
Reliable Estimation of Execution Time of Embedded Software

Paolo Giusto
Cadence Design Systems, Inc.

2670 Seely Avenue
San Jose’, CA 95134, U.S.A.

giusto@cadence.com

Grant Martin
Cadence Design Systems, Inc.

2670 Seely Avenue
San Jose’, CA 95134, U.S.A.

gmartin@cadence.com

Ed Harcourt
Cadence Design Systems, Inc.

270 Billerica Rd , Chelmsford MA, 01824, U.S.A.
harcourt@cadence.com

Abstract

Estimates of execution time of embedded software play
an important role in function-architecture co-design. This
paper describes a technique based upon a statistical ap-
proach that improves existing estimation techniques. Our
approach provides a degree of reliability in the error of the
estimated execution time. We illustrate the technique using
both control-oriented and computational-dominated bench-
mark programs.

1. Introduction

Embedded system designers are under increasing pres-
sure to reduce the design turnaround time, often in the pres-
ence of continuously changing specifications. One of the
major design validation problems is the evaluation of dif-
ferent HW/SW partitionings. Today’s approaches are often
carried out at theco-verificationlevel - avirtual prototype
of the system under validation is built [3] [4]. The embed-
ded SW is compiled and run on an instruction set simulator
(ISS) while the hardware implementation is run on a VHDL
or Verilog simulator - the communication between the two
partitions being simulated at the microprocessor pin level.
The advantage of this approach is in the accuracy of the sim-
ulation results. The disadvantage is the simulation speed -
complete system simulations are too slow for exploring the
design space efficiently. Moreover, building such a detailed
system model (including interfaces between HW and SW)
is time-consuming.
In the VCC methodology [15], thefunction/architectureco-
design paradigm [6] raises the level of abstraction, increases
the simulation speed, and therefore reduces the turnaround

time. VCC supports anIP baseddesign flow where an
architectural IP is represented in terms of itsperformance
model. This is used toback-annotatethe behavioral de-
scription of the design with timing information. To make
sure that the HW-SW trade-offs are accurately explored, it
is important to provide accurate estimates of the execution
times of the behaviors that are mapped to SW implementa-
tions. The VCC SW estimation framework [12] [5] models
both the target system (CPU instruction set, target compiler,
etc.) and the structure of the software program at an abstrac-
tion level that makes the estimate of execution time reason-
able without losing too much accuracy.
In this paper, we present a technique based upon a statisti-
cal approach that improves the current VCC SW estimation
framework. Our main contribution is the provision ofreli-
ableestimates of the execution time of SW running onto a
microprocessor. This is achieved in two steps. In the first
step, a model of the target processor is derived in terms of a
Virtual Processor Instruction Set[12] [5] by combining:

1. a front-end compiler optimizer, such as [1] which min-
imizes inaccuracies in the code to be estimated (dead
code, loop invariant code, etc)

2. a set of domain specific (wireless, multimedia, auto-
motive) benchmark programs

3. the VCC virtual compiler and estimator which deter-
mines the number of executedVirtual Instructionsfor
the benchmark program

4. an ISS for the target environment, that is used to mea-
sure the actual execution time of the benchmark pro-
gram



5. use of multiple linear regression [11] to determine a
predictor equation for the estimated cycle count along
with degree of reliability in the error of the estimation

In the second step, we use a 2-sample t-test to measure the
similarity of new application code to be estimated to the ex-
isting set of benchmarks used to derive the processor model.
If they are similar, then the application code is optimized
with the very same front-end optimizer and then a simula-
tion model with annotated execution time is produced by
the VCC compile-code generator/annotator. If they are not,
the conclusion is that the new application code is not drawn
from the same population as the benchmark sample. There-
fore, a new processor model derived by a population similar
to the new application code should be used. This paper is
organized as follows. Section 2 presents related work on
estimation and motivates our proposal. Section 3 describes
our technique. Section 4 shows some preliminary results.
Section 5 concludes the paper.

2. Related Work and Motivation

SW performance estimation methods have been around
for some time. The results to date present disadvantages that
can limit their effectiveness. The methods can be described
in terms of the following features:

• level of abstraction: source code based, object code
based, ISS based, etc.

• constraints on the type of SW for which the technique
is applicable (e.g.,control vs computation dominated
code, static loop bounds, pointers vs static data struc-
tures, etc.).

