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Abstract

In this paper we show that a classic optical �ow technique by Nagel and Enkel�

mann �	��
� can be regarded as an early anisotropic di�usion method with a di�u�
sion tensor� We introduce three improvements into the model formulation that �i�

avoid inconsistencies caused by centering the brightness term and the smoothness

term in di�erent images� �ii� use a linear scale�space focusing strategy from coarse

to �ne scales for avoiding convergence to physically irrelevant local minima� and

�iii� create an energy functional that is invariant under linear brightness changes�

Applying a gradient descent method to the resulting energy functional leads to a

system of di�usion�reaction equations� We prove that this system has a unique

solution under realistic assumptions on the initial data� and we present an e�cient

linear implicit numerical scheme in detail� Our method creates �ow �elds with

	�� � density over the entire image domain� it is robust under a large range of

parameter variations� and it can recover displacement �elds that are far beyond the
typical one�pixel limits which are characteristic for many di�erential methods for

determining optical �ow� We show that it performs better than the classic optical

�ow methods with 	�� � density that are evaluated by Barron et al� �	����� Our

software is available from the Internet�

Keywords� image sequences� optical �ow� di�erential methods� anisotropic
di�usion� linear scale�space� regularization� �nite di�erence methods� perfor�
mance evaluation

�



� Introduction

Optical �ow computation consists of �nding the apparent motion of objects in a sequence
of images	 Recovering this displacement �eld is a key problem in computer vision and
much research has been devoted to this �eld during the last two decades	 For a survey
of these activities we refer to Mitiche and Bouthemy 
��
� and performance evaluations
of some of the most popular algorithms include papers of Barron et al� 
�
� J�ahne and
Haussecker 
��
� and Galvin et al� 
��
	

One important class of optical �ow methods consists of so�called di�erential methods	
Often they are considered as useful only in the case of small displacement �elds	 The goal
of the present paper is to show that a combination of linear and nonlinear scale�space
ideas may lead to a well�posed di�erential method that allows to recover the optical �ow
between two images with high accuracy� even in the case of large displacement �elds	

We consider two images I��x� y� and I��x� y� �de�ned on R� to simplify the discussion�
which represent two consecutive views in a sequence of images	 Under the assumption
that corresponding pixels have equal grey values� the determination of the optical �ow
from I� to I� comes down to �nding a function h�x� y� � �u�x� y�� v�x� y�� such that

I��x� y� � I��x � u�x� y�� y � v�x� y��� ��x� y� � R
�� ���

To compute h�x� y� the preceding equality is usually linearized yielding the so�called
linearized optical �ow constraint

I��x�� I��x� �
�
rI��x�� h�x�

�
�x ���

where x �� �x� y�	 The linearized optical �ow constraint is based on the assumption that
the object displacements h�x� are small or that the image is slowly varying in space	 In
other cases� this linearization is no longer valid	

Frequently� instead of equation ���� the alternative equality

I��x� u�x� y�� y � v�x� y�� � I��x� y�� ��x� y� � R
� ���

is used	 In this case the displacement h�x� y� is centred in the image I��x� y��
The determination of optical �ow is a classic ill�posed problem in computer vision


��
� and it requires to be supplemented with additional regularizing assumptions	 The
regularization by Horn and Schunck 
��
 re�ects the assumption that the optical �ow
�eld varies smoothly in space	 However� since many natural image sequences are better
described in terms of piecewise smooth �ow �elds separated by discontinuities� much
research has been done to modify the Horn and Schunck approach in order to permit
such discontinuous �ow �elds� see 
�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��

and the references therein	

An important improvement in this direction has been achieved by Nagel and Enkel�
mann 
��
 in ���� �see also 
��
�	 They consider the following minimization problem�

ENE�h� �

Z
R

�

�I��x� u�x� y�� y� v�x� y�� � I��x� y��
� dx ���

� C

Z
R
�

trace
��
rh
�T

D �rI��
�
rh
��

dx

�



where C is a positive constant and D �rI�� is a regularized projection matrix in the
direction perpendicular of rI��

D �rI�� �
�

jrI�j� � ���

��	
�

�
� �I�

�y

��I�
�x



A
�
� �I�

�y

��I�
�x



A

T

� ��Id

���
�� � ���

In this formulation� Id denotes the identity matrix	 The advantage of this method is
that it inhibits blurring of the �ow across boundaries of I� at locations where jrI�j � �	

In spite of its merits� however� this method still leaves room for improvements�

�i� The Nagel�Enkelmann model uses an optical �ow constraint which is centred in
I�� while the projection matrix D in the smoothness term depends on I�	 This
inconsistency may create artifacts for large displacement �elds	

�ii� Refraining from a linearization of the optical �ow constraint has the consequence
that the energy functional ��� may be nonconvex	 In this case popular algorithms
such as gradient descent methods may get trapped in physically irrelevant local
minima	

