, but only minimally altered variant frequencies (Supplemen-
tary Fig. S2). Both PCR-ampli�ed and non-ampli�ed mixture and 
control samples were sequenced at 69,203 to 117,180× coverage on 
an Illumina GAIIx sequencer in the same lane using barcodes and  
36 nucleotide reads (Supplementary Table S2). Reads were aligned 
to the HXB2 HIV reference genome to avoid bias towards any of the 
clones. At each position, nucleotides with Phred quality larger than 
25 were counted, insertions and alignment artifacts were ignored, 
and 23 variants of a con�rmed subpopulation in the control sample 
were masked (Supplementary Fig. S3).

For SNV frequencies larger than or equal to 10 − 4, the meas-
ured nucleotide frequencies accurately agree with the true values, 
whereas SNVs with frequencies below 10 − 4 are additively biased 
by sequencing errors that occurred at a median rate of 2.2×10 − 5 
(Fig. 2a). �e long tail of sequencing errors confounds SNV calling, 
but this limitation can partially be overcome by testing against the 
control (Fig. 2b).

DeepSNV calls variants with frequencies higher than 10 − 4 
with high sensitivity and speci�city (Fig. 2c). At an FDR of 0.05, 
it recovered all SNVs of frequency 10 − 1 and 10 − 2, 53/57 variants 
of frequency 10 − 3, and 3/44 variants of frequency 10 − 4, whereas 
the false-positive rate was 2/5,740 (Table 1). With a more con-
servative FWER control, no false positives were called. At a �xed 
FWER, deepSNV outperformed all related so�ware packages17–19 
in terms of both speci�city and sensitivity. Although the power 
of deepSNV is comparable to that of vipR for variant frequencies 
of 0.1 and 0.01, its performance is considerably better for variant  
frequencies of 0.001 and 0.0001 (Supplementary Fig. S4). Most 
importantly, deepSNV achieves a high sensitivity for small false-
positive rates, but also a high overall power as measured by the area 
under the receiver-operating characteristic (ROC) curve (Supple-
mentary Table S3). With the exception of VarScan17, however, deep-
SNV is the only method speci�cally designed for detecting SNVs 
in mixed populations with an unknown number of clones. For low 
frequencies of 10 − 3, deepSNV achieves a power of 86%, compared 
with the second-best method with 53%. Our algorithm was also  
the fastest because of a direct C interface to the condensed bam 
alignments that present a bottleneck for nucleotide-wise analysis.

�e deepSNV algorithm uses a Phred quality cuto� to avoid false 
positives caused by ambiguous nucleotide calls. �e choice of the 
cuto� has a negligible e�ect on performance as long as it is greater 
than 10 (Supplementary Fig. S5A). For higher cuto�s, there is a 
small decrease in power because of the reduced coverage. A default 
Phred score cuto� of 25 resulted in a good compromise between 
speci�city and sensitivity. �e performance of deepSNV was also 
found not to depend strongly neither on the chosen method of 
P-value combination, nor on PCR ampli�cation (Supplementary 
Table S4). Power calculations show that additional sensitivity for 
calling low-frequency variants can be gained by increased sequenc-
ing depth (Supplementary Fig. S5B). Roughly, the required coverage 
for calling a variant needs to be at least ten times higher than its 
inverse frequency. For large genomes, the power of SNV calling is 
diminished by multiple testing corrections, but it remains high for 
variants present in 1/1,000 alleles (Supplementary Fig. S5C).