• type of analysis: static vs dynamic

• estimation vs modeling, statistical, etc

• cost of constructing the model

• simulation speed vs. accuracy of the results

• granularity of the analysis

A source-based approach analyzes the original C source
code. For VCC this entails compilation onto a virtual in-
struction set, and allows one to quickly obtain estimates
without the need for a compiler for the target processor [12].
An object-based approach translates the assembler gener-
ated by the target compiler to assembly level-functionally
equivalent C [12]. In both cases the code is annotated with
timing and other execution related information (e.g., esti-
mated memory accesses) and is used as a precise, yet fast,
software simulation model.

Using static analysis, constructs such as dynamic data struc-
tures, recursive functions, and unbounded looping are im-
possible to evaluate [17] [16] [13]. In [18], a software
synthesis system is proposed, where all the primitives for
constructing a program are defined as a fixed sequence of
instructions. The execution time and code size of these
instructions are pre-calculated, hence, they can be used to
yield accurate predictions of performance. In [14] a set of
linear equations is used to implicitly describe the feasible
program paths. This approach has the advantage of not re-
quiring a simulation of the program, hence it can provide
conservative worst-case execution times.
Software performance estimation has become more impor-
tant as new approaches for the synthesis and verification of
real-time embedded systems have been developed. A sim-
ple prediction method is presented in [8], where execution
time is made proportional to the product of the number of
executed instructions and the MIPS rating of the target sys-
tem. In [21] [10], statistical methods are proposed to model
the performance of a target CPU so that several CPUs can be
evaluated. In [9] the author estimates software performance
by the number of execution cycles needed for each instruc-
tion in the program, the number of memory read/writes, and
the number of cycles per memory access. In COSYMA
[22], the given software program runs on a synthesized RT-
level target system and SW timing characteristics are ex-
tracted from the simulation results.
In [3] [4] filtered information is passed between a cycle-
accurate ISS and a hardware simulator (e.g.,by suppressing
instruction and data fetch-related activity in the hardware
simulator). This approach is precise but slow and requires a
detailed model of the hardware and software. Performance
analysis can be done only after completing the design, when
architectural choices are difficult to change. In [19] the
control flow graph (CFG) of the compiled software descrip-
tion is annotated with information useful to derive a cycle-
accurate performance model (e.g.,pipeline and cache). The
analysis is performed on the code generated for each basic
block and information about the optimization performed by
an actual compiler (register allocation, instruction selection
and scheduling). The object code-based approach described
in [12] partially uses this scheme.
Instead of restricting the input one can alternatively require
that a trace of the program’s execution on some sample data
be used to drive the analysis. In unmodified form, this
method requires a very detailed model or an instance of a
system similar to the one being designed. To avoid this re-
quirement, a trace-driven approach can be used [5]. Perfor-
mance analysis can occur when a statistically relevant set of
benchmarks is applied [21].
In the computational-dominated code domain, [7] has intro-
duced a novel methodology for estimating execution time of
SW running on a DSP. The technique is based upon defin-



ing a set of kernel functions whose execution times are pre-
characterized, for example, via profiling. The algorithm
to be estimated is then built from a static composition of
the kernels for DSP applications (synchronous dataflow).
In [20] [6], the POLIS source-based SW estimation method
is presented: the original C code is annotated with timing
estimates predicting compiler optimizations. This does not
require a complete design environment for the chosen pro-
cessor(s), since the performance model is relatively sim-
ple (an estimated execution time on the chosen processor
for each high-level language statement). The approach is
targeted to control-dominated code, and it cannot consider
compiler and complex architectural features (e.g., pipeline
stalls due to data dependencies).
Our approach can be classified as source-based , with no
constraints on the SW (any arbitrary C code), with rela-
tively low cost for the modeler, with relatively fast simu-
lation speed, dynamic (simulations are needed) and statisti-
cal analysis-based approach. We are able to provide a de-
gree of reliability in the estimates which was missing in the
approaches described in [5] [12] [20]. We are also able
to provide a semi-automatic way, via a predictor equation,
to find and then assign a performance model to the kernel
function therefore improving [7]. Also the affinity of a new
benchmark program to the existing set can be inferred, and
the error of the estimation vs the control/computation ratio
of the SW are estimated. We are not claiming to be able
to provide the accuracy of an object-based or ISS based ap-
proach. Our claim is that the error in the estimates has a
degree of statistical confidence, and therefore the designer
can make an assessment whether the estimates can be used
to make trade-off decisions or a more expensive technique
such as object or ISS-based should be used.