�iii� Minimizers of the energy functional ��� are not invariant under linear brightness
changes of the images I� and I�	

In the present paper we will address these points by introducing three improvements
into the Nagel�Enkelmann model�

�i� We design an energy functional that consistently centers both the optical �ow
constraint and the smoothness constraint in the same image	

�ii� We encourage convergence to the global energy minimumby embedding the method
into a linear scale�space framework that allows to focus down from coarse to �ne
scales in small steps	

�iii� We introduce an adaptation of the parameters C and � to the dynamic range
of the images such that the resulting energy functional is invariant under linear
brightness rescalings	 This adaptation is particularly useful in the context of our
scale�space focusing which alters the dynamic range of the images	

Applying the gradient descent method to our model leads to a coupled system of two
di�usion�reaction equations� for which we establish the existence of a unique solution	
Interestingly� these equations can be related to anisotropic di�usion �ltering with a
di�usion tensor	 We present an e�cient numerical scheme that is based on a linear
implicit �nite di�erence discretization	 Afterwards� we discuss the role of the model
parameters and demonstrate that our model allows very accurate recovery of optic �ow
�elds for a large range of parameters	 This is done by considering both synthetic image
sequences� for which ground truth �ow �elds exist� as well as a real�world test sequence	

�



Owing to the scale�space focusing� our model is particularly suited for recovering large
displacement �elds	

The paper is organized as follows� In Section � we describe our optical �ow method
that incorporates the three improvements� and we show that the Nagel�Enkelmann
method and its modi�cations are closely related to anisotropic di�usion �ltering	 In
Section � we present existence and uniqueness results for the nonlinear parabolic system
that arises from using the gradient descent method for minimizing the energy functionals	
Section � describes an e�cient numerical discretization of this system based on a linear
implicit �nite di�erence scheme	 Section � clari�es the role of the model parameters�
and in Section � we present experimental results on synthetic and real�world image
sequences	 Finally� in Section � we conclude with a summary	

Related work� Proesmans et al� 
��� ��
 studied a related approach that also
dispenses with a linearization of the optical �ow constraint in order to allow for larger
displacements	 Their method� however� requires six coupled partial di�erential equations
and its nonlinear di�usion process uses a scalar�valued di�usivity instead of a di�usion
tensor	 Their discontinuity�preserving smoothing is �ow�driven while ours is image�
driven	 Another PDE technique that is similar in vein to the work of Proesmans et al�
is a stereo method by Shah 
��
	 Other �ow�driven regularizations with discontinuity�
preserving properties include the work of Aubert et al� 
�
� Cohen 
��
� Deriche et al�

��
� Hinterberger 
��
� Kumar et al� 
��
� Schn�orr 
��
� Weickert 
��
� and Weickert
and Schn�orr 
��
	 Related stochastic regularization approaches have been studied by
Black and Anandan 
��� ��
� Blanc�F�eraud et al� 
��
� Heitz and Bouthemy 
��
� and
M�emin and P�erez 
��
	 The image�driven anisotropic Nagel�Enkelmann approach has
been subject to many subsequent studies	 Examples include later work by Nagel 
��� ��

as well as research by Schn�orr 
��� ��
 and Snyder 
��
	 A multigrid realization of this
method has been described by Enkelmann 
��
� and a related pyramid framework is
studied by Anandan 
�
	 An isotropic image�driven optic �ow regularization is inves�
tigated by Alvarez et al� 
�
	 With respect to embeddings into a linear scale�space
framework our method can be also be related to the optical �ow approach of Florack et
al� 
��
	 Their method di�ers from ours in that it is purely linear� applies scale selection
mechanisms and does not use discontinuity�preserving nonlinear smoothness terms	 Our
focusing strategy for avoiding to end up in irrelevant local minima also resembles the
graduated non�convexity �GNC� algorithms of Blake and Zisserman 
��
	 A preliminary
version of our work has been presented at a conference 
�
� and a related optical �ow
method has been used by Hinterberger 
��
 to generate a movie between two images	

� The Model

In this section we consider three modi�cations of the Nagel�Enkelmann model in order
to improve its performance in the case of large displacement �elds	 We also discuss
relations between this method and anisotropic di�usion �ltering	
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��� Consistent Centering

We have seen that the energy functional ��� uses an optical �ow constraint and a smooth�
ness term that are is centred in di�erent images	 Our experiments showed that this
inconsistency may lead to artifacts when the displacement �eld is large	 As a remedy�
we consider a modi�ed energy functional where both the optical �ow constraint and the
smoothness constraint are related to I��

E�h� �

Z
R
�

�I��x� y� � I��x � u�x� y�� y � v�x� y���� dx

� C

Z
R
�

trace
��
rh
�T

D �rI��
�
rh
��

dx� ���

The associated Euler�Lagrange equations are given by the PDE system

C div �D �rI�� ru� �
�
I��x�� I��x � h�x��

� �I�
�x

�x� h�x�� � �� ���

C div �D �rI�� rv� �
�
I��x�� I��x � h�x��

� �I�
�y

�x� h�x�� � �� ���

In this paper� we are interested in solutions of the equations ������� in the case of
large displacement �elds and images that are not necessarily slowly varying in space	
Therefore� we do not use the linearized optic �ow constraint ��� in the above system	

��� Relations to Anisotropic Di�usion Filtering

We obtain the solutions of the Euler�Lagrange equations ������� by calculating the
asymptotic state �t��� of the parabolic system

�u

�t
� C div �D �rI�� ru� �

�
I��x�� I��x � h�x��

� �I�
�x

�x� h�x��� ���

�v

�t
� C div �D �rI�� rv� �

�
I��x�� I��x � h�x��

� �I�
�y

�x� h�x��� ����

These equations do also arise when the steepest descent method is applied in order
to minimize the energy ���	

Interestingly� this coupled system of di�usion�reaction equations reveals a di�usion
tensor which resembles the one used for edge�enhancing anisotropic di�usion �ltering	
Indeed� D�rI�� has the eigenvectors v� �� rI� and v� �� rI�� 	 The corresponding
eigenvalues are given by

���jrI�j� �
��

jrI�j� � ���
� ����

���jrI�j� �
jrI�j

� � ��

jrI�j� � ���
� ����

We observe� that �� � �� � � holds independently of rI�	 In the interior of objects
we have jrI�j � �� and therefore �� � ��� and �� � ���	 At ideal edges where

�



jrI�j � �� we obtain �� � � and �� � �	 Thus� we have isotropic behaviour within
regions� and at image boundaries the process smoothes anisotropically along the edge	
This behaviour is very similar to edge�enhancing anisotropic di�usion �ltering 
��
� and
it is also close in spirit to the modi�ed mean�curvature motion considered in 
�
	 In this
sense� one may regard the Nagel�Enkelmann method as an early predecessor of modern
PDE techniques for image restoration	

One structural di�erence� however� should be observed� the optical �ow equations
�������� use a temporally constant di�usion tensor� while the nonlinear di�usion tensor
of anisotropic di�usion �ltering is a function of the evolving image itself	 Hence� the
Nagel�Enkelmann model is anisotropic and space�variant� but it remains linear in its
di�usion part	 Related linear anisotropic di�usion �lters have been pioneered by Iijima
in the sixties and seventies in the context of optical character recognition� see 
��
 and
the references therein	 For a detailed treatment of anisotropic di�usion �ltering we refer
to 
��
� an axiomatic classi�cation of mean�curvature motion and related morphological
PDEs for image analysis is presented in 
�
� and recent collections of papers on PDE�
based image smoothing methods include 
�� ��� ��� ��
	

��� Recovering Large Displacements by Scale�Space Focusing

The energy functional ��� may be nonconvex due to its data term without linearization	
In this case we cannot expect the uniqueness of solutions of the elliptic system ����
���	 As a consequence� the asymptotic state of the parabolic system ��������� which we
use for approximating the optical �ow� depends on the initial data	 Typically� we may
expect that the algorithm converges to a local minimizer of the energy functional ���
that is located in the vicinity of the initial data	 When we have small displacements
in the scene� the natural choice is to take u � v � � as initialization of the �ow	
For large displacement �elds� however� this may not work� and we need better initial
data	 To this end� we embed our method into a linear scale�space framework 
��� ��
	
Considering the problem at a coarse scale avoids that the algorithm gets trapped in
physically irrelevant local minima	 The coarse�scale solution serves then as initial data
for solving the problem at a �ner scale	 Scale focusing has a long tradition in linear
scale�space theory �see e	g	 Bergholm 
�
 for an early approach�� and in spite of the fact
that some theoretical questions remain open� it has not lost its popularity	 For more
details on linear scale�space theory we refer to 
��� ��� ��� ��� ��
	 Using a scale�space
approach enables us also to perform a �ner and more reliable scale focusing as it would
be the case for related pyramid or multigrid approaches	

We proceed as follows	 First� we introduce a linear scale factor in the parabolic PDE
system in order to end up with

�u�
�t

� C div �D �rI�� � ru�� �
�
I�� �x�� I�� �x� h��x��

� �I��
�x

�x � h��x��� ����

�v�
�t

� C div �D �rI�� � rv�� �
�
I�� �x�� I�� �x � h��x��

� �I��
�y

�x � h��x�� ����

where I�� �� G� 	 I�� I
�
� �� G� 	 I�� h��x� �� �u��x�� v��x��� and G� 	 Ij represents the

convolution of Ij with a Gaussian of standard deviation �	

�



The convolution with a Gaussian blends the information in the images and allows us
to recover a connection between the objects in I� and I�	 In our application� this global
support property that is characteristic for linear di�usion scale�spaces is very important	
It makes them favourable over morphological scale�spaces in the sense of 
�
� since the
latter ones cannot transport information between topologically disconnected objects	