Subclonal diversity in renal cell carcinomas. We extracted 10,374 bp 
of the VHL, PTEN, TP53 and CDKN1B genes by PCR from matched 
normal and tumour samples of four clear cell renal cell carcinoma 
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(RCC) patients and sequenced the fragmented amplica at ultra-
deep coverage (Fig. 3a and Supplementary Tables S5–S7). For one 
patient, additional samples from an opposing side of the primary 

tumour and from a metastatic lesion were taken, and an additional 
4,378 bp of the PTEN gene were isolated by PCR. We detected a total 
of 24 (range 1–13 per sample) di�erent SNVs in the tumours with  
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Figure 1 | Testing for low-frequency SNVs with deepSNV. (a) For a mixed sample, the distribution of reads with SNVs (grey arrows with coloured dots) 

resembles the population structure, but sequencing errors (black dots) confound calling of SNVs. A homogeneous control sample allows for precise 

estimation of the local error rate, which is often biased to one strand, and enables accurate SNV calling against the background noise frequency.  

(b) Generative probabilistic model underlying deepSNV and summary of the algorithm. At each position i in the test experiment and for each strand s,  

the frequency of nucleotide b, πs,i,b, is drawn from a beta distribution with mean ps,i,b. The dispersion α quantifies the variability of the nucleotide 

frequencies across experiments. In the absence of an SNV, ps,i,b resembles the error rates. The nucleotide counts Xs,i,b are modelled by a binomial 

distribution with coverage ns,i. The same model is used for generating the nucleotide counts Ys,i,b. in the control experiment with mean error rate qs,i,b. 

Testing for an SNV b at position i amounts to test the null hypothesis that the mean relative frequencies of nucleotide b are identical in test and control 

experiment ps,i,b = qs,i,b. (c) Scatter plot of mean nucleotide frequencies from strand 0 for two phiX replicates (black dots). Colours and contour lines 

denote the strand-specific P-value of deepSNV for median coverage of 166,000. (d) Scatter plot of nucleotide frequencies for a cancer sample and control 

(black dots). Contour lines are shown for the median control coverage of 42,438. (e) Scatter plot of P-values from both strands of the two phiX replicates.  

(f–h) Combining P-values. Contours of the joint P-value for the max (f), average (g) and product (h) statistic. (i) Empirical distribution of joint P-values  

for the two phiX experiments, combined with the max method.
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frequencies ranging from 0.0002 to 0.34, as opposed to only two 
variants with higher frequencies in the controls (FWER  <  0.05,  
beta-binomial test; Table 2 and Fig. 3b). Eight selected subclonal 
variants were resequenced and con�rmed on a Roche GS Junior 
sequencer using 300 bp reads (Supplementary Table S8). �e valida-
tion experiment also showed an accurate agreement of the nucle-
otide frequencies with the original discovery experiment (Fig. 3c). 
�e nucleotide substitution spectrum is similar to previous reports 
in RCC20 (Fig. 3d), with a characteristic overrepresentation of 
{C,G}>{T,A} deaminations at CpG dinucleotides and more preva-
lent G>A substitutions on the transcribed strand.

In three out of four cases, the VHL gene was hit by a high-fre-
quency truncating mutation, namely a stop codon at p.E189* at 
frequency 0.34 in tumour 1, and two single-nucleotide deletions, 
c.565delG and c.349delT, observed at frequencies 0.17 and 0.24 
in tumour 2 and in the multiple lesions samples, respectively. �e 
remaining 21 subclonal variants had low frequencies. Four subclonal 
SNVs were found in coding regions, of which one SNV at frequency 
0.01 in tumour 2 introduces a stop codon in TP53 at p.E198. Another 
four SNVs occur in 3′- and 5′- untranslated regions. �e remain-
ing 13 variants are located in intronic regions. �e co-occurrence  
of two intronic SNVs at 20-bp distance in tumour 1 (chr17: 
7577407A>C and chr17: 7577427G>A) was detected both in the 

discovery experiment using Illumina and in the validation experi-
ment using 454/Roche. All other SNVs sequenced on the same 
amplica were detected on separate alleles. �e number of SNVs was 
much greater in tumour 1 (n = 13) and tumour 2 (n = 8) than in the 
other samples that contained only one or two SNVs.