3. The Reliable Execution Time Estimation
Technique

A dynamic source-based SW estimation technique is
based on the idea of abstracting the actual machine instruc-
tions which would be executed by a SW task running on a
target processor into a set ofVirtual Instructions[5] [12].
Each basic block in the SW task is compiled into a count
of the number of virtual instructions which would cover the
execution of the block; during simulation the SW task is ex-
ecuted natively on a host workstation, but the number of vir-
tual instructions which would be executed on the actual tar-
get processor is accumulated [5] [12]. Modeling the com-
bination CPU/Compiler at this level of abstraction has been
proven to be a difficult task. Different compilers produce
different code on the same source code. Therefore, we be-
lieve that any source-based approach is not a push button so-
lution. The key idea is to provide acorrect interpretationof
the Virtual Machine instructions depending upon how well

the VCC compiler/estimator models the pair CPU/Compiler
- two different interpretations are available. In astrict inter-
pretation, the VCC compiler models well the target environ-
ment; therefore each Virtual Instruction truly represents the
corresponding class of assembly instruction(s) and it makes
sense to consider the cycles provided by a Data Book as
a good approximation of the real cycles and assign those
cycles to the Virtual Instructions. In therelaxedone, the
Virtual Instruction is a factor in predictor equation since the
VCC compiler does not modelas well the target environ-
ment. The usage of a front-end optimizer minimizes the
sources of inaccuracies. However, the back-end optimiza-
tions are very specific and different from processor to pro-
cessor, hence very difficult to capture in a general model.
Therefore, a non-accurate number of Virtual Machine In-
structions might be executed during the VCC simulation.
To provide a good estimate of the executed time, the cycle
counts of the Virtual Machine Instructions need to compen-
sate the inaccuracies and therefore may assume, for exam-
ple, negative values. The relaxed interpretation leads to a
statistical approach with degree of confidence in the pre-
diction. Anything in between strict and relaxed should be
evaluated case by case.
In the current VCC incarnation, the Virtual Instructions
are a simplified view of a RISC instruction set; there are
25 [12], including LD (load from memory), LI (load imme-
diate), ST (store), OP(i,c,s,l,f,d) (basic ALU operator for in-
teger, char, short, long, float, double), SUB(subroutine call),
RET (return from subroutine), GOTO, and IF (branch).
Each Virtual instruction on the target processor is charac-
terized via a number of methods as to the number of actual
target processor cycles which are covered by the Virtual in-
struction. This leads to the predictor equation:

Cycles = K +
∑

i

Pi ∗Ni

whereNi is equal to the number of Virtual Instructions of
typei, Pi is equal to a parameter which translates the Virtual
Instruction onto a cycle count, andK is the intercept.Ni
is computed by compilation of the SW task in VCC and
the generation of an annotated version of the task which
accumulates each occurrence of a virtual instruction during
host-based execution.Pi can be determined in several ways:

1. from the datasheet of the target processor (strict inter-
pretation)

2. using a best fit least squares approach to a calibration
suite

3. using a stepwise multiple linear regression approach
over sets of tasks drawn from a similar domain (relaxed
interpretation). Note that this approach can start from
a solution derived from the above method and then be
used for tuning the results.



Estimation Approach Type Creation Effort Accuracy Speed
Static Analysis Source Code-Based Easy w/ Code Restrictions Low No Simulation

Statistical VI (no constraints) Relaxed Source Code-Based Easy w/ SW Benchmarks Medium 100+ Times
Data Book VI Strict Source Code-Based Easy w/ SW Benchmarks Medium 100+ Times

Tuned VI (constraints) Semi-Strict Tuned Source Code-BasedEasy w/ SW Benchmarks Medium 100+ Times
Kernel Function DSP Oriented Moderate w/ Profiling Good To Very Good N/A

Compiled-Code ISS Object-Based Moderate Very Good 50+ Times
ISS Integration ISS in the loop Very High Excellent 1

Table 1. SW Estimation Techniques

In the latter case, constraints on the set of linear equations
must be relaxed since we relax the interpretation in the
meaning of Virtual Instruction Set. In table 11 we illus-
trate trade-offs involved with the different interpretations of
the Virtual Instructions. Also, the positioning of the tech-
nique w.r.t. the object-based as well as ISS based tech-
niques is shown. Using processorA as an example, we will
now illustrate these techniques and discuss their advantages
and disadvantages. The sample set we used in these stud-
ies consisted of 35 control-oriented (decision dominated )
SW tasks running approximately 200 cycles per task. These
were drawn from a real control-oriented automotive appli-
cation.

