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Abstract

Background: Generally, QSAR modelling requires both model selection and validation since there is no a priori

knowledge about the optimal QSAR model. Prediction errors (PE) are frequently used to select and to assess the
models under study. Reliable estimation of prediction errors is challenging – especially under model uncertainty –
and requires independent test objects. These test objects must not be involved in model building nor in model
selection. Double cross-validation, sometimes also termed nested cross-validation, offers an attractive possibility to
generate test data and to select QSAR models since it uses the data very efficiently. Nevertheless, there is a controversy
in the literature with respect to the reliability of double cross-validation under model uncertainty. Moreover,
systematic studies investigating the adequate parameterization of double cross-validation are still missing. Here,
the cross-validation design in the inner loop and the influence of the test set size in the outer loop is systematically
studied for regression models in combination with variable selection.

Methods: Simulated and real data are analysed with double cross-validation to identify important factors for the
resulting model quality. For the simulated data, a bias-variance decomposition is provided.

Results: The prediction errors of QSAR/QSPR regression models in combination with variable selection depend to a
large degree on the parameterization of double cross-validation. While the parameters for the inner loop of double
cross-validation mainly influence bias and variance of the resulting models, the parameters for the outer loop mainly
influence the variability of the resulting prediction error estimate.

Conclusions: Double cross-validation reliably and unbiasedly estimates prediction errors under model uncertainty for
regression models. As compared to a single test set, double cross-validation provided a more realistic picture of model
quality and should be preferred over a single test set.

Keywords: Cross-validation, Double cross-validation, Internal validation, External validation, Prediction error, Regression

Background
The goal of QSAR (quantitative structure-activity-

relationship) is to establish some quantitative relationship

between structural features of molecules and the biological

activities of molecules [1,2]. Molecular features are often

represented numerically by a vast amount of descriptors

[3]. Hence, the challenge is to distinguish between relevant

descriptors which directly relate to the biological activity

and irrelevant descriptors [2]. This requires both an

effective variable selection process and a validation

technique to assess the predictive performance of the

derived models. Variable selection is a special case of a

model selection step. Generally, the process to choose a

final model from a set of alternative models is called

model selection. The goal of model selection is to

choose the most promising model with respect to a par-

ticular performance criterion [4]. After the final model

has been selected, its predictive performance has to be

assessed. This is done by estimating the prediction error

(generalization error) on new data and is referred to as

model assessment [4]. Using new data ensures that the

model assessment step is independent of the model
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selection step, which is necessary to be able to estimate

the prediction error unbiasedly (see below).

Double cross-validation [5-19] offers an attractive con-

cept to combine both model selection and model assess-

ment. It is also termed nested cross-validation [12,18],

two-deep cross-validation [5,8], or cross-model valid-

ation [16,17]. Here, the terms double cross-validation

and nested cross-validation are used synonymously.

In what follows, the double cross-validation algorithm

is outlined and the reasoning behind each step is ex-

plained. Afterwards double cross-validation is related to

external and internal validation.

The double cross-validation process consists of two

nested cross-validation loops which are frequently re-

ferred to as internal and external cross-validation loops

[9,10,13]. In the outer (external) loop of double cross-

validation, all data objects are randomly split into two

disjoint subsets referred to as training and test set. The

test set is exclusively used for model assessment. The

training set is used in the inner (internal) loop of double

cross-validation for model building and model selection.

It is repeatedly split into construction and validation

data sets. The construction objects are used to derive

different models by varying the tuning parameter(s) of

the model family at hand (e.g. the set of variables)

whereas the validation objects are used to estimate the

models’ error. Finally, the model with the lowest cross-

validated error in the inner loop is selected. Then, the

test objects in the outer loop are employed to assess the

predictive performance of the selected model. This is ne-

cessary since the cross-validated error in the inner loop

is a biased estimate of the predictive performance

[9,12,20] which can be explained as follows. In the inner

loop the entire training data set (i.e. construction plus

validation data) steers the search to solutions of minimal

cross-validated errors. Which models are likely to show

a minimal cross-validated error? In the ideal case, the

true model shows the smallest error. However, if there is

a candidate model for which the cross-validated error in

this particular training data set is underestimated, then

this model may show a smaller cross-validated error

than the true model despite the fact that it is suboptimal.

Hence, the suboptimal model is selected just by chance,

as it appears to perform better than it really does, owing

to the fact that its cross-validated error was underesti-

mated. This phenomenon is called model selection bias

[21]. As outlined above, the bias is caused by the specific

characteristics of the particular training data set that

favour a suboptimal candidate model. Whether or not,

the error estimate is biased can thus only be detected

with fresh data that are independent of the model selec-

tion process which shows the necessity of independent

test data and thus the necessity of model assessment in

the outer loop. More technically, model selection bias

can be explained with the lacking independence of the

validation objects from the model selection process

[11,12,22,23]. Bro et al. nicely illustrates this for the val-

idation objects in row-wise cross-validation, i.e. leaving

out objects (stored in rows of a matrix), in case of prin-

cipal component analysis which is analogous to the situ-

ation in the inner loop [23]. The validation data set is

independent of model building (it is not used for model

building) but it is not independent of the model selec-

tion process since the predictions of the validation ob-

jects collectively influence the search for a good model.

Matter of factly, the predictions of the validation objects

produce the error estimate that is to be minimized in

the model selection process, which shows that the valid-

ation objects are not independent of the model selection

process. This lacking independence frequently causes

model selection bias and renders the cross-validated

error estimates untrustworthy.

Model selection bias often derives from the selection

of overly complex models, which include irrelevant vari-

ables. Typically, the generalization performance of overly

complex models is very poor while the internally cross-

validated figures of merit are deceptively overoptimistic

(i.e. the complex model adapts to the noise in the data

which causes the underestimation of the error). This

well documented phenomenon is also called overfitting

and is frequently addressed in the literature [2,24-28].

However, model selection bias is not necessarily caused

by the inclusion of false and redundant information.

Model selection bias can also occur if truly relevant but

rather weak variables are poorly estimated [29-31].

Once the estimate of the predictive performance based

on the test objects in the outer loop of double cross-

validation is obtained, the process of data partitioning

into test and training data in the outer loop of double

cross-validation is repeated many times. With the new

partition, the whole cycle of model building, model se-

lection, and model assessment restarts multiple times in

order to average the obtained prediction error estimates.

External validation, which is considered the gold

standard in assessing the model’s predictive perform-

ance, also aims at estimating the prediction error of a

model. How does the prediction error obtained in the

outer loop of cross-validation relate to external valid-

ation? The concept of external validation is based on the

insight that independent test data are required to assess

the generalization performance of a model since predic-

tion of unseen data is the most rigorous validation

method [12,16,24,32-36]. But confusingly, there are no

simple definitions of external and internal validation

since the literature encompasses a wide range of expla-

nations (depending on the context, see [37] for excellent

definitions in the medical field). In cheminformatics,

data are considered to be of external nature if they are

Baumann and Baumann Journal of Cheminformatics 2014, 6:47 Page 2 of 19

http://www.jcheminf.com/content/6/1/47



blinded during model development (i.e. they are external

w.r.t. the sample that was used for model development).

This “blinding” is achieved by holding out a certain por-

tion of the data during model development. The proced-

ure is known as test set method, hold-out-method, or

(one-time) data-splitting [25,38]. After model develop-

ment, the blinded data are applied to the “frozen” model

(i.e. after model building and model selection). Several

algorithms are available to define which data are blinded

(random selection, balanced random selection, experi-

mental designs on the dependent or independent vari-

ables) where the employed algorithm influences the

validation results. The hold-out method has the advantage

to confirm the generalization performance of the finally

chosen model. But it also has a number of disadvantages

[39]. Firstly, for reliable estimates the hold-out sample

needs to be large (see [40] for random fluctuations in pre-

diction errors), thus rendering the approach costly [41].