�e estimated nucleotide frequencies may be utilised to infer 
regions of lost heterozygosity. For this purpose, the frequencies of 
germline single-nucleotide polymorphisms (SNPs) were assessed. 
�e di�erence of the SNP allele frequencies in the normal versus 
tumour samples measures the excess of an allele that indicates lost 
heterozygosity (Fig. 4a–c). With this approach, we detected loss 
of parts of chromosome 3 in �ve out of six samples, including the 
multiple-lesions cases. �e copy-number losses were con�rmed by 
standard copy-number analysis using 250-kb SNP arrays in three 
matched tumour-normal samples (Fig. 4d–f).

�e SNP allele counts also allow for estimating the fraction of 
cells with a lost allele, which can indicate a mixture of normal and 
tumour cells (Fig. 4g). We estimated a tumour content of 42 to 50%. 
In the case of multiple lesions per patient, the tumour content was 
conserved across the three samples, which suggests a constant,  
stable equilibrium between tumour and normal cells (Fig. 4h).  
�e frequency of hemizygous SNPs in all three cases with loss-
of-heterozygosity (LOH) agrees well with the mutation frequen-
cies of truncating VHL mutations, suggesting that both alleles  
of this tumour suppressor gene are impaired in tumour cells.  
Taken together, the clonal VHL point mutation and loss of chro-
mosome arm 3p as well as the 7 subclonal mutations found at the  
time of diagnosis suggest, for tumour 1, the evolutionary history 
summarised in Fig. 5.

Discussion
We have presented a comparative targeted deep-sequencing 
approach and a powerful statistical algorithm for detecting sub-
clonal SNVs in heterogeneous cell populations. �e speci�city and 
sensitivity of the method have been rigorously assessed on multiple 
control experiments. Its reliability results from an overdispersed  
statistical model of nucleotide counts and from integrating the 
signals from both DNA strands. �e current limit of detection is 
around 1/10,000 alleles, but it may be further improved by increased 
coverage and higher sequencing �delity with improved biochemis-
try or barcoded reads21.

�e method can be applied to any tissue sample of a heterogene-
ous cell population for which a control sample is available. It may 
be utilised for the analysis of pathogen populations, such as viruses 
or bacteria, for the assessment of T-cell diversity22, or for detect-
ing rare somatic mutations associated with diseases, such as the  

Table 1 | Comparison of SNV calling methods.

SNV frequency Errors CPU 
time

10 − 1 10 − 2 10 − 3 10 − 4 10 − 5

Truth 101 46 57 44 36 5,740*
deepSNV 
FDR  < 0.05

101 46 53 3 0 2 141 s

deepSNV 
FWER  < 0.05

99 46 49 0 0 0 141 s

VarScan17 
pileup2snp

96 42 26 32 8 472 361 s†

VarScan 
somatic

50 29 34 1 0 33 439 s†

CRISP18 91 43 46 0 0 16 44 h
vipR19 98 43 30 0 0 1 279 s†

Abbreviations: CPU central processing unit; FDR, false discovery rate; FWER, family-wise error 
rate; SNVs, single-nucleotide variants

*Number of negatives=4 tests×1,512 positions − 284 SNVs − 24 masked positions (23 validated 
subpopulation and 1 alignment artefact).

†Including 260 s for the samtools pileup command.
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Proteus syndrome23. Another application is the cost-e�ective 
pooled sequencing of multiple individuals. In cases where a pure 
sample of the majority clone is not available, a closely related refer-
ence sample could be used as a control, for example, a stock plas-
mid of the genomic regions of interest. �e deepSNV algorithm has 
primarily been designed for targeted sequencing of selected loci at 
ultra-deep coverage, but power calculations indicate that the algo-
rithm can also detect heterozygous mutations at 100× coverage in 
comparative exome-sequencing studies, and simulations show that 
this application is computationally feasible.