3.1 Datasheet approach

The datasheet approach draws the parametersPi from a
study of the published processorA datasheet and by analogy
between the actual machine instruction set and the virtual
instruction set. This has two main issues: first, some inter-
pretation of the cycles reported per instruction is required -
effects such as pipelining have an impact ; secondly, for in-
structions with variability in their number of cycles, based
on processor state, a decision must be made as to whether
to use worst, best or some nominal case.
For example, in processorA, the LD and ST instructions
(load and store to memory) take a nominal 3 cycles. How-
ever, the processor has a three-stage pipeline, and depend-
ing on the compiler quality and the task, the processor may
be able to perform other instructions while waiting on mem-
ory and not stall. In fact, intelligent compilation in most
cases reduces the actual LD and ST effective cycle count to
1 or very near it. Using the original cycle count of 3 gives a
very pessimistic estimator.
Another similar issue occurs with SUB and RET (subrou-
tine calls and returns). Processor A will store to memory
only the part of the register set actually in use, which can
vary from 0 to 15 registers, on a call to a routine. Similarly
on return, only the needed number of registers are recov-
ered from memory. Use of the worst case in SUB and RET,

1code restrictions are bounded loops, no recursion, etc.

assuming all 15 user registers must be saved, leads to pa-
rameters of 19 and 21 for SUB and RET, which are very
pessimistic or conservative in most cases. However, the ac-
tual number of registers typically used varies from task to
task in a dynamic way and we cannot find a nominal or typ-
ical value without a statistical study of some kind.
We used 2 parameter files (calledbasisfiles) derived from
datasheet analysis of cycle counts over the set of 35 bench-
marks. In the first, all Virtual instructions are estimated on
the most conservative basis; in the second, the loads and
stores are reduced from 3 to 1 cycle. Using the first esti-
mator, the error % (comparing prediction to actual cycles)
ranges from -8.5% to 44%, where a positive error indicates
a pessimistic estimator. In general, the estimator is conser-
vative and the spread of error is over 50%. Using the second
basis file with more realistic load and store cycle counts, we
get an error range of -28% to 18% - clearly less pessimistic
(actually now a little optimistic) and with a total error range
of 46%. However, we wish to improve the technique and
reduce the expected error ranges. The datasheet method is
insufficiently dynamic and not tuned to particular SW task
domains and thus cannot be expected to give a very good
estimator for particular kinds of tasks. Although one can
correct the load/store cycle counts, there is no easy way
to correct for subroutine call and return overheads; thus in
general for large tasks with much hierarchical function call
structure the technique will still be very conservative. This
in fact has been our experience with VCC

3.2 Calibration approach

A different approach to deriving a processor basis file is
to create a special calibration suite of programs with each
test attempting to stress some part of the virtual instruction
set; then, do a least squares fit of actual cycles for the set of
tasks to the numbers of occurrences of the virtual instruc-
tions in each task. This is used to derive a basis file in which
the parameters for each virtual instruction are based on ex-
perimental data from the calibration suite.
In this basis file, the parameter for loads and stores was
0.1, for multiplies ranging from 2.6 to 149.3, (depending
on operand type), for IF 1.6, etc. In applying this to our set



of 35 benchmarks, we had an error range of -55 to -15%
(all estimates optimistic, underestimating the number of cy-
cles), for a total error range of 40%.
Several problems exist with the calibration approach:

• Choice of calibration test suite - in our case the exper-
iments were done with a few standard programs (e.g.
SPEC type programs such as 8 queens, sort, fft, and a
set of highly synthetic programs created to stress par-
ticular virtual instructions). The relationship between
this kind of suite and any particular embedded SW do-
main in terms of characteristics is marginal at best.
In particular, it may over-emphasis mathematical pro-
cessing (since many of the synthetic programs are to
find values for MUL and DIV variations) at the ex-
pense of good control-oriented predictors.

• Over-determined analysis - with 25 virtual instruc-
tions and a calibration suite of about 18 programs,
this is an over-determined1 system in which the least
squares fit will achieve perfection or near-perfection
on the calibration suite but has littlea priori basis on
which one can apply it to other programs. In fact,
with least squares fitting, and regression, if there are
fewer benchmarks (equations) than independent vari-
ables, then it is always guaranteed that a perfect fit can
be found. But the resulting predictor will not be robust.
For example, suppose we have 2 benchmarks and 3
variables:Cycles = A∗LD+B∗OP +C∗MUL and
2 benchmarks withCycles = 800, LD = 22, OP =
600, MUL = 2 andCycles = 50, LD = 1, OP =
3,MUL = 1 - a solution is:A = 35, B = 0, C =
15. Note that this is a perfect predictor (although LD
would attract 35 cycles, each MUL 15, and each OP 0
- a solution with no operative sense). However, there
are severalperfectfit solutions.