Secondly, the split may be fortuitous, resulting in an

underestimation or overestimation of the prediction error.

Thirdly, it requires a larger sample to be held-out than

cross-validation to be able to obtain the prediction error

with the same precision [39]. Hence, using the outer loop

of double cross-validation to estimate the prediction error

improves on the (one-time) hold-out sample by repeating

hold-out sampling (usually on a smaller test set) to obtain

more predictions, with a larger training data set size, that

are averaged to obtain a more precise estimate of the

prediction error. Finally, the hold-out method as well as

double cross-validation have the disadvantage that both

validate a model that was developed on only a subset of

the data. If training and test sets are recombined for fit-

ting the final model on the entire data set, this final

model is strictly speaking not validated [39]. With the

one-time hold-out method, the test data could be sa-

crificed to stick to the validated model based on the

training data only. With double cross-validation, it is

important to note that the process to arrive at a final

model is validated rather than a final model [39,42]. A

disadvantage that applies to double cross-validation

only is the fact that the different splits into training and

test sets, which are used repeatedly, are not completely

independent of each other. This is true since the “fresh”

test data used in another round of double cross-

validation are not truly “fresh” but a subsample of the

entire data set (same for the training data). However,

training and test data sets are independent of each other

in every single split (or at least they are as independent

of each other as they were in a one-time hold-out sam-

ple generated by the same splitting algorithm). Hence,

the bias in the estimates of the prediction error ob-

served in the inner loop, which is due to model selec-

tion, is absent. This in turn renders possible to estimate

the prediction error unbiasedly [11].

Apart from cross-validation, bootstrapping [43,44] can

be used as an alternative to generate different test and

training data partitions [14,43]. Analogous to double

cross-validation, the objects that are not part of the

current bootstrap training data set (the so-called out-of

bag samples [45]) could and should be used for model

assessment while the training data could be divided into

construction and validation data for model building and

model selection. To keep the study concise, bootstrap

sampling was not studied here.

Having dealt with external validation we now turn to in-

ternal validation. In cheminformatics, internal validation

refers to testing the accuracy of the model in the sample

that was used to develop the model (i.e. the training set).

It uses the hold-out method, resampling techniques, or

analytically derived figures (such as AIC or BIC [4]) to es-

timate the prediction error. Again, the focus here lies on

cross-validation. The major goal of internal validation is

model selection. That is to say that the estimate of the pre-

diction error obtained is used to guide the search for bet-

ter models. As mentioned before, this search for good

models biases the estimates, which is the reason why fig-

ures of merit obtained after model selection cannot be

trusted. Yet, the way internal validation is carried out is of

utmost importance to arrive at a good model since it

guides the search. For instance, if the cross-validation

scheme used for model selection is rather stringent, then

overly complex models get sorted out and one source of

model selection bias is avoided [2,46].

There are various kinds of cross-validation which split

the original data differently into construction and valid-

ation data [28,47,48]. In k-fold cross-validation, the data

objects are split into k disjoint subsets of approximately

equal size. Each of the k subsets is omitted once and the

remaining data are used to construct the model. Thus, k

models are built and each model is validated with the

omitted data subset. If k equals the number of training

set objects, then k–fold cross-validation is identical to

leave-one-out cross-validation (LOO-CV). LOO-CV is

carried out in such a way that every object is removed

once for validation, whereas the remaining data objects

are used for model building. It is known that LOO-CV

has a tendency to overfit in the context of model selec-

tion [2,46,49]. Moreover, LOO-CV is inconsistent for

variable selection in combination with multiple linear re-

gression estimated by the ordinary least squares estima-

tor (MLR) [49]. Another kind of cross-validation is the

leave-multiple out cross-validation (LMO-CV). In LMO-

CV, the data set is partitioned randomly into a validation

data set consisting of d objects and the construction data

subset, which contains the remaining n-d objects. The

data splitting process is repeated many times and the

cross-validated error estimates are averaged over all data

splits. The number of repetitions is not defined a priori

Baumann and Baumann Journal of Cheminformatics 2014, 6:47 Page 3 of 19

http://www.jcheminf.com/content/6/1/47



for LMO-CV but has to be carefully chosen. The num-

ber of repetitions needs to be sufficiently large in order

to reduce the variance in the prediction error estimate

(the more, the better since this reduces variance in the

prediction error estimate) [2]. Under certain assump-

tions LMO-CV is known to be asymptotically consistent

[49]. Nevertheless, LMO-CV also has a drawback. In

case of large validation data set sizes LMO-CV tends to

omit important variables [2]. This phenomenon is also

known under the term underfitting. Underfitted models

also suffer from low predictive power because these

models exclude important information. Hence, it is chal-

lenging to select models of optimal model complexity,

which suffer neither from underfitting nor from overfit-

ting. The concept of the bias-variance dilemma provides

a deeper insight into this problem and is thoroughly de-

scribed in the literature [30,35,50].

To sum up, according to our definition internal valid-

ation is used to guide the process of model selection while

external validation is used exclusively for model assess-

ment (i.e. for estimating the prediction error) on the “fro-

zen model”. According to this definition, the inner loop of

double cross-validation would resemble internal validation

while the outer loop would work as external validation.

We are aware that different definitions may well be used

which is the reason why we stressed the purpose of the re-

spective validation step rather than the name.

Misleadingly, cross-validation is often equated to in-

ternal validation, irrespective of its usage. If used prop-

erly, cross-validation may well estimate the prediction

error precisely which is the reason why double cross-

validation was introduced early to estimate the predic-

tion error under model uncertainty [5,6].

Although many successful applications of double

cross-validation have been published in recent years

[7,9,10,12,14,16,18,19,51-56], there is still some reluc-

tance to use double cross-validation. The hold-out

method separates test and training data unmistakably

since the test data are undoubtedly removed from the

training data [38]. Both double cross-validation and the

hold-out method use test data, which are not involved in

model selection and model building. Nevertheless,

double cross-validation might evoke suspicion since the

test and training data separation is less evident and the

whole data set is used (since different training and test

data partitions are generated for different repetitions).

Thus, double cross-validation may seem unreliable. This

is reflected in an early and amusingly written comment

on Stone’s nested cross-validation. It is commented that

Stone seems to bend statistics in the same way as Uri

Geller appears to bend metal objects [6] (p. 138). Today,

such scepticism is still not uncommon. Therefore, this

contribution aims at investigating the performance and

validity of double cross-validation.

Certainly, the adequate parameterization of double

cross-validation is crucial in order to select and validate

models properly especially under model uncertainty.

Thus, an extensive simulation study was carried out in

order to study the impact of different parameters on

double cross-validation systematically. Furthermore, ad-

vice is provided how to cope with real data problems.

Methods
Simulated data sets

It is assumed that the following linear relationship holds:

y ¼ Xbþ e

In this model X is the predictor matrix of dimension

n × p, where n is the number of data objects and p is the

number of variables. The y-vector represents the

dependent variable and describes the properties under

scrutiny. In the linear model, the b–vector contains the

regression coefficients. Furthermore, the vector e is an

additional noise term, which is assumed to be normally,

independently and identically distributed. The data were

simulated according to reference [46]. The X-matrix

consisted of n = 80 objects with p = 21 variables. The

entries were normally distributed random numbers

which were further processed so that the covariance

structure of the X-matrix became an autoregressive

process of order one (AR1) with a correlation coefficient

of ρ = 0.5. This was done by multiplying the X-matrix

with the square root of the AR1 covariance matrix. This

correlation was introduced since real data matrices are

often correlated. The error term e was added to the re-

sponse vector and showed a variance of σ
2 = 1.0. Two

different simulation models were analysed. In both

models, the regression vector contains two symmetric

groups of non-zero coefficients. The R2 was adjusted to

0.75 for both simulation models by tuning the size of the

regression coefficients. In the first model the b-vector

consists of two equally strong entries relating to the vari-

ables 7 and 14 (b7 = b14 = 1.077). In the second model

the regression vector includes 6 non-zero coefficients

which are relatively small and refer to the variables 6–8

and 13–15 (b6 = b8 = b13 = b15 = 0.343, b7 = b14 = 0.686).