We have demonstrated the utility of the sequencing approach for 
RCC tissue samples, revealing multiple subclonal variants and intra-
tumour heterogeneity on the chromosomal and single-nucleotide 
level. In addition, the imbalances of SNP allele frequencies were 
used to correctly predict an LOH on chromosome 3 in only a subset 
of the tumour samples. Recent studies found genomic heterogene-
ity in breast cancer10,24, pancreatic cancer25,26, and B-cell chronic 
lymphocytic leukemia9, as well as mosaic ampli�cations of tyro-
sine kinase receptor genes in glioblastoma27. Together, these �nd-
ings provide compelling evidence for clonal evolution as a general 
mechanism in cancer development. Quantifying subclonal diver-
sity in tumours is important for understanding the driving forces 

of their evolution, and sensitive methods are required for detecting 
low-frequency drug-resistant mutations before treatment28.

Most tumour variants were found at frequencies below 1/1,000 
alleles. �is observation agrees with the notion that mutations 
occur initially in single cells and selection ampli�es few alterations 
to high frequencies, which causes the number of di�erent variants 
to decrease with increasing frequencies. A total of 13 out of 21 sub-
clonal variants occurred in introns, and they are most likely neutral- 
passenger mutations. All SNVs were found in the VHL and TP53 
genes, which show a similar dinucleotide composition as the  
PTEN and CDKN1B amplicons, and made up 8,753 of the 10,375 bp 
sequenced in each sample, suggesting an overrepresentation of  
subclonal SNVs in VHL and TP53 (P = 0.06, Fisher’s exact test) that 
requires further investigation. As the majority of variants is intronic 
and appears to be selectively neutral, a possible explanation might 
be an increased mutation rate at these loci, but additional experi-
ments comprising more genes in a larger cohort are necessary to 
test this hypothesis. An overall elevated mutation rate may also 
explain that two RCC cases showed a substantially larger number of  
low-frequency SNVs than the other samples.

An extrapolation of our �ndings from the selected loci to the 
entire genome suggests that there are more than 100,000 subclonal 
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Figure 3 | Detecting intra-tumour heterogeneity in renal cell carcinomas. (a) Three matched tumour-normal samples and one case with biopsies  
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SNVs present in a tumour cell population of comparable size. �is 
substantial intra-tumour genomic diversity could have important 
consequences for cancer diagnosis and it may directly impact treat-
ment strategies29.

Methods
deepSNV algorithm. �e nucleotide counts in the test experiment Xs,i,b, 
b∈{A,T,C,G, − }, at genomic position i on strand s = 0,1 (forward, reverse), are  
modelled by a hierarchical binomial model with coverage ns,i and substitution  
rates drawn from a beta distribution with mean ps,i,b and parameter α:

p as,i,b s,i,bBeta~ ( , )p

X ns,i,b s,i,b s,i s,i,bBin  | ~ ( , ).p p

Here, the gap symbol (‘ − ’) is treated as a ��h nucleotide character (see Fig. 1b for 
a graphical depiction). �e marginal counts of nucleotide b follow a beta-binomial 
distribution,

X n ps,i,b s,i s,i,b BetaBin~ ( , , ).a

Here, the beta-binomial distribution is parameterised by the mean ps,i,b, 
and dispersion α. For small ps,i,b, the variance of the nucleotide count is 
Var s,i,b s,i s,i,b s,i s,i,b[ ] /X n P n P= + 2 a . �e overdispersion adds a quadratic term to 
the variance, which vanishes for large values of α (compare Fig. 1c and d). In this  
limit, one recovers a binomial model with variance proportional to the mean.

Similarly, we de�ne Ys,i,b as the count of nucleotide b at position i and strand s 
in the control experiment with coverage ms,i,

  BetaBins,i,b s,i s,i,bY m q~ ( , , ).a

(1)(1)

(2)(2)

(3)(3)

(4)(4)

In the absence of an SNV, the substitution rates of non-consensus bases are identi-
cal, ps,i,b = qs,i,b, and re�ect sequencing errors only, whereas in the presence of an 
SNV b with frequency f in the test experiment, the rate ps,i,b = qs,i,b + f is greater 
than the error rate qs,i,b. �e deepSNV algorithm detects SNVs by testing the alter-
native hypothesis H1: ps,i,b > qs,i,b against the null-hypothesis H0: ps,i,b = qs,i,b for 
each locus, nucleotide, and strand by means of a likelihood ratio test statistic