• Possible lack of robustness - the calibration suite
and over-determined analysis means that for programs
from a different domain, the calibration suite basis file
may give very inaccurate results. Indeed, this was seen
in our set of 35 control programs where it was both ex-
tremely optimistic and gave worse results on aggregate
than the data book approach.

• High correlations between the Virtual instructions - the
assumption is that these instructions are all statistically
uncorrelated - that they are all independent variables
with the cycle count being the only dependent variable.
However, in actual programs the relative frequency of
one virtual instruction often has very high correlation
with others (for example, loads with basic ALU opera-
tors, or loads with IFs). This implies that simpler, more

1in a statistical sense

robust estimators may be possible in which the number
of independent variables is reduced to a minimum.

• Difficulties in user interpretation - Users expect the
calibration approach to give parameters whichmake
sense. That is, all virtual instruction parameters must
be 1 or greater (since no real instruction takes less than
a cycle to execute), preferably integral, and scaling
logically. However, the best fit approach is just looking
for parameters in an equation. On taking this approach,
the parameters no longer have any real relationship to
cycle countfor a virtual instruction. They are justmul-
tiplicative factorsderived from curve fitting and used
in a predictor equation. This is a hard point to make to
users who are unfamiliar with this kind of approach.

However, the calibration approach does point the way to-
wards a more solidly-grounded statistical approach, but one
based on 3 premises:

• analysis based on actual SW programs drawn from
specific domains - automotive, communications,
control-oriented, computation-dominated

• an attempt to reduce the number of Virtual instructions
used in the predictor to a minimal number of indepen-
dent variables and thus give a more robust and mean-
ingful estimator

• by exposing positive and negative correlations between
various virtual instructions and cycle count, to move
away from the idea that parameters or factors have a
cycle countmeaning.

3.3 The Statistical Estimator approach

In this 3rd approach, we abandon the idea of creating a
single predictor for all SW tasks. Instead we use a statis-
tical technique to derive a predictor for specific SW task
domain, and then study the applicability of the predictor
to other domains. The approach used is a stepwise mul-
tiple linear regression approach, along with basic multiple
linear regression, correlation analysis, andart(user’s intu-
ition). The SW task domain is the set of 35 control oriented
automotive benchmarks used earlier. As a control set, we
have a set of 6 Esterel benchmarks on which to try the re-
sults derived from the 35 tasks. As we will see, the esti-
mators derived from the set of 35 give poor results on the
control set of 6. We then conduct a simple 2-sample t-test
on the 2 sets of benchmarks to give us a basis for concluding
that the control sample is not drawn from the same popula-
tion as the benchmark sample.
The VCC annotator generates only 10 virtual instructions
(LD, LI, ST, OPi, MULi, DIVi, IF, GOTO, SUB and RET)
from the 35 benchmarks. We start with the assumption that



these are all Independent variables, and use total cycle count
for the task (Cycles) as the dependent variable2. On apply-
ing the stepwise multiple regression, we get some interest-
ing results. First, the numbers of MULi and DIVi in the
benchmark set are a constant, and therefore must be thrown
out - with no variance, an assumed independent variable
will have no correlation with the dependent variable. Sec-
ondly, only one independent variable, LD, is added to the
equation, giving an equation ofCycles = 145 +4 ∗LD(1)
and aR

2
= .363.

TheR
2

measure is a key one in regression. Essentially, it
measures how much of the total variance in the dependent
variable (in this case,Cycles) can be explained by the vari-
ance in the independent variables which are being regressed
upon. So 36% of the variance in cycle count is explained
by the variance of the LD virtual instruction. In addition,
note that regression in general will give equations with in-
tercepts(ie a constant factor). These can be interpreted in
several ways, one of which is the amount of setup required
to run and stop a software task. However, another view is
that it is just a constant which makes the regression fit bet-
ter. It can be misleading to assume that regression param-
eters measure anything other than correlation. So the 4 for
the LD parameter can be interpreted that each LD on aver-
age attracts 4 cycles of various instructions including itself;
or it can be interpreted as an essentially meaningless, sta-
tistical phenomenon that can be used to predict cycles but
has no inherentmeaning. A figure (.36) is not very good.
However, it is interesting to note that a fairly lowR

2
can

still give a respectablepredictor. When we back-apply this
equation to the set of 35 samples, we get an error range of
-13 to +17% - a range of 30%. Note that this is better cen-
tered and a smaller error than from any of the databook or
calibration suites. Of course, this is to be expected from
a statistical approach. The applicability of this equation to
other samples will be discussed later.
If we perform ordinary multiple linear regression, using all
variables except MULi and DIVi, we get several more re-
sults:

• RET is zeroed out since it is directly related to SUB in
the sample (thus the two are 100% correlated)

• we get an equation ofCycles = 354 + 1.5 ∗ LD +
31.9 ∗ LI − 30.4 ∗ ST − 7.1 ∗ OPi + 13.6 ∗ IF −
5.1 ∗ GOTO − 51.5 ∗ SUB(2) with a R

2
= .4965.