Owing to the imposed correlation structure, the relevant

predictors of the second model are noticeably correlated.

The significant predictor variables relating to the first

simulation model are only slightly correlated. In sum-

mary, the second model can be considered more chal-

lenging for variable selection since the relevant predictor

variables are correlated and the coefficients are relatively

small.

Multiple linear regression with ordinary least squares es-

timation (MLR), principal component regression (PCR),

and Lasso [57] were used as modelling techniques in this
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study. In the simulation study, MLR and PCR were used

in combination with reverse elimination method tabu

search (TS) which is a greedy and effective variable selec-

tion algorithm that is guided by the principle of “steepest

descent, mildest ascent”. The REM-TS algorithm is de-

scribed in detail in reference [46]. Briefly, after each iter-

ation of the REM-TS procedure a variable is either added

to the model or removed from the model. If there are

moves that improve the objective function, the one with

the largest improvement is executed (steepest descent). If

there are only detrimental moves, the one with the least

impairment of the objective function is executed (mildest

ascent). Since REM-TS also accepts detrimental moves, it

cannot get trapped in local optima. During one iteration

the status of each variable is switched systematically (in→

out, out→ in) to determine the best move. That means

that the search trajectory of REM-TS is deterministic. The

management of the search history is done in a way to

avoid that the same solution is visited more than once. If a

move would lead back to an already visited solution, it is

set tabu and cannot be executed. The only user-defined

parameter for REM-TS is a termination criterion. In this

work the search is terminated after 12 iterations for simu-

lation model 1 whereas 36 iterations were performed in

case of simulation model 2 (number of iterations = the

number of true variables × 3). When TS was used in com-

bination with PCR, the variable subset and the number of

principal components were optimized simultaneously in

the inner loop of double cross-validation (i.e. for each vari-

able subset all possible ranks were evaluated and the best

one was returned). Lasso has the potential to shrink some

coefficients to zero and therefore accomplishes variable

selection.

The double cross-validation algorithm was studied for

different test data set sizes ranging from 1 to 29 with a

step size of 2. Hence, 15 different test data set sizes re-

sulted. In case of a single test object, LOO-CV resulted

in the outer loop and 80 training and test data partitions

were computed. For lager test data set sizes, LMO-CV

was used in the outer loop. For the sake of comparability,

80 partitions into test and training data were also com-

puted in case of LMO-CV. In case of MLR and PCR, five

different cross-validation designs in the inner loop were

implemented: LOO-CV and LMO-CV with d = 20%, d =

40%, d = 60% and d = 80% (designated as CV-20% to CV-80%

in the text). In this case, d represents the percentage of

training data that was used as internal validation set in the

inner loop. The remainder was used as the construction

set. All combinations of the varying test data set sizes and

the five different cross-validation set-ups in the inner loop

were computed.

For every combination, 200 simulations were carried

out. In each simulation run, a new data set was generated

and double cross-validation was used with the simulated

data. If LMO-CV was used in the inner loop, 50 different

splits into validation and construction data were gener-

ated. The aforementioned procedure differed for Lasso. In

case of Lasso, only 10-fold cross-validation was computed

in the inner loop since Lasso is a relatively stable model

selection algorithm so that the more stringent LMO-CV

schemes are not needed [27]. The random seeds were con-

trolled in such a manner that the same data were gener-

ated for different cross-validation and regression

techniques. This facilitated the analysis of different factors

and parameters. In each simulation, large ‘oracle’ data sets

consisting of 5000 objects were generated according to the

simulation models. Thus, it was possible to estimate the

performance of each chosen model not only with the lim-

ited number of test objects but also with a large and truly

independent ‘oracle’ test data set (i.e. the hold-out method

which is considered to be the gold standard and came at

no cost here).

Analysis of the simulation study

In the simulation study, the true regression vector is

known and can be used to compute the following quan-

tities based on the respective regression coefficient

estimates:

mse bdcvð Þ ¼

Xnouter

k¼1
b̂k;â−b

� �T

b̂k;â−b
� �

nouter

¼

Xnouter

k¼1
b̂k;â−b

� �
�

�

�

�

�

�

2

nouter

where nouter describes the number of splits in the outer

loop, k the index of the outer loop iteration, and b̂k;â

are different estimates of the regression vector for spe-

cific variable subsets (â). Loosely speaking, mse(bdcv)

measures the dissimilarity between the estimated and

the true regression vector. The different estimates are

based on different training data objects and varying vari-

able subsets. The estimates of the regression vector con-

tain zero entries for excluded predictors. In order to

distinguish between bias and random effects the follow-

ing decomposition was applied:

mse bdcvð Þ ¼

Xnouter

k¼1
b̂k;â−E b̂k;â

h i

þ E b̂k;â

h i

−b
�

�

�

�

�

�

2

nouter

var bdcvð Þ ¼

Xnouter

k¼1
b̂k;â−E b̂k;â

h i
�

�

�

�

�

�

2

nouter

bias bdcvð Þ ¼

Xnouter

k¼1
E b̂k;â

h i

−b
�

�

�

�

�

�

2

nouter
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where E b̂k;â

h i

refers to the expectation values of the re-

gression vector estimates. The expectation values were

calculated in order to derive bias and variance estimates.

The mathematical derivation of this calculation is in-

cluded in the supplementary material.

The effect of model uncertainty could be assessed rigor-

ously since all bias and variance estimates were derived for

specific models and for different test and training parti-

tions. bias(bdcv) estimates the bias term of the regression

vector estimates whereas var(bdcv) reflects random influ-

ences and estimates the variance of the regression vector

estimates. Generally, the prediction error consists of a re-

ducible and an irreducible error term. The irreducible

error term is not reducible by model choice whereas the

reducible error term depends on model selection. The re-

ducible error term is also referred to as model error (ME)

[58]. The model error is the mean squared difference

between the estimated response and the true signal and

consists of bias and variance components. The following

definitions are introduced in order to investigate the influ-

ence of bias and variance on test data:

MEdcv ¼

Xnouter

k¼1
MEk

nouter

¼

Xnouter

k¼1
X test;k b̂k;â−E b̂k;â

h i

þ E b̂k;â

h i

−b
� �

�

�

�

�

�

�

2

nouterntest

var MEdcvð Þ ¼

Xnouter

k¼1
var MEkð Þ

nouter

¼

Xnouter

k¼1
X test;k b̂k;â−E b̂k;â

h i� �
�

�

�

�

�

�

2

nouterntest

bias MEdcvð Þ ¼

Xnouter

k¼1
bias MEkð Þ

nouter

¼

Xnouter

k¼1
X test;k E b̂k;â

h i

−b
� �

�

�

�

�

�

�

2

nouterntest

where ntest is the number of test objects in the outer

loop, Xtest,k is the predictor matrix of the test objects in

the kth outer loop iteration. Moreover, the model error

can be calculated precisely as follows [58]:

MEtheo;dcv ¼

Xnouter

k¼1
MEtheo;k

nouter

¼

Xnouter

k¼1
b̂k;â−b

� �T

V b̂k;â−b
� �

� �

nouter

where V (V = E(XTX)) is the population covariance

matrix which is known in the simulation study. Thus,

the population covariance matrix is used instead of

random test data in order to derive the theoretical model

error (MEtheo,k) Contrary to the model error, the predic-

tion error (PE) also includes the irreducible noise term

and is calculated as follows:

PEdcv ¼

Xnouter

k¼1
PEk

nouter
¼

Xnouter

k¼1
X test;k b̂k;â−ytest;k

�

�

�

�

2

nouternoracle

PEoracle;dcv ¼

Xnouter

k¼1
PEoracle;k

nouter

¼

Xnouter

k¼1
Xoracle;k b̂k;â−yoracle;k

�

�

�

�

2

nouternoracle

PEtheo;dcv ¼

Xnouter

k¼1
PEtheo;k

nouter

¼

Xnouter

k¼1
b̂k;â−b

� �T

V b̂k;â−b
� �

þ σ
2

� �

nouter

PEinternal;dcv ¼

Xnouter

k¼1

Xninner

j¼1
Xval;k;jb̂con;â;k;j−yval;k;j

�

�

�

�

�

�

2

nouterninnernval

where Xoracle,k is the matrix with noracle = 5000 inde-

pendent test objects. Xval,k are the predictor matrices of

the validation data sets in the inner loop, b̂con;â;k are the

regression vector estimates, which are estimated with

the construction data, and ninner is the number of data

splits in the inner cross-validation loop. ytest,k, yoracle,k
and yval,k are the response vectors, which correspond to

the respective predictor matrices, nval is the number of

validation objects in the inner cross-validation loop and

σ
2 is the irreducible error. The different estimates in the

outer loop scatter around their average. Thus, the fol-

lowing definitions are used:

vb PEð Þ ¼

Xnouter

k¼1
PEk−PEdcvk k2

nouter

vb PEoracleð Þ ¼

Xnouter

k¼1
PEoracle;k−PEoracle;dcv

�

�

�

�
2

nouter

Fluctuating error estimates in the outer loop causes

high values of vb(PE).

The aforementioned definitions relate to a single simula-

tion run. Since each simulation set-up was repeated 200

times, 200 different estimates of each figure of merit resulted.

The average over 200 simulations was calculated as follows:

ave:A ¼ 1=nsim
Xnsim

r¼1
Ar

where nsim is the number of simulations and the sub-

script r designates the result of a single simulation. If a

figure of merit was designated by subscript “dcv” before
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averaging, this subscript was omitted in the name of the

average for the sake of simplicity (i.e. ave.PE instead of

ave.PEdcv).

Solubility data set

Double cross-validation was applied to real data sets in

order to substantiate the theoretical findings. The first

data is described in the reference [59] and consists of

1312 molecules. The response variable is the aqueous

solubility. The data set is freely available and the mole-

cules can be downloaded (as SMILES: Simplified Mo-

lecular Input Line Entry System) via the internet at:

www.cheminformatics.org. All SMILES which could not

be converted (without further processing) to the SDF

format were removed. The descriptors were calculated

with paDEL descriptor (version 2.17) which is a Java-

based open source software tool [60]. All 1D and 2D

paDEL descriptors (729 descriptors) were calculated.

Columns with zero variance and highly correlated pre-

dictors (which exceeded a Pearson’s correlation coeffi-

cient of 0.9) were removed to lower multicollinearity. A

randomly chosen data sample of 300 molecules was set

aside and used for variable preselection (the indexes of

the 300 molecules, which were used for variable pre-

selection, are listed in the supplementary material). The

variable preselection process aimed at decreasing the

number of predictors in order to reduce the computa-

tional cost of this study. First, the data sample of 300 ob-

jects was used to calculate CAR scores (a variable

importance measure) [61]. Then, 5 high ranking and 45

low ranking predictors (according to the CAR scores)

were selected. Thus, there was a high probability that

the resulting variable set included both relevant and in-

significant predictors since the CAR scores provide a

variable importance measure. The data sample of 300

objects used for variable preselection was removed from

the data set in order to avoid any bias. The remaining

data objects were randomly divided into a small data sam-

ple consisting of 60 objects and large ‘oracle’ data set (con-

sisting of 939 objects). The data partitioning into the

‘oracle’ data set and the small data sample was repeated 6

times. Double cross-validation was applied to each small

data sample. Similar to the theoretical simulation study,

the additional ‘oracle’ data set was used as a large and

truly independent test set in order to investigate the valid-

ity and performance of double cross-validation for the real

data example. In the outer loop of each double cross-

validation procedure, 250 splits into test and training data

were computed. In order to study the impact of the test

data set size on the prediction errors, test data set sizes

were varied between 2 and 30 objects. In the inner loop

10-fold cross-validation, CV-40% and CV-80% were

employed in combination with TS-PCR. The number of

iterations for TS was set to 30. In case of LMO-CV, the

data partitioning into construction and validation data

was repeated 50 times in the inner loop.

In a second ‘heavily repeated’ partitioning experiment

the partitioning in ‘oracle’ and small data sample was re-

peated 400 times. Due to fortuitous data splits, the data

sample need not be representative of the entire data set.

With using many splits, the influence of single fortuitous

splits should be negligible. In the outer loop of double

cross-validation, 4 different test data set sizes were

computed. In the inner loop TS-PCR in combination with

CV-60% was employed. CV-60% was chosen here just to pro-

vide an additional setting apart from CV-40% and CV-80%.

The double cross-validation procedure was performed

1600 times (400 data samples × 4 different test data set

sizes in the outer loop). In the outer loop of double cross-

validation 100 partitions into test and training data were

generated (resulting in 160 000 runs of variable selection).

Artemisinin data set

The second data set is also freely available and described

in reference [62]. The data set includes 179 artemisinin

analogues. The dependent variable is defined as the loga-

rithm of the relative biological activity. The Mold2 soft-

ware [63] was used for generating 777 descriptors. The

data set includes a few molecules with identical 2D

structure. All 2D-duplicates (4 molecules) were removed

since the descriptors numerically characterize only 2D-

properties.

Columns with zero and near zero variance were re-

moved. Besides, correlated columns, which exceeded a

Pearson’s correlation coefficient of 0.8, were also re-

moved. The lower cut-off value here was primarily used

to reduce the number of descriptors to a manageable

size. In total, 119 descriptors remained after this prefil-

tering step.

The whole data set was randomly divided into two dis-

joint subsets: an ‘oracle’ data set (75 molecules) and a

data sample of 100 molecules. Owing to the scarcity of

the data, it was not possible to extend the ‘oracle’ data

set. The data sample consisting of 100 molecules was

used for double cross-validation. The ‘oracle’ data set

was used to estimate the validity of double cross-

validation. The data partitioning into the data sample

and the ‘oracle’ data was repeated 15 times. Simulated

Annealing in combination with k nearest neighbour (SA-

kNN) was employed as nonlinear modelling technique

[64]. In the original SA-kNN algorithm described by

Tropsha et al. LOO-CV is used as objective function. In

order to compare different variable selection strategies in

the inner loop the original algorithm was adapted and

LMO-CV was implemented as objective function in order

to guide the variable selection. Thus, SA-kNN was com-

puted in combination with LOO-CV, CV-30% and CV-60%.

SA-kNN depends on many user-defined parameters. The
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parameters for SA-kNN, which were used for this study,

are briefly summarized. The starting ‘temperature’ of SA-

kNN (Tmax) was set to 60, the final ‘temperature’ (Tmin)

was set to 10−3. The number of descriptors M changed at

each step of stochastic descriptor sampling was set to 1.

The number of times N before lowering the ‘temperature’

was set to 40. The maximum number k of nearest

neighbours was set to 5. The factor d to decrease the

‘temperature’ was set to 0.4. The number D of descrip-

tors to be selected from the whole variable set was var-

ied between 2 and 16. The restriction in model size was

applied in order to decrease the computational cost.