D
g X n p g Y m q

s,i,b
s,i,b s,i s,i,b s,i,b s,i s,i,b= −2

0

log
( ; , , ) ( ; ,( ) a (( )

( ) ( )

, )

( ; , , ) ( ; , ,

0

1 1

a

a ag X n p g Y m qs,i,b s,i s,i,b s,i,b s,i s,i,b ))













ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

Here, g denotes the probability mass function of the beta-binomial distribution,  
p X n
s,i,b s,i s,i
( )

/
1 =ˆ  and q Y m

s,i,b s,i,b s,i
( )

/
1 =ˆ  are the method-of-moments  

estimates of the mean nucleotide rates under H1, and p X Y
s,i,b s,i,b s,i,b
( )

/(
0 = +( ) + =ˆ  

n m qb s,i s,i s,i,b
( )

/( ) ˘ 0= +( ) + = ˆ  the estimated mean rate under H0. �e estimate of the disper-
sion is computed by numerical maximisation of the log-likelihood under H0, 

a a
a

= argmax log ( ; , , ) ( ; ,( )g X n p g Y m qs,i,b s,i s,i,b s,i,b s,i s,i,b
0 (( ) , )0 a



∑s,i,b

ˆ ˆ ˆ .

Under the null-hypothesis and for large coverages, Ds,i,b is c1
2
-distributed with 

one degree of freedom, as the models are nested, H0H1. A P-value is computed 
as Ps,i,b = 1 − G(Ds,i,b), where G is the cumulative distribution function of the c1

2
 

distribution.
�e resulting two P-values for each strand P0,i,b and P1,i,b can be combined  

in di�erent ways into a single P-value, depending on which violation of the joint 
null-hypothesis is characteristic of true SNVs. �e joint P-value Pi,b denotes the 
probability that the observed combination of nucleotide counts on both strands 
resulted from sequencing errors. It is de�ned as the tail probability of a given  
combination of P-values Qi,b(P0,i,b, P1,i,b) under the null-hypothesis that the 
P-values of both strands are independently uniformly distributed. �e maximum 
statistic Qi,b = max{P0,i,b, P1,i,b} generates a joint P-value of Pi,b = max{P0,i,b, P1,i,b}2 
as a joint P-value (Fig. 1f). �e average statistic Qi,b = (P0,i,b + P1,i,b)/2 yields 
Pi,b = (P0,i,b + P1,i,b)2 if P0,i,b + P1,i,b  < 1 and (1 − P0,i,b − P1,i,b)2 else (Fig. 1g). A third 

(5)(5)

Table 2 | SNVs in tumor samples.

Sample Gene Chr. Pos.* Ref.† Var.‡ Discovery Validation dbSNP Type

Freq.§ P value Freq.§ P value

T1 VHL chr3 10188193 G A 0.0004 2e-03 Intronic
10191572 G T 0.3500  < 2e-300 p.E189*
10191635 C T 0.0002 9e-03 p.R210W

TP53 chr17 7572600 G A 0.0008 2e-05  
0.0007
0.0007
0.0001

 
1e-07 
3e-03 
6e-01

3′ UTR
7577407 A C 0.0010 9e-14 Yes

Yes
Intronic

7577427 G A 0.0008 1e-09 Intronic
7577653 G A 0.0004 7e-05 Intronic
7578183 C T 0.0007 2e-06 Yes p.P222P

T2 VHL chr3 10183359 T C 0.0005 1e-04 5′ UTR
10188161 G A 0.0003 8e-05

0.0002
0.0004
0.0002

2e-02
3e-02
3e-01

Yes Intronic
10188329 G A 0.0003 4e-08 Intronic
10188427 G A 0.0004 2e-05 Intronic
10188549 G A 0.0003 9e-06 Intronic
10191572 G — 0.1686 5e-297 c.565delG
10191620 C T 0.0005 2e-03 p.R205C
10192372 G A 0.0004 5e-06 3′ UTR