This equation explains 49.65% of the variability of the
cycle count. When back applied we get an error range
of -10.3 to +19.4%

Note that:

• the intercept (354) is greater than the number of cycles
(200-250) of most of the sample set

2this is the assumption made in regression

• some of the coefficients and parameters are negative
and large (31.9 for LI) (-51.5 for SUB)

• the package complained that multicollinearity3 is a se-
vere problem (i.e. that several of the supposed inde-
pendent variables of LD, LI, ST, OPi, IF, GOTO and
SUB are actually correlated highly).

In other words, this equation is a pure statistical fit of the
cycle count to the input variables without any regard for the
parameters having anoperativemeaning related to cycles
per instruction.
To reduce the multicollinearity problem we generated a cor-
relation matrix for the independent variables and got corre-
lations of LD-OPi of .92, OPi-IF of .99, and LD-IF of .88.
This implies we can throw out 2 of these 3 variables since
they are all highly correlated. We re-ran regression with just
5 independent variables: LD, LI, ST, GOTO and SUB and
got an equation ofCycles = 273−0.9∗LD +23.3∗LI−
18.9∗ST + .06∗GOTO−38.7∗SUB(3) with aR

2
= .47

and an error range of -10 to +22.5%. Note again that there
is no operative or implied meaning to the intercept and co-
efficients. The package reported that multicollinearity is a
mild problem (we could throw out other variables - eventu-
ally we will end up back at the result reported by Stepwise
regression with just LD in the equation).

4. Experimental Results

We applied 2 of the regression equations (1) and (3)
above to a sample set of 6 from some Esterel benchmarks.
These performed poorly, overestimating the cycle counts by
(for (1)) 23% to 60%, and for (3), 87% to 184%. In this
sample set, we also had virtual instruction OPc appear and
we used the parameter for OPi where applicable (in (3)).
What can account for the poor results? Essentially the appli-
cability of a statistically derived predictor based on sample
A, to a new sample B, must rest on an argument of sim-
ilarity - that sample B has similar characteristics to A. In
another perspective, one can argue that Samples A and B
could have been drawn from the same underlying popula-
tion. One way of testing this hypothesis is a 2-sample t-test.
This tests the assumption that the 2 samples are drawn from
the same underlying normal distribution with equal means
and variances.
We need some characteristic of the SW tasks to compare,
and one that is independent, for example of cycle count.
One idea is that the ratio of the number of virtual IF instruc-
tions to the total cycle count is a measure of thecontrol-
dominanceof a SW task. i.e. control-dominated tasks will
have a higher ratio than algorithmic or mathematically dom-
inated ones. This is perhaps a tenuous argument, but it is

3it exposes the redundancy of variables and the need to remove vari-
ables from the analysis



difficult to come up with an unambiguous measure of con-
trol dominance for tasks.
Using this ratio, we get the following statistics: for
the 35-sample automotive control batch,meanratio =
.1077, std.deviation = .016; for the 6-sample Esterel
batch,meanratio = .0300, stddeviation = .0168.
The 2-sample t-test rejected the hypothesis that these 2 sam-
ples could have been drawn from the same underlying nor-
mal distribution; in fact, normality itself was rejected for the
second sample (the variable does not have a normal distri-
bution,i.e., in the bell curve).
Using this 2-sample t-test idea, we can apply this kind of
discriminating function to new batches of tasks to determine
whether it is reasonable to apply a predictor equation drawn
from another sample to the new one. Thus this may allow us
to discriminate between domains of applicability of predic-
tors. To test this further, we went back to the first batch of
35 automotive control examples and randomly selected 18
of them, and re-ran regression on the 5 variables LD, LI, ST,
GOTO and SUB: this gave us the equationCycles = 219+
1.3∗LD+10.9∗LI−10.2∗ST−5.2∗GOTO−21.3∗SUB
with a R

2
= .568. We applied this equation to the remain-

ing half of the first batch (17 samples) and got an error range
of the predictor of -12% to +5%. Applying the 2-sample
t-test to these batches of 18 and 17 tasks, using the char-
acteristic of ratio of IFs to total cycles, we accept the null
hypothesis - ie there is a high probability that the 2 samples
could be drawn from the same population (which they are).
This demonstrates that a predictor drawn from a particular
domain sample can with justice be applied to further sam-
ples from that domain, and that a simple discriminator can
be used to check if samples of SW tasks could indeed be
drawn from the same population (and thus the applicability
of the discriminator).