Different test data sizes were employed in the outer

loop. The double cross-validation procedure was carried

out for each combination of test data set size, cross-

validation design and for each different data sample. The

whole double cross-validation process was performed 315

times (315 = 7 different test data set sizes × 3 cross-

validation designs × 15 different data samples). For each

double cross-validation process, 100 partitions into test

and training data were performed (resulting in 31500

runs of variable selection).

In a second ‘heavily repeated’ partitioning experiment

the partitioning in ‘oracle’ and data sample was repeated

100 times and 6 different test data sizes were computed

in the outer loop. In the inner loop, SA-kNN was only

used in combination with LOO-CV in order to reduce

the computational cost (SA-kNN in combination with

LOO-CV can be implemented without the need of resam-

pling). Thus, double cross-validation was performed 600

times (100 data samples × 6 different test data set sizes in

the outer loop). In the outer loop of double cross-

validation, 100 partitions into test and training data

were generated (resulting in 60000 runs of SA-kNN).

Results and discussion
Simulation study

In the first part, the presented results analyse the simu-

lated data and illustrate the properties of double cross-

validation. In the second part, real data sets are studied.

For the simulated data, the results of simulation model 2

(6 weak, correlated regression coefficients in two clus-

ters) are presented since it is the more challenging

model. The results of simulation model 1 are available in

the supplementary material. Since the main emphasis

was on the comparison of MLR and PCR for different

cross-validation techniques, the results of Lasso are only

briefly analysed. The composition of the prediction error

was first studied by decomposing it into bias and variance

terms (ave.bias(ME) and ave.var(ME)Þ as described pre-

viously. Generally, different sources of bias exist. These

sources of bias are outlined for MLR in the following. The

Gauss-Markov theorem states that MLR provides the best,

linear and unbiased estimator of the regression vector

under certain assumptions [65]. These assumptions are

easily violated in case of variable selection since the

variable selection algorithm often excludes relevant var-

iables. If true variables are missing, the estimates of the

remaining coefficients are likely to be biased (omitted

variable bias) [66]. Thus, the omitted variable bias refers

to the included model variables, which are systematic-

ally over- or underestimated due to the exclusion of

relevant variables. Hence, the omission of relevant vari-

ables affects the remaining model variables indirectly.

Moreover, the exclusion of significant variables also

causes poor model specification since the erroneously

omitted variables do not contribute to the prediction of

new data. Consequently, the direct influence of these

omitted but relevant variables on data prediction is

missing, which was the dominant source of bias in this

simulation study (cf. Additional file 1: Figures S1 and S2

in the supplementary material). In case of PCR, there is

an additional source of bias since the bias also depends

on the number of selected principal components [67].

Owing to rank approximation, PCR may yield biased es-

timates of the regression coefficients even in case of the

true variable set. The latter bias varied only slightly here

(cf. Additional file 1: Figure S3). The variance of the

prediction error estimates depends mainly on the num-

ber of selected variables, the covariance matrix of the

predictors, the training data size and the noise term. In

case of PCR the variance also depends on the number of

selected principal components [67]. Thus, the variance

can be reduced by rank approximation in case of PCR.

A more mathematical description of the bias and vari-

ance estimates is provided in the supplementary mater-

ial (Pages S1-S7).

The cross-validation set-up in the inner loop and the

number of test set objects in the outer loop had an im-

portant impact on the error estimates with respect to

both bias and variance (Figures 1 and 2). Recall that a

larger training data set size (ntrain) causes a smaller test

set size (ntest) since the number of objects was kept con-

stant at ntrain + ntest = 80 objects. Figure 1 shows the

average bias estimates (ave.bias(ME)) for TS-MLR and

TS-PCR for different test data sizes in the outer loop

and different cross-validation designs in the inner loop.

Generally, the bias term of ME decreased for both MLR

and PCR with larger training data set sizes in the inner

loop (Figure 1) since the variable selection algorithm ex-

pectedly identified on average more of the true variables

with increasing training data set sizes (Additional file 1:

Figure S4 shows the average percentage of truly selected

variables). For MLR the bias estimates also decreased

with a larger percentage of construction data in the

inner loop for the same reason where the dependence

on construction data set size and thus on the cross-

validation type was quite strong (Figure 1). As opposed
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to this, the bias estimates were almost independent of

the cross-validation type for PCR. Similarly, the afore-

mentioned influence of the training set size on bias was

stronger for MLR than for PCR. The differences between

PCR and MLR were most markedly in case of CV-80%. In

case of MLR the remaining construction data set size

was too small to select satisfactory models. Conse-

quently, the selected models were severely underfitted

(Additional file 1: Figure S4) which yielded error esti-

mates with a large portion of bias due to omitted

relevant variables. PCR with CV-80% yielded only slightly

increased bias estimates. Since PCR can exploit the cor-

relation structure of the predictors, less parameters need

to be estimated. Thus, owing to the correlated predictors

PCR can handle the scarce data situation far better and

is less prone to underfitting than MLR. Generally, PCR

models consisted of a larger number of variables (cf.

Additional file 1: Figure S5 for the average number of se-

lected variables). On the one hand side, this results in a

larger number of truly selected variables (Additional file 1:

Figure 1 Bias terms (TS-MLR, TS-PCR, simulation model 2). Average bias terms of the model errors (ave.bias(ME)) for simulation model 2.
The bias varies depending on the regression technique (TS-MLR, TS-PCR), different cross-validation designs in the inner loop, and test set size in
the outer loop.

Figure 2 Variance terms (TS-MLR, TS-PCR, simulation model 2). Average variance terms of the model errors (ave.var(ME)) for simulation
model 2. Variance also strongly depends on the regression technique (TS-MLR, TS-PCR), cross-validation design in the inner loop, and test set size
in the outer loop.
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Figure S4). On the other hand side, PCR models also

contained more irrelevant variables as compared to

MLR (cf. Additional file 1: Figure S6 for the average

number of redundant variables). The number of truly

selected variables is mainly determined through the

training data set size while the number of irrelevant vari-

ables is mainly determined by the cross-validation set-up.

Using LOO-CV as objective function the largest number

of irrelevant variables gets selected while using CV-80%

results in the least number of selected irrelevant variables

(i.e. the more stringent the cross-validation scheme in the

inner loop is, the less irrelevant variables are selected). In

summary, the cross-validation design in the inner loop

and the training and test data set size had a far stronger

impact on the bias estimates and on model selection in

case of MLR as compared to PCR.

MLR and PCR yielded remarkably different results not

only concerning the bias term of ME but also concern-

ing the variance estimates of the ME. Generally, the vari-

ance term tended to increase with larger construction

data set sizes (extreme: LOO-CV) and smaller training

data set sizes (extreme: ntrain = 51, ntest = 29) (Figure 2).

This observation was true for both MLR and PCR.

Again, the influence of both factors were stronger for

MLR than for PCR. Large construction sets and thus

small validation sets in the inner loop favoured models

that are more complex, which in turn cause a large vari-

ance term. The model size influenced the variance esti-

mates to a lesser extent in case of PCR since the variance

depends on the number of principal components [67].

It is well known that PCR reduces the variance by using

a lower rank approximation of the predictor matrix in case

of correlated predictors [67]. Moreover, the variance esti-

mate for PCR only slightly increases with the inclusion of

irrelevant variables if the rank of the chosen model is still

the same as the optimal one that would result from the set

of relevant variables. MLR is confined to using the full

rank of the predictor matrix. Hence, each additional vari-

able increases the variance, particularly so if the predictors

are correlated. Since the predictors are correlated in this

simulation, the variance is generally higher for MLR than

for PCR. Expectedly, LOO-CV yielded a large variance

term especially in case of MLR (Figure 2). The high vari-

ance was because LOO-CV as objective function caused

overly complex models (Additional file 1: Figure S5 and

S6). Thus, LOO-CV yielded models, which included not

only a high percentage of true variables but also many ir-

relevant variables. It was evident that MLR yielded very

low variance estimates in case of CV-80%. Again, this re-

sulted from underfitting. Thus, the increase in bias was

also accompanied by a decrease in variance due to incom-

plete models.