We start with a large initial scale ��	 Then we compute the optical �ow �u�� � v���
at scale �� as the asymptotic state of the solution of the above PDE system using as
initial data u � v � �� Next� we choose a number of scales �n � �n�� � ���� � ��� and
for each scale �i we compute the optical �ow �u�i� v�i� as the asymptotic state of the
above PDE system with initial data �u�i��� v�i���	 The �nal computed �ow corresponds
to the smallest scale �n	 In accordance with the logarithmic sampling strategy in linear
scale�space theory 
��
� we choose �i �� 	i�� with some decay rate 	 � ��� ��	

��� Invariance Under Linear Greyvalue Transformations

A remaining shortcoming of the modi�ed model is that the energy E�h� is not invariant
under grey level transformation of the form �I�� I��� �kI�� kI��� where k is a constant	
Therefore� the choice of the parameters depends strongly on the image contrast	 This
is especially problematic when the method is embedded in the scale�space focusing
strategy� since the amount of smoothing in�uences the contrast range in the regularized
images G� 	 I� and G� 	 I�	

We address this problem by normalizing the parameters C and � in such a way
that the energy E�h� becomes invariant under grey level transformation of the form
�I�� I��� �kI�� kI��	 We compute C and � by means of two parameters 
 and s � ��� ��
that are calculated via

C �



max
x

�j�rG� 	 I���x�j��
�

s �

Z �

�

HjrG��I�j�z�dz

where HjrG��I�j�z� represents the normalized histogram of jrG� 	 I�j	 We name s
the isotropy fraction	 When s � �� the di�usion operator becomes anisotropic at all
locations� and when s � �� it leads to isotropic di�usion everywhere	 So now C �
C�
�rG� 	 I��� and � � ��s�rG� 	 I��� With this normalization of C and �� the energy
E�h� is invariant under grey level transformation of the form �I�� I�� � �kI�� kI��	 In
practical applications of our method it is thus su�cient to specify the parameters 
 and
s instead of C and �	 The parameters C and � are then automatically adjusted to the
dynamic image range in each step of the focusing procedure	

�



� Existence and Uniqueness of the Parabolic System

In this section we show the existence and uniqueness of solutions of the parabolic system
��������� where D �rI�� � is given by ���	 The parameters C and � can be arbitrary posi�
tive real numbers	 In particular� they may be determined as described in the previous
section	 First we introduce an abstract framework where we study the above system	
This framework is used to show the existence and uniqueness of the solutions afterwards	

��� Abstract Framework

For simplicity we assume that the images are de�ned on the entire space R�� We assume
that the input images I� and I� belong to the functional space L��R��� Let H � L��R��

L��R��� and let us denote by A � D�A� � H � H the di�erential operator de�ned by

A�h� � �C

�
� div �D �rI�� � ru��

div �D �rI�� � rv��



A �

If I� � L��R�� then I�� � W ����R��� so rI�� is bounded and the eigenvalues of the
di�usion tensor D �rI�� � are strictly positive	 Therefore� as C � �� the operator A�h�
is a maximal monotone operator	 For more details about maximal monotone operators
we refer to Brezis 
��
	 Next� let us introduce the function F � H � H de�ned by

F �h� �
�
I�� � I�� �Id� h�

�
rI�� �Id� h��

Then the abstract evolution problem can be written as�	



dh�
dt

� Ah� � F �h�� in H� �t � 
�� T 


h���� � h
�
in H�

����

Any classical solution h� � C��
�� T 
�H� � C�
�� T 
�D�A�� of ���� is given by

h��t� � S�t�h
�
�

Z t

�

S�t� s�F �h��s��ds� ����

where fS�t�gt�� is the contraction semi�group associated to the homogeneous problem	

De�nition� We say that h � C�
�� T 
�H� is a generalized solution of ���� if it
satis	es ��
��

��� Existence and Uniqueness Result

In order to prove existence and uniqueness� we have to establish a lemma �rst	

Lemma � Suppose that I��I� � L��R��� then F is Lipschitz�continuous� and the Lip�
schitz constant L depends on the functions I� and I� and on ��

�



Proof�

First we note that if I��I� � L��R��� then we have in particular that I�� � W ����R��
and I�� � L��R��	 Let h�� h� � H	 For the i�th component of F �h�� � F �h��� i � �� ��
we have the following pointwise estimate	

jFi�h��� Fi�h��j � j�I�� � I�� �Id� h����iI
�
� �Id� h��

� �I�� � I�� �Id� h����iI
�
� �Id� h��j�


 jI�� �Id� h���iI
�
� �Id�

�h��� I�� �Id� h���iI
�
� �Id�

�h��j

� jI�� j�j�iI
�
� �Id� h��� �iI

�
� �Id� h��j�



�

�
j�i�jI

�
� j

���Id� h��� �i�jI
�
� j

���Id� h��j

� kI�� k��j�iI
�
� �Id�

�h��� �iI
�
� �Id� h��j�



�

�
CLip��i�jI

�
� j

����jh� � h�j� kI
�
� k��CLip��iI

�
� ��jh� � h�j




�
�

�
CLip��i�jI

�
� j

��� � kI�� k��CLip��iI
�
� �

�
�jh� � h�j�

where CLip�f� denotes the Lipschitz constant of the function f 	 We �nally deduce that

kF �h��� F �h��kH � kF��h��� F��h��kL� � kF��h��� F��h��kL�



�X

i��

�
�

�
CLip��i�jI

�
� j

��� � kI�� k��CLip��iI
�
� �

�
�kh� � h�kH �

We conclude the proof of the lemma by setting

L �
�X
i��

�
�

�
L
�
�i�jI

�
� j

��
�
� kI�� k��CLip��iI

�
� �

�
�

This shows the assertion	

Now we can state the existence and uniqueness result for problem ���������	

Theorem � Suppose that I��I� � L��R�� then� for all h
�
� H� there exists a unique

generalized solution h��t� � C �
���
�H� of �������
��

Proof�

The assumptions on I� and I� allow us to apply Lemma �	 Assume that h��t� and
h��t� are solutions of ���� for initial conditions h���� and h����� then we have� using
the fact that �A is dissipative �which yields kS�t�fkH 
 kfkH�� and the Lipschitz
continuity of F the following estimate	

kh��t�� h��t�kH 
 kh����� h����kH � L

Z t

�

kh��s�� h��s�kHds�

�



Applying the Gronwall�Bellman lemma 
��
 gives

kh��t�� h��t�kH 
 eLt�kh����� h����kH �

which yields uniqueness of the solution if it exists	 Now consider the Banach space
de�ned by

E � fh � C �
���
�H� � sup
t��

kh�t�kHe
�Kt ��g

endowed with the norm khkE � supt�� kh�t�kHe
�Kt	 Let � � E � C �
���
�H� be

de�ned by

��h��t� � S�t�h
�
�

Z t

�

S�t� s�F �h�s��ds�

If K � L� then ��E� � E� and � is L
K
�Lipschitz since

k��h��� ��h��kE � sup
t��

k���h���t�� ��h���t�kHe
�Kt�


 sup
t��

Z t

�

Lkh��s�� h��s�kHdse
�Kt


 sup
t��

Lkh� � h�kE�e
�Kt

Z t

�

eKsds


 sup
t��

L

K
kh� � h�kE�e

�Kt�eKt � ��



L

K
kh� � h�kE�

We deduce that � is a contraction� and by Banach�s �xed point theorem there exists a
unique h� such that ��h�� � �h�	 This is the generalized solution of ����� and the proof
is concluded	

Remark� We notice that our existence and uniqueness proof is based on rather
weak assumptions on the initial images I� and I�	 We only assumed square integrability	
They do not have to be continuous and may even be corrupted by noise or quantization
artifacts� as is common for real�world images	

� Numerical Scheme

Next we describe an e�cient algorithm for our optical �ow model	 We discretize the
parabolic system ��������� by �nite di�erences �see e	g	 
��
 for an introduction to this
subject�	 All spatial derivatives are approximated by central di�erences� and for the
discretization in t direction we use a linear implicit scheme	 Let D�rG� 	 I�� ��

�
a
b

b
c

�
	

��



Then our linear implicit scheme has the structure

uk��i�j � uki�j



� C

�
ai���j � ai�j

�

uk��i���j � uk��i�j

h��
�
ai���j � ai�j

�

uk��i���j � uk��i�j

h��

�
ci�j�� � ci�j

�

uk��i�j�� � uk��i�j

h��
�
ci�j�� � ci�j

�

uk��i�j�� � uk��i�j

h��

�
bi���j�� � bi�j

�

uk��i���j�� � uk��i�j

�h�h�
�
bi���j�� � bi�j

�
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Although this scheme might look fairly complicated at �rst glance� it is actually straight�
forward to implement	 The notations are almost selfexplaining� for instance� 
 is the
time step size� h� and h� denote the pixel size in x and y direction� respectively� uki�j
approximates u� in some grid point xi�j at time k
 � and I��x is an approximation to