4.1 Further experiments  interpreting a predic
tor equation

We were able to add additional samples to our sam-
ple of 35 and with a total sample of 45 relatively control
dominated samples, use of stepwise and multiple regres-
sion analysis, and someart eventually produced a very in-
teresting predictor equation for processor A: (the art con-
sisted in the selection of variables in order to reduce the
independent set to a small yet interesting core)Cycles =
75 + 1 ∗ (OPi + OPc) + 3.4 ∗ IF + 20 ∗ SUB(4). This
had an error range on back-substitution into the 45 samples
of -30 to +20%. Looking at the samples, the IF to Cycle
count ratios varied quite considerably, making us question
whether these sample sets could really legitimately be com-
bined. More interesting, perhaps, is to consider if there is
a hidden meaning behind the parameters (this interpretation
stretches beyond the statistics into the art). If we do what

we cannot do based on the technique, and ascribeoperative
meaning to the parameters we can suggest that

• 75 is equal to the number of cycles on processor A to
set up and close a task run

• each basic integer or character operator (OPi and OPc)
attract 1 real machine cycle

• each IF (which then may lead to a branch) attracts 3.4
cycles, and

• each subroutine call and associated return attracts 20
cycles. On processor A, this implies something like
4-5 user registers are active on a call and need to be
restored on a return, which seems reasonable.

However this kind of overloaded interpretation needs to be
done quite carefully. Applying this randomly to more con-
trol oriented samples for processor A would be interesting.

4.2 Further experiments  Mathematical (fft)
tasks

To further study the techniques, we took a set of Vir-
tual instruction and cycle counts for 18 FFT tasks. Here we
used the predictor (4) and found that it was very poor - over
100% error. We generated a predictor using regression for
the FFT and gotCycles = 286, 387+2153∗MULd. In fact
the intercept of 286,387 could be thrown out and we could
useCycles = 2153 ∗MULd - these benchmarks ran for a
huge number of cycles (eg. 564,038,767, or over 1 billion
cycles for others), thus the intercept of 286 thousand is triv-
ial in comparison. In these benchmarks, the error using this
predictor is +/-1%. What we have discovered is actually
a kernel function [7] - an internal kernel function, rather
than anexternalone. A kernel function is a predictor for
a heavily mathematical SW task in which the cycle count
is dominated by statically-predictable mathematical oper-
ations rather than dynamic control dominated branching.
Due to the static nature of the computations (for example,
loops witha priori known iteration sizes rather than based
on dynamic iteration counts or convergence tests) kernel
functions can be highly predictable and with very low error.
The FFT examples clearly demonstrate this phenomenon.
In this case, the kernel function is expressed in terms of an
internal characteristic (the number of MULd’s is equal to
double multiplies) in the task, rather than anexternalchar-
acteristic (sample size, etc.). Either kind of kernel function
is possible.
To reinforce our analysis of populations and thus the ap-
plicability of a predictor equation derived from one sample
set in one domain being used on another, we ran another 2-
sample t-test on the 45 control-sample and the 18-FFT sam-
ple. We again used the ratio of Virtual IFs to total cycles



as the discriminator. For the 18-FFT example, the average
ratio was around .00035 with a very low standard devia-
tion (ie. .035%, as opposed to about 10% for the 45-sample
average). The 2-sample t-test rejected very soundly the hy-
pothesis that these 2 samples could have been drawn from
the same population. Thus a predictor drawn from one batch
would have little relevance if used on the other, as our re-
sults indicate.