In practical applications, the information about true

and irrelevant variables is not available. In this case, it is

instructive to study how often each variable is selected

across all models in the inner loop. A high selection fre-

quency points to a relevant variable (cf. Additional file 1:

Figure S7a-b for relative variable selection frequencies).

Figure 3 depicts the averaged prediction error esti-

mates (i.e. bias plus variance plus irreducible error) in

the outer loop for the different cross-validation designs.

Expectedly, the prediction error estimates increased with

decreasing training set size since the prediction error

depends on the training set size [4]. In case of large

training data set sizes, the prediction errors for MLR

and PCR are similar while they increase at a faster rate

for smaller training set sizes in case of MLR (Figure 3).

Thus, PCR could cope better with smaller training data

set sizes since it could exploit the correlation structure

of the predictors which renders it more robust than

MLR [4]. Strikingly, MLR yielded high prediction error

estimates in case of CV-80% due to the large increase in

bias. A good trade-off between bias and variance were

CV-40% and CV-60% for MLR and CV-60% and CV-80% for

PCR.

Figure 4a and b show the relative deviation of the pre-

diction error estimates from the theoretical prediction

errors (ave.PEtheo) for different test data set sizes and

for different cross-validation designs. The relative devi-

ation was computed as follows for the prediction error

estimate from the outer loop:

rel:Dev¼100⋅
ave:PE−ave:PEtheoð Þ

ave:PEtheo

Substituting ave.PEinternal for ave.PE results in the de-

viation of the (biased) estimator from the inner loop.

Figure 4a shows that the error estimates derived from

the inner loop (model selection: ave.PEinternal) differ re-

markably from the theoretical prediction errors owing to

model selection bias and sample size effects. On average,

model selection bias increases with the number of

inspected models during the search [21,31]. Hence, for

variable selection, where a huge number of alternative

models is compared, the internal error estimates are in

general useless as an estimator of the true prediction

error. Their sole use lies in comparing models to guide

the search for a good model and not in estimating the

prediction error of the finally chosen model. Two im-

portant factors influence the size of the internal error

when the cross-validation technique is changed (all

other things being equal). First, as any prediction error

the internal prediction error depends on the size of the

data set that was used to estimate it (here: the construc-

tion data set size (nconstr) in the inner loop) [2,4]. The

larger the data set is the smaller is the prediction error.

Since LOO-CV estimates the internal prediction error
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for nconstr = ntrain-1 objects while CV-80% estimates it for

nconstr = 0.2⋅ntrain objects (rounded to the nearest inte-

ger), the error derived from LOO-CV will always be

smaller. The second influence factor is model selection

bias. As mentioned before model selection bias can be

envisaged as underestimation of the true prediction

error of a particular model given a particular data set

just by chance. More complex models are more likely to

underestimate the true prediction error since they adapt

to the noise (i.e. they model noise) in the data and

underestimate the true error that way (manifestation of

overfitting). Given the fact that more construction data

and fewer validation data (i.e. a less stringent cross-

validation) favour the selection of more complex models

(cf. Additional file 1: Figure S6), model selection bias

will on average be largest for LOO-CV and will de-

crease with larger validation data set size. Figure 4a

shows that LOO-CV most severely underestimates the

true error.

For LMO-CV, the prediction error increases the more

data are left out. Moreover, model selection bias will de-

crease (and may even turn into omitted variable bias if

underfitting manifests itself ). Again, this is confirmed in

Figure 4a. ave.PEinternal derived from CV-40% still under-

estimates the true prediction error, while CV-80% even

overestimates it. The exact magnitude of the estimated

internal prediction error is in both cases a mixture of

model selection bias, which is a downward bias, and the

decreasing construction data set size, which increases

the prediction error. It may now happen that there is a

specific construction data set size for which the internal

prediction error and the external prediction error coin-

cide (somewhere between CV-40% and CV-80% in this

case). However, it is important to stress that this does

not mean that this particular cross-validation variant es-

timates the external prediction error unbiasedly. The

exact point where internal and external error meet can-

not be generalized and depends on the data set, the
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Figure 3 Prediction errors of the outer loop (simulation model 2). Average prediction errors (ave.PE, outer loop) for simulation model 2.
TS-MLR (Figure a) performs worse than TS-PCR (Figure b), particularly so for small training sets (i.e. large test sets). Cross-validation design also
influences the magnitude of the prediction error. Lasso performs best in simulation model 2.
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modelling technique, and the number of models

inspected during the search just to name a few. How-

ever, there is a benign situation where internal and ex-

ternal prediction error may coincide which is when

there is no or negligible model selection bias. Hence, if

there is no model selection process or if only a few

stable models are compared, then model selection bias

may be absent or negligible.

Figure 4a also shows a moderate effect of test set size

for the two overoptimistic cross-validation variants (stron-

ger underestimation for smaller training set sizes). This

observation is within expectation since model selection

bias also increases for small training data set sizes [27].

Figure 4b shows that the differences between the

external prediction error estimates (model assessment,

ave.PE) and the theoretical prediction errors (ave.PEtheo)

are negligibly small (worst case 1.5% for ntest = 1). The

error estimates derived from the outer loop yield realistic

estimates of the predictive performance as opposed to the

internal error estimates since they are not affected by

model selection bias. The result shows that repeated

double cross-validation can be used to reliably estimate

prediction errors.

Since the magnitude of the prediction error (PE)

depends on the data set size, double cross-validation

estimates the prediction error for ntrain and not for

n = ntrain + ntest. Hence, the deviation between PE(n) and

PE(ntrain) increases for increasing ntest. Consequently,

the closest prediction error estimate to PE(n) would be

obtained for ntest = 1 (i.e. PE(n-1)). Put differently, leave-

one-out cross-validation for model assessment almost

unbiasedly estimates the prediction error of the original

data set of size n [68] while for smaller ntrain and larger

ntest the estimator gets biased as an estimator of PE(n)

Figure 4 a-b - Relative deviation of prediction error estimates (TS-PCR, simulation model 2). Figure a shows that prediction error
estimates from the inner loop of double cross-validation (ave.PEinternal) deviate heavily from the theoretical prediction error (ave.PEtheo) owing to
model selection bias (downward bias) and sample size effects (upward bias for smaller construction sets). Prediction error estimates from the
outer loop (ave.PE) slightly deviate for small test sets while they converge to the theoretical prediction error for larger test sets (Figure b).
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since it overestimates PE(n). ntest = 1 in the outer loop,

however, is not the ideal choice since the variability of

the prediction error estimate is rather high in this case

which is shown in Figure 5. The larger deviations for

smaller test set sizes in Figure 4b are probably due to

this larger variability and would vanish if the number of

simulations were increased.

Figure 5 shows that the prediction error estimates in

the outer loop were highly variable for small test data

sizes. Generally, high variability occurs if the individual

error estimates in the outer loop differ considerably

from the average prediction error of double cross-

validation. Potential sources of large variability are highly

variable test data as well as unstable model selection and

changing regression vector estimates. In this simulation

study the variability of the prediction error estimates de-

rived from the outer loop was remarkably high in case

of only one single test object. It decayed quickly for lar-

ger test set sizes. In case of double cross-validation,

small and largely varying test data sets were a major

source of fluctuating prediction error estimates in the

outer loop. Thus, the variability of the error estimates in

the outer loop (ave.vb(PE)) decreased with larger test

data set sizes owing to less variable test data. In this

simulation study, the variability of the error estimates

changed considerably for test data set sizes up to ntest = 7

and then changed only slightly for larger test set sizes.