G� 	
�I�
�x

	 We calculate values of type I��xi�j � h
k

i�j� by linear interpolation	
The idea behind linear implicit schemes is to use implicit discretizations in order to

improve stability properties� as long that they lead to linear systems of equations	 The
computationally more expensive solution of nonlinear systems is avoided using suitable

��



Taylor expansions	 In our case we achieved this by using the �rst�order Taylor expansion

I��xi�j � h
k��

i�j � � I��xi�j � h
k

i�j�

� �uk��i�j � uki�j� I��x�xi�j � h
k

i�j�

� �vk��i�j � vki�j� I��y�xi�j � h
k

i�j�

in a fully implicit discretization� and by discretizing G� 	
�I�
�x

and G� 	
�I�
�y

in an explicit
way	 A consistency analysis shows that the preceding scheme is of second order in space
and of �rst order in time	

We solve the resulting linear system of equations iteratively by a symmetric Gau �
Seidel algorithm	 In order to explain its structure let us suppose that we want to solve
a linear system Aw � b where A � D � L� U and D is a diagonal matrix� L a strictly
lower triangular matrix� and U a strictly upper triangular matrix	 Then the symmetric
Gau �Seidel iterations are given by

�D � L�w�n����� � b � U w�n��

�D � U�w�n��� � b � Lw�n�����

where the upper index denotes the iteration index	 The systems are solved directly using
forward and backward elimination� respectively	

In an earlier version of our work 
�
 we have studied an explicit scheme	 The linear
implicit approach that we employ in the meantime has led to a speed�up of one to two
orders of magnitude� since it allows signi�cantly larger time step sizes without creating
stability problems	

� Parameters

Our algorithm for computing the optical �ow depends on a number of parameters that
have an intuitive meaning�

� The regularization parameter 
 speci�es the balance between the smoothing term
and the optical �ow constraint	 Larger values lead to smoother �ow �elds by �lling
in information from image edges where �ow measurements with higher reliability
are available	

� The isotropy fraction s determines the contrast parameter � via the cumulative
histogram of the image gradient magnitude	 Choosing e	g	 s �� ��� means that
the smoothness term di�uses isotropically at �� ! of all image locations� while
�� ! of all locations are assumed to belong to image edges� where smoothing is
performed anisotropically along the edge	

� The scale �� denotes the standard deviation of the largest Gaussian	 In general�
�� is chosen according to the maximum displacement expected	

� The decay rate 	 � ��� �� for the computation of the scales �m �� 	m��	 We may
expect a good focusing if 	 is close to �	

��



Figure �� Computation of the optical �ow for the square images with 
 � ���� s � ����
and 	 � ����	 From top to bottom and from left to right we show the original image
pair and the optical �ow components �u� v� for �� � ��� ��� � ���� ��� � ���� �	
 � ����
and ��� � ���	

� The smallest scale is given by �n	 It should be close to the inner scale of the image
in order to achieve optimal �ow localization	

� The time step size 
 and the stopping time T for solving the system ��������� at
each scale �m are pure numerical parameters	 We experienced that �xing 
 �� ��
and T �� ��� creates results that are su�ciently close to the asymptotic state	
Using smaller values of 
 or larger values of T slowed down the algorithm without
improving the quality of the �ow �elds	

In the next section we will see that the results of our method are hardly a�ected by
fairly large parameter variations	 As a consequence default values can be used for most
of the parameters	

� Experimental Results

Figure � shows our �rst experiment	 We use a synthetic image composed of four black
squares on a white background	 Each square moves in a di�erent direction and with

��



Figure �� Left� Average angular error of the optic �ow calculations for the squares in
the �rst frame of Figure �	 Right� Corresponding average Euclidean error	

a di�erent displacement magnitude� under the assumption that the x axis is oriented
from left to right and the y axis from top to bottom� the left square on the top moves
with �u� v� � ���� ��� the right square on the top is displaced with �u� v� � ����� ���
the left square on the bottom is shifted by �u� v� � ������� and the right square on the
bottom undergoes a translation by ���������	 In order to visualize the �ow �eld �u� v�
we use two grey level images �ugl� vgl� de�ned by ugl �� ��� � ��u and vgl �� ��� � ��v	
From Figure � we notice that the �ow estimates improve signi�cantly by focusing down
from �� �� �� to ��� �� ���� �ow discontinuities evolve and the calculated �ow �elds
approximate the true motion �eld more and more	

This qualitative observation is con�rmed in the quantitative evaluations carried out
in Figure �	 The left plot shows the average angular errors in the four squares of the
�rst frame	 The angular error "e has been calculated in the same way as in Barron et
al� 
�
 using