5. Conclusions

This study has discussed a method to derive, using re-
gression analysis, statistically-based predictor equations for
SW estimation, based on task samples from particular do-
mains. We have also begun to study discriminator functions
and tests to allow us to make conclusions on the applica-
bility of an estimator derived in one domain to be used on
subsequent samples. This will give us better confidence in
the transportability of such estimators. Further, the use of
these techniques on heavily mathematical examples allows
the identification of internally-based kernel functions.
However, the work is far from complete. More bench-
marks drawn from a wider set of domains is of interest.
We are, at the moment, trying these techniques on the em-
bedded benchmarks developed by the EDN Embedded Mi-
croprocessor Benchmark Consortium EEMBC [2]. These
are drawn from several interesting domains such as auto-
motive engine control, industrial control, wireless and wired
communications, and multimedia. Deriving predictors from
such widely disparate domains, and studying their accuracy
in other domains, and the use of discriminating functions,
using in this case an industry standard set of SW tasks,
should prove very interesting. In addition, we are planning
to work with specific design groups using VCC in applying
these techniques to their specific design domains, choice of
processors, compilers and optimizations. We believe that
the more particular and bounded is the application space,
the greater accuracy will be possible.

References

[1] Ace home page. Technical report, ACE,
http://www.ace.nl/cont.htm.

[2] Eembc home page. Technical report, EEMBC,
http://www.eembc.org/.

[3] Mentor graphics seamless. Technical report, Mentor Graph-
ics, http://www.mentorg.com/seamless/.

[4] Synopsys eagle. Technical report, Synopsys,
http://www.synopsys.com/products/hwsw/eagleds.html.

[5] W. Baker, M. Hartoog, and G. Martin. Scalable tech-
niques for the performance estimation of codesigned hard-
ware/software systems.Proceedings of the Cadence Techni-
cal Conference, May 1997.

[6] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurec-
ska, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli,
E. Sentovich, K. Suzuki, and B. Tabbara.Hardware-
Software Co-Design of Embedded Systems: The Polis Ap-
proach. Kluwer Academic Press, June 1997.

[7] S. Chakravarty, S. Krolikoski, and G. Martin. Dsp software
estimation using characterised kernel functions.Proceed-
ings of DSP Deutschland ’99, Sept. 1999.

[8] J. D’Ambrosio and X. Hu. Configuration-level hard-
ware/software partitioning for real-time embedded systems.
Proc. of Int. Workshop on Hardware/Software Codesign,
Sept 1994.

[9] R. K. Gupta and G. D. Micheli. Constrained software gener-
ation for hardware-software systems.Proc. of Int. Workshop
on Hardware/Software Codesign, Sep 1994.

[10] W. Hardt and R. Camposano. Trade-offs in hw/sw codesign.
Proc. of Int. Workshop on Hardware/Software Codesign, Oct
1993.

[11] D. J. L. Hintze. Ncss 2000: Statistical system for windows,
user guide. Technical report, Number Cruncher Statistical
Systems, Kaysville Utah, URL: http://www.ncss.com/.

[12] M. Lazarescu, M. Lajolo, J. Bammi, E. Harcourt, and
L. Lavagno. Compilation-based software performance es-
timation for system level design.Proc. of Int. Workshop on
Hardware/Software Codesign, May 2000.

[13] Y. Li and S. Malik. Performance analysis of embedded
software using implicit path enumeration.Proceedings of
DAC95, 1995.

[14] S. Malik, M. Martonosi, and Y. Li. Static timing analysis
of embedded software.Proc. Design Automation Conf, June
1997.

[15] G. Martin and B. Salefski. Methodology and technology
for design of communications and multimedia products via
system-level ip integration.Proceedings of Design Automa-
tion and Test Conference - Designer Track, 1998.

[16] C. Y. Park. Predicting program execution times by analyzing
static and dynamic program paths.The Journal of Real-Time
Systems, Vol. 5, 1993.

[17] P. Puschner and C. Koza. Calculating the maximum execu-
tion time of real-time programs.The Journal of Real-Time
Systems, Vol. 1, 1989.

[18] T. Smith and D. Setliff. Towards an automatic synthesis sys-
tem for real-time software.Proceedings of Real-Time Sys-
tems Symposium, 1991.

[19] F. Stappert. Predicting pipelining and caching behaviour of
hard real-time programs. Technical report, Motorola, C-
LAB internal document, Furstenalle 11, D-333102 Pader-
born, Germany.

[20] K. Suzuki and A. Sangiovanni-Vincentelli. Effi-
cient software performance estimation methods for hard-
ware/software codesign.Proc. Design Automation Conf.,
June 1996.

[21] W. Wolf and J. Martinez. C program performance estimation
for embedded systems architecture sizing.Proceedings of
the Workshop on Hardware/Software Codesign, September
1994.

[22] W. Ye, R. Ernst, T. Benner, and J. Henkel. Fast timing anal-
ysis for hardware/ software c-synthesis.Proceedings of the
ICCD93, October 1993.