Hence, we are again faced with a trade-off between bias

(deviation of PE(ntrain) from PE(n)) and variance (the

variability of the prediction error estimate, which must

not be confused with the variance term (ave.var(ME)),

when setting the number of test objects in the outer loop.

General recommendations are not available since ideal

choices depend on data set characteristics. However, it is

well known that leave-one-out cross-validation as an esti-

mator of the prediction error shows high variance [69].

In practical applications, the test set sizes should be var-

ied. The ascent of the prediction error for varying test data

set sizes gives an impression of the bias. If the ascent is

mild (or if there is even a plateau), larger test set sizes

should be used to estimate the prediction error since vari-

ability often decreases dramatically for larger test data set

sizes in the outer loop. Here, leaving out approximately

10% (ntest = 7 to ntest = 9) of the data as test set in the outer

loop worked well. The prediction error was overestimated

by less than 5% (see Figure 3b: difference between ntest = 1

and ntest = 9) and the variability of the prediction was sig-

nificantly reduced with this test set size.

Interestingly, the variability of PEoracle differed com-

pletely from the variability of the prediction error esti-

mates in the outer loop. It mainly reflected model

uncertainty whereas limited and varying test data sets

were scarcely a source of variability (cf. Additional file 1:

Figure S8).

Figure 5 Variability of the error estimates (outer loop, simulation model 2). The variability of the prediction error estimates from the outer
loop (ave.vb(PE)) quickly decreases for larger test sets. The variable selection algorithm in the inner loop (Lasso, TS-MR and TS-PCR) and the
cross-validation design have a smaller impact.
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Lasso yielded competitively low prediction errors as

compared to MLR and PCR (Figure 3). On average,

Lasso selected the largest number of variables, which

resulted in the largest number of selected relevant vari-

ables and a large number of included irrelevant variables.

Even with a far larger number of irrelevant variables, the

Lasso beats the best PCR setting. This can be explained

by the fact that the true variables are more often

included and their regression coefficients are better

estimated while the estimated regression coefficients for

the irrelevant variables are on average rather small

(Additional file 1: Figure S9). Lasso tended to yield less

variable prediction error estimates than TS-MLR and

TS-PCR (Figure 5) although the differences were rather

small. Importantly, Lasso was far less computationally

burdensome than MLR and PCR in combination with

tabu search. In the context of repeated double cross-

validation, the computational feasibility is particularly

attractive since the variable selection algorithm is re-

peated many times. Lasso as a constrained version of

least squares estimation has not only sparsity proper-

ties (i.e. built-in variable selection) but is also a ro-

bust stable regression technique [57,70]. Yet, the fact

that it wins the competition against TS-MLR and

TS-PCR roots in the structure of the data. If there

are only few strong relevant variables, as in simulation

model 1, TS performs better than Lasso (cf. Additional

file 1: Figure S17). However, with many intermediately

strong variables, Lasso is a very reasonable alternative

to classical variable selection through search. More

properties of the Lasso are given in a recent mono-

graph [71].

Figure 6 Solubility data: prediction error estimates for TS-PCR. For the solubility data, prediction error estimates from the outer loop agree with
those obtained from the ‘oracle’ data. Deviations are attributed to random fluctuations (see standard deviations). Cross-validation design influences the
performance of the derived models. Stringent CV-80% performs best while 10-fold CV performs worst because it overfits the data. The error estimates are
averaged over 6 different partitions into ‘oracle’ data and data sample). Naturally, prediction errors increase for smaller training sets (i.e. larger test sets).

Baumann and Baumann Journal of Cheminformatics 2014, 6:47 Page 14 of 19

http://www.jcheminf.com/content/6/1/47



Results and discussion for the real data sets

Solubility data

Simulated data are well suited to study the properties of

algorithms since the correct answer is known. However,

solving real-world problems requires to build, select, and

assess models for real data which is often far more chal-

lenging than analyzing well-behaving simulated data.

Hence, double cross-validation was also applied to real

data to underpin the findings of the simulation study and

to outline strategies how to find good parameters for

double cross-validation. The available data were split into

a small data sample (n = 60) and a large ‘oracle’ data set

(noracle = 939) that was used to check the results of the

double cross-validation with a large independent test set.

Note that the ‘oracle’ data set was used in much the same

way as in the simulation study (see definition for PEoracle,dcv).

The data sample was intentionally rather small since the

effects of the different parameters of double cross-

validation are more pronounced in this case. Several dif-

ferent partitions into small data sample and ‘oracle’ data

set were generated to average random fluctuations.

In Figure 6 the outer loop and ‘oracle’ prediction er-

rors averaged over the 6 different data samples for the

solubility data set depending on test data set size are

shown. Generally, the latter prediction error estimates

corresponded well.

For 10-fold CV and CV-80% the relative deviations from

the ‘oracle’ prediction error ranged from +2% to −6% for

10-fold CV and +2% to −2% for CV-80%. The largest rela-

tive deviations were observed for CV-40% where the pre-

diction error from the outer loop underestimated the

‘oracle’ prediction error by −4% to −7% (Additional file 1:

Figure S10). The standard deviations shown in Figure 6

obtained from the 6 repetitions show that these deviations

are due to random fluctuations. This confirms that double

cross-validation has the potential to assess the predictive

performance of the derived models unbiasedly. Analogous

to the simulation study, the prediction error estimates in-

creased with larger test sets and thus smaller training sets

owing to deteriorated regression vector estimates. CV-80%

shows the smallest prediction errors and performed thus

better than 10-fold CV and CV-40%. The performance dif-

ferences increase for smaller training sets, which again

shows that model selection bias, is more pronounced in

small training sets. Analogous to the simulation study,

small test data set sizes yielded largely varying prediction

error estimates in the outer loop owing to highly variable

test data especially in case of 10-fold CV (Figure 7). Large

test data set sizes yielded highly fluctuating error estimates

in the outer loop due to higher model uncertainty. Thus,

the variability of the error estimates in the outer loop

reached a minimum for moderately sized test sets. CV-80%

yielded stable prediction errors in the outer loop, which

were less variable as compared to the other cross-

validation designs. The analysis of the variable selection

frequencies revealed that CV-80% expectedly yielded

models of very low complexity in comparison to the

other cross-validation designs (Additional file 1: Figure

S11). In case of CV-80% the derived models almost exclu-

sively comprise predictors which yielded high CAR

scores in the variable preselection process.

In the ‘heavily repeated’ data partitioning experiment,

400 different splits into ‘oracle’ data set and small data

sample were computed to attenuate the influence of for-

tuitous data splits. The results for CV-60% and different

test data set sizes are summarized in Table 1. The pre-

diction errors derived from the outer cross-validation

loop corresponded well with the averaged error esti-

mates derived from the ‘oracle’ data. As opposed to this,

the cross-validated error estimates from the inner loop

were affected by model selection bias and underesti-

mated the prediction error severely (Table 1).

Figure 7 Solubility data: Variability of the prediction error estimates. Variability of the error estimates derived from the outer loop of double
cross-validation (ave.vb(PE)) for different test data set sizes in the outer loop and for TS-PCR with different cross-validation designs in the inner
loop (10-fold CV, CV-40% and CV-80%). Moderately sized test sets show the smallest variability.
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Artemisinin data set

The artemisinin data set was far smaller and required a

larger data sample for building, selecting and assessing

the models. Hence, it was not possible to set aside a

large ‘oracle’ data set. The data sample consisted of n =

100 objects while the ‘oracle’ data set consisted of only

noracle = 75 objects. 15 different partitions into data sam-

ple and ‘oracle’ data set were generated to average ran-

dom fluctuations. Recall that SA-kNN is used instead of

tabu search and linear regression in this example to

show that the influence of the various factors is essen-

tially the same for a different modelling technique. The

average prediction errors in the outer loop of double

cross-validation for the artemisinin data set were also in

good agreement with the averaged prediction errors

derived from the ‘oracle’ data (Figure 8). It can be seen

that the ‘oracle’ prediction error is underestimated in all

cases (by −1% to −5%, see Additional file 1: Figure S12).