TP53 chr17 7573512 G A 0.0006 4e-03 Intronic
7573681 C T 0.0006 3e-04 Yes Intronic
7577368 G A 0.0007 4e-03 Intronic
7577999 T C 0.0003 9e-03

0.0177 2e-21

3′ UTR 
(variable)

7578257 C A 0.0113 7e-89 p.E198*

T3 TP53 chr17 7573682 G A 0.0003 9e-03 Intronic
P1 VHL chr3 10188206 T — 0.2396 2e-278 c.349delT
P2 VHL chr3 10188206 T — 0.2412 3e-288 c.349delT
M VHL chr3 10188206 T — 0.2440 1e-303

0.0051 1e-38
c.349delT

VHL 10192220 C G 0.0046 1e-29 3′ UTR

Abbreviations: Chr., chromosome; Freq., frequency; Pos., position; Ref., reference; SNP, single-nucleotide polymorphism; SNVs, single-nucleotide variants; UTR, untranslated region; Var. variant;

* UCSC hg19 coordinates.

† Major allele in control sample.

‡ Variant detected by deepSNV.

§ Average frequency of both strands in tumour−average frequency in control.

 Coordinates refer to the Ensembl transcripts ENST00000256474 (VHL) and ENST00000269305 (TP53).
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alternative is Fisher’s method30, which is based on the product of the two P-values 
Qi,b = P0,i,b×P1,i,b, the negative logarithm of which then follows c2

2
-distribution 

(Fig. 1h).
�e algorithm tests in total N×4 genomic sites, where N denotes the length of 

the sequence and 4 equals the size of the alphabet minus 1, as the consensus base 
is excluded from the test. �e combined P-values are thus corrected for multiple 
testing by either the method of Bonferroni or Benjamini–Hochberg31 for a control 
of the FWER or the FDR, respectively. To avoid false positives arising from bad 
nucleotides, the algorithm can be adjusted to only consider calls above a Phred 
threshold, which was set to 25.

Detection of LOH and tumour content from SNP frequencies. LOH skews the 
allele-frequency ratios of heterozygous SNPs in tumour samples, which are typi-
cally a mixture of tumour and normal cells. Suppose there exists a heterozygous 
SNP with alleles A and a in the sample. Ideally, the ratio of A and a alleles would be 
r = fA/fa = 1. If the tumour population has lost allele a, then the frequency of A to a 
alleles changes to r = (1 − ρ) − 1, where ρ is the fraction of tumour cells. In the case 
of aneuploidy of degree n in allele a, the fraction of cells with LOH, that is, tumour 
cells, can be estimated as ρ = [r − 1]/[r + (n − 1)].

In the presence of sequencing bias, the observed ratio of allele A over a is 
altered. If, for a heterozygous SNP, the true ratio is known to be one, then the  
bias can be estimated from a control experiment as the inverse allele ratio 1/r0. 
�us, the corrected tumour fraction is ρ = [r/r0 − 1]/[r/r0 + (n − 1)]. For a simple 
LOH (n = 1), the corrected tumour fraction is ρ = 1 − r0/r.

Experimental test data. Six 1.5 kb variants of the HIV pol gene were cloned, 
sequenced with Sanger sequencing, and mixed at frequencies 10 − 5, 10 − 4, 10 − 3, 
10 − 2, 10 − 1 and 0.89999, respectively. A pure sample of the majority clone served  
as the control. Both samples were additionally ampli�ed by 25 cycles of PCR.  
�e resulting four samples were fragmented, adaptor-ligated and sequenced  
with barcodes in a single lane of an Illumina GAIIx sequencer. �e resulting  
reads were aligned to the HXB2 reference with novoalign version 2.07.10  
(www.novocra�.com).