"e �� arccos

�
ucue � vcve � �p

�u�c � v�c � ���u�e � v�e � ��

�
����

where �uc� vc� denotes the correct �ow� and �ue� ve� is the estimated �ow	 The right plot
depicts the Euclidean error

p
�ue � uc�� � �ve � vc�� averaged over all pixels within the

four squares of the �rst frame	
In both cases we observe that the error is reduced drastically by focusing down in

scale�space until it reaches a very small value when the Gaussian width � approaches
the inner scale of the image	 Further reduction of � leads to slightly larger errors	 It
appears that this is caused by discretization and quantization e�ects	 We evaluated the
error only in the interior of the squares because of the constant background	 The �ow is
not de�ned correctly in this area in the sense that any displacement of the background
is compatible with the image sequence	

We notice that when an object moves across the image sequence� the background is
partially occluded	 This occlusion problem is illustrated in Figure �	 In the direction of
the object motion a region of the background is occluded� so the points of this region

��



Figure �� Illustration of the occlusion problem	 A square is moving from I� to I�� The
shadowed region in the image I� has no correspondence in I��

�the shadowed area of Figure �� have no correspondence in I�� and the optical �ow
constraint is no longer valid	 In this background region some perturbations appear as it
can be seen in Figure �	 However� we observed that the smoothness term of the energy
helps to reduce the e�ects of such perturbations	

For the following experiments we use test sequences from the paper of Barron� Fleet�
and Beauchemin 
�
	 These data are available at their ftp site ftp���csd�uwo�ca in the
directory pub�vision	

We start with the classical Hamburg taxi sequence� but instead of taking two consec�
utive frames � as is usually done � we consider the frames �� and ��	 The dark car at
the left creates a largest displacement magnitude of approximately �� pixels	 In Figures
� and � we present the computed �ow	 The computed maximal �ow magnitude is ������
which is a good approximation of the actual displacement of the dark car	

Next we perform quantitative comparisons with classic optical �ow techniques from
the survey paper of Barron et al� 
�
	 This is done using their ground truth data as well
as the evaluation utilities that are available from the their ftp site	 It should be noted
that the results in 
�
 have been achieved with test sequences where the displacements
are small� while our method is designed for large displacement �elds	 Moreover� their
methods also used a presmoothing in time which involves more than two frames� whereas
we use only two frames	 In spite of these limitations we are going to show that we can
obtain competitive results with our method	

In the comparison we focus on those methods in 
�
 that create �ow �elds with ���!
density	 For many subsequent tasks such as the inference of egomotion and surface
structure this is a very desirable property	 Local methods that yield a lower density
may have to be supplemented with additional strategies for �lling in information at
locations where no results are available	 Their practical performance may thus depend
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Figure �� Computation of the optical �ow for the taxi sequence �frames �� and ��� with

 � ���� s � ���� �� � ��� �n � ���� and 	 � ����	

��



Figure �� Vector plot of the optical �ow from Figure �	

��



Figure �� Computation of the optical �ow for the Square� sequence with 
 � ����
s � ���� �� � ��� �n � �� and 	 � ����	

heavily on this postprocessing	 Variational approaches with smoothness terms do not
require such a postprocessing step as they automatically yield �ow �elds with ��� !
density	

In Figures � and � we show the computed optical �ow for the Square� sequence that
depicts a square moving with velocity ����� ����	 Table � gives a comparison with the
results of Barron et al� for some classic optic �ow techniques that create �ow �elds
with ��� ! density	 It can be seen that our proposed technique reveals smaller errors
than these methods	 In particular� this also shows that our three modi�cations improve
Nagel�s method substantially	 While the implementation of Nagel�s method in 
�
 gives
an angular error of ������� our method reveals an error of ������	 In this example Barron
et al� assume that the background moves in the same direction as the square	 However�
as the background is constant the displacement is not well de�ned in this area	 If we
focus our attention on the error of the computed �ow within the interior of the square
we obtain an average angular error of ����	 This shows that the computed �ow is very
accurate in the interior of the square	

Next we draw our attention to the most complex synthetic test sequence from 
�
�
the Yosemite sequence with cloudy sky	 It contains displacements of up to �ve pixels	
Our optical �ow results are shown in Figures � and �� and a juxtaposition with other
methods can be found in Table �	 Again our technique outperforms all methods from

�
 which yield �ow �elds with ��� ! density	 With an angular error of ����� it even
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Figure �� Vector plot of the optical �ow from Figure �	

Table �� Comparison between the results from 
�
 with ��� ! density and our method
for the Square� sequence	

Technique Aver� Error Stand� Deviat� Density

Horn and Schunck �original� �
��	� 	��
�� 	��!

Horn and Schunck �modi�ed� ����	� 	��

� 	��!

Nagel ����
� 	����� 	��!

Anandan �unthresholded� �	��
� 	���	� 	��!

Singh �step 	� ������ �	���� 	��!

Singh �step �� �
�	�� 	��
�� 	��!

our method 	���
� ��
�� 	��!