The standard deviations once again show that the devia-

tions can be attributed to random fluctuations. LOO-CV

again yielded relatively poor prediction errors and se-

lected low numbers of k nearest neighbours as compared

to the more stringent cross-validation schemes due to

overfitting tendencies. The adaptation of the original al-

gorithm led to improved models since SA-kNN in com-

bination with LMO yielded lower prediction error

estimates in the outer loop (Figure 8). The data for CV-30%

lie in between those of LOO-CV and CV-60% and are not

shown to avoid clutter in the figure.

In case of small test data set sizes, the error estimates

in the outer loop scattered largely around their average

as compared to the error estimates derived from the ‘or-

acle’ data set (Figure 9). In summary, the results of the

artemisinin data corresponded well with the results of

the simulation study. Besides, it was confirmed that the

error estimates in the outer loop yielded realistic esti-

mates of the generalization performance.

In the ‘heavily repeated’ data partitioning experiment

100 different splits into ‘oracle’ data set and data sample

were computed for the suboptimal but computationally

Table 1 Solubility data: average prediction error

estimates

Number
of test
objects

Average number
of principal
components

ave.PEinternal ave.PE ± std ave.PEoracle ± std

2 3.79 0.70 1.05 ± 0.04 1.03 ± 0.01

12 3.68 0.69 1.10 ± 0.03 1.11 ± 0.01

22 3.26 0.71 1.16 ± 0.03 1.18 ± 0.01

32 2.81 0.76 1.26 ± 0.03 1.28 ± 0.01

Figure 8 Artemisinin data: prediction error estimates for SA-kNN. In case of the artemisinin data, prediction error estimates from the outer
loop again agree with those obtained from the comparatively small ‘oracle’ data set. However, all prediction errors underestimate the values
obtained with the ‘oracle’. Since standard deviations are large, the deviations are attributed to random fluctuations. Stringent cross-validation
schemes outperform LOO-CV. The prediction error estimates are averaged over 15 different partitions into ‘oracle’ data and data sample.
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cheap LOO-CV and different test data set sizes. The re-

sults are summarized in Table 2. The prediction errors

derived from the outer cross-validation loop again corre-

sponded well with the averaged error estimates derived

from the ‘oracle’ data. Once again, the cross-validated

error estimates derived from the inner loop were af-

fected by model selection bias and underestimated the

prediction error severely (Table 2).

Conclusions
The extensive simulation study and the real data exam-

ples confirm that the error estimates derived from the

outer loop of double cross-validation are not affected by

model selection bias and estimate the true prediction

error unbiasedly with respect to the actual training data

set size (ntrain) which it depends on. This confirms earl-

ier simulation studies with different data structures

[8,12]. The error estimates derived from the inner cross-

validation loop are affected by model selection bias and

are untrustworthy. The simulation study also demon-

strates the well-known fact that LOO-CV is more sus-

ceptible to overfitting than LMO-CV when employed as

objective function in variable selection. It is illustrated

that LOO-CV has the tendency to select complex

models and to yield high variance and low bias terms.

Moreover, it is demonstrated that underfitting can occur

if too many objects are retained for validation in the

inner loop. The optimal partition of the training data

into construction data and validation data depends,

among other things, on the unknown complexity of

the true model. The validation data set size is a

regularization parameter (i.e. it steers the resulting

model complexity) that needs to be estimated for real

data sets. The cross-validated error from the inner loop

is not an appropriate indicator of the optimal model

complexity since model selection bias and sample size

effects in plain cross-validation are not adequately

accounted for. The prediction error in the outer loop

reaches a minimum for optimal model complexity.

Therefore, it is recommended to study the influence of

different cross-validation designs on the prediction error

estimates in the outer loop for real data problems to

prevent underfitting and overfitting tendencies. How-

ever, this can imply a high computational cost. Please

also note that an excessive search for the optimal param-

eters of double cross-validation may again cause model

selection bias (as any excessive search for optimal pa-

rameters of a procedure) which may necessitate another

nested loop of cross-validation.

In many cases modern variable selection techniques

(such as the Lasso) can be applied which often yield

comparable or even better results than classical, com-

binatorial variable selection techniques but are far less

computationally burdensome. Moreover, techniques

such as Lasso are far more robust with respect to the

cross-validation design in the inner loop of double

cross-validation.

It is also advisable to study the variable selection fre-

quencies for different data splits and test data sizes. The

true predictors are unknown for real data problems.

Nevertheless, the frequent selection of specific variables

for different splits into test and training data indicates

the relevance of these predictors.

The prediction error depends on data set size and

more specifically, it depends on the training set size in

Figure 9 Artemisinin data: Variability of the prediction error estimates. Variability of the error estimates derived from the outer loop
(ave.vb(PE)) for different test data set sizes in the outer loop and for SA-kNN in combination with different cross-validation techniques in the
inner loop (LOO-CV, CV-30% and CV-60%). Variability quickly decreases with increasing test set size.

Table 2 Artemisinin data: average prediction error

estimates

Number
of test
objects

Average selected
number of
nearest
neighbours

ave.PEinternal ave.PE ± std ave.PEoracle ± std

2 3.25 0.56 1.03 ± 0.02 1.02 ± 0.02

12 3.12 0.55 1.07 ± 0.02 1.06 ± 0.02

22 2.96 0.55 1.14 ± 0.02 1.13 ± 0.02

32 2.78 0.54 1.21 ± 0.02 1.20 ± 0.02

42 2.56 0.52 1.30 ± 0.02 1.31 ± 0.02

52 2.32 0.50 1.44 ± 0.02 1.43 ± 0.02
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cross-validation. In the simulation study, the prediction

errors improved with respect to the variance and bias

terms in case of larger training data set sizes. However,

there was also a drawback since larger training data sets

imply smaller test sets: in case of small test data set

sizes, the variability of the prediction error estimates in-

creased considerably. Thus, the challenge is to find a

reasonable balance between the training and test data

set size. A slight increase in the prediction error

estimates might be acceptable in order to decrease the

variability of the error estimates considerably. In the

simulation study, a test data set size of approximately

5–11 objects (6%-14% of the data) in the outer loop was

a good compromise since the slight increase in the pre-

diction error estimates was deemed acceptable in order

to decrease the variability considerably. For real data

sets, various test set sizes should be evaluated. If the pre-

diction error does not increase significantly, the larger

test set size is recommended for a less variable estimator

of the prediction error. Using approximately 10% of the

data for model assessment in the outer loop also worked

well for the real data sets. These results are in accord with

the common practice in the statistics and machine learn-

ing community to use (repeated) 10-fold cross-validation

to estimate the prediction error for model assessment.

Besides, it is recommended to split the available data

frequently into test and training data. These repetitions

reduce the risk of choosing fortuitous data splits. Diffe-

rent data splits yield varying estimates of the prediction

error. Averaging the error estimates in the outer loop

improves the accuracy of the final prediction error esti-

mate. Moreover, using frequent splits also allows study-

ing the variability of the prediction error estimates.

The optimal test data set size in the outer loop and the

optimal cross-validation design in the inner loop depend

on many factors: the data set size, the underlying data

structure, the variable selection algorithm and the model-

ling technique. Thus, each data set requires a thorough

analysis of how the parameters of double cross-validation