Comparison of methods. �e performance of deepSNV on the test data was  
compared with VarScan 2.2.5 (ref. 17), CRISP,18 v5 and vipR19 0.0.11. For each 
algorithm, the minimal base quality was set to 25, and only variants from both 
strands were accepted. �e minimal variant frequency was set to 1/10,000  
(VarScan) and the poolsize was set to 10,000 (CRISP, vipR). ROC curves and  
the area under the ROC curve were computed for each variant frequency with  
the R package ROCR32. See Supplementary Methods for a detailed description  
of the chosen options.

Power calculations. �e power of the deepSNV algorithm was assessed as a 
function of sequencing depth, genome size and minimal Phred nucleotide quality. 
For coverage smaller than the observed, the power of deepSNV was computed by 
sub-sampling without replacement from the actual nucleotide counts. For higher 
coverage, error rates πs,i,b were drawn independently for each genomic locus from 
a Dirichlet distribution trained across all observed sites. �e nucleotide counts 
Xs,i,b and Ys,i,b were sampled from multinomial distributions with mean coverage 
of the test and control experiments, respectively.

To quantify the loss of power introduced by Benjamini–Hochberg multiple-
testing correction, we sampled the distribution of P-values 20 times, corrected each 
sample for a given number of tests, and averaged the results. For the Bonferroni 
method, no sampling was performed; instead the P-values were directly adjusted  
to the number of tests imposed by a given genome size. �e e�ect of the Phred 
quality cuto� was measured by varying the threshold at increments of 5 from  
0 to 35 on the actual data and computing the power for each threshold.

RCC samples. �is study was approved by the local commission of ethics (refer-
ence number StV 38-2005). Four fresh-frozen samples, including normal tissue, 
from a single metastatic RCC patient and matched tumour-normal samples from 
three other RCC patients were analysed. Approximately 50 µg of genomic DNA 
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Figure 4 | Detecting copy-number alterations from SNP imbalances. (a–c) Allele frequencies of known SNPs in matched tumour-normal samples. 

(a) Tumour 1, (b) tumour 2, (c) tumour 3. Light colours denote the frequency in the normal control, dark colours denote the frequency in the tumour. 

A deviation from heterozygous SNP frequencies of 0.5 indicates loss of heterozygosity (LOH). (d–f) Copy number profiles and logarithmic probe 

intensities of 1 M SNP arrays for the samples presented in panel (a–c). (g) Fraction of cells with LOH. The difference of heterozygous SNP frequencies 

on chromosome 3 (chr3) allows for computing the number of cells carrying only one copy. The resulting fraction of 43% is conserved across the three 

tumour samples of the same patient. (h) Histology of RCC. CD34-positive, non-cancerous cells (brown) in the primary RCC tissue sample. Nuclei are 

stained blue. The scale bar denotes 100 µm.
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was isolated from each sample and selected loci were ampli�ed with 33 cycles of 
PCR using a total of at least 100 ng genomic DNA as template. �e amplica were 
pooled according to their length, fragmented, adaptor-ligated and sequenced on 
separate lanes of an Illumina GAIIx sequencer (multiple lesions case) with 76 bp 
single-end reads or on a single lane of an HiSeq2000 sequencer with barcoded 
adaptors and 36 bp single-end reads. Reads were aligned to the UCSC hg18 human 
reference (multiple lesions) or the UCSC hg19 reference with novoalign 2.07.10 
(Supplementary Methods).

Subclonal variant validation. Eight subclonal SNVs were selected for validation 
on a Roche GS Junior sequencer. A total of four PCR amplicons approximately 
300 bp long were extracted from 100 ng template DNA with primers contain-
ing sequencing adaptors. For TP53 exon 7 and VHL exon 2, the corresponding 
amplicon used for Illumina sequencing served as PCR template, whereas in the 
other two cases primary tumour DNA was used. Reads were aligned using Mosaik 
(http://bioinformatics.bc.edu/marthlab/Mosaik) to the hg19 human genome. 
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