��



Figure �� Computation of the optical �ow for the Yosemite sequence with 
 � ����
s � ���� �� � �� �n � �� and 	 � ����	

Table �� Comparison between the results from 
�
 with ��� ! density and our method
for the Yosemite sequence	

Technique Aver� Error Stand� Deviat� Density

Horn and Schunck �original� �	�
�� �	�	�� 	��!

Horn and Schunck �modi�ed� ��
�� 	
�	�� 	��!

Nagel 	����� 	
��	� 	��!

Anandan �unthresholded� 	���
� 	��
�� 	��!

Uras et al� �unthresholded� ����� 	��
	� 	��!

Singh �step �� 	����� 	��	�� 	��!

our method ����� 
���� 	��!

��



Figure �� Vector plot of the optical �ow from Figure �	

��



reaches the estimation quality of typical methods with �� ! density� and the standard
deviation of ����� is lower than the standard deviation of all methods that have been
evaluated in 
�
� the best method �Lucas and Kanade with �� � ���� had an average
angular error of ����� with a standard deviation of ����� and a density of only ��� !	

In order to evaluate the robustness of our algorithm with respect to the choice of
parameters we present in Table � the errors for the Yosemite sequence taking di�erent
values of the parameters	 To simplify the presentation� we �xed the �nest scale to
�n �� �� and as numerical parameters we used 
 �� �� and T �� ���	 These parameters
are almost independent of the image and can therefore be set to default values	 Hence�
we vary only the parameters 
� s� 	 and �� in Table �	

First of all it can be seen that our method outperforms all methods in 
�
 with ���
! density not only in case of optimized parameters� but also for a rather large range of
parameter settings	 Let us now study the parameter in�uence in more detail	

One important observation from Table � is that the decay parameter 	 has an impor�
tant in�uence of the result� values around ���� as are implicitely used by typical pyramid�
based focusing algorithms� are by far not optimal	 A slow focusing with 	 � ���� gives
signi�cantly better results	 Our experience with other images suggests that 	 may be
�xed to this value for all applications	

Choosing too a small value for the isotropy fraction s does hardly worsen the results�
while for larger values the smoothness term becomes isotropic almost everywhere and
approximates the Horn and Schunck scheme 
��
	 In order to avoid the resulting deteri�
orations� we propose to �x s �� ���� which means that the method smoothes anisotrop�
ically at ��! of all locations	

Regarding the smoothness parameter 
� our method appeared to be rather robust
with respect to over� and underestimations	 We have thus used a �xed value of ��� for
all experiments in the present paper	

As already mentioned� the initial scale �� should be chosen such that it covers the
largest expected displacements	 We found that overestimations are less critical than
underestimations	 This also con�rms the use of the focusing strategy	 Too small values
increase the danger of ending up in a physically irrelevant local minimum	 Actually�
�� was basically the only parameter that we had to adapt in order to analyse di�erent
image sequences	 Since it has a clear physical interpretation� this adaptation was simple	

Remark� More detailed information about the experiments in this section can be
found at the web site http���serdis�dis�ulpgc�es��lalvarez�research�demos	 In
particular� some movies to illustrate the focusing strategy are presented	 At this site we
also provide a window oriented image processing software named XMegaWave �see 
��
�
which includes the algorithm that we have developed in this paper	

� Conclusions

Usually� when computer vision researchers deal with variational methods for optical �ow
calculations� they linearize the optical �ow constraint	 Except for those cases where the
images a su�ciently slowly varying in space� linearization� however� does only work for
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Table �� Errors for the Yosemite sequence� using di�erent parameters of the algorithm

smoothness init� scale isotr� fract� decay rate angul� error stand� dev�
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small displacements	 In this paper we introduced three improvements into a classical
method by Nagel and Enkelmann where no linearization is used	 We identi�ed this
method as two coupled linear anisotropic di�usion �lters with a nonlinear reaction term	
We showed that this parabolic system is well�posed from a mathematical viewpoint� and
we presented a linear implicit �nite di�erence scheme for its e�cient numerical solution	
In order to avoid that the algorithms converges to physically irrelevant local minima� we
embedded it into a linear scale�space approach for focusing the solution from a coarse
to a �ne scale	 A detailed quantitative analysis using test sequences with ground truth
data showed the following results	

� The method can recover displacements of more than �� pixels will good accuracy	

� It performs signi�cantly better than Nagel�s original method and all other methods
with ��� ! density that are evaluated by Barron et al� 
�
	

� The performance hardly deteriorated for quite a large range of parameters	 This
allows to use default parameter settings for many applications	

We are currently investigating the use of our method for related matching problems
such as stereo reconstruction	 It is our hope that our method that combines anisotropic
di�usion�reaction equations with linear scale�space techniques may serve as a motivation
to study other combinations of linear and nonlinear scale�space approaches for solving
computer vision problems	
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Viscosity Solutions and their Applications	
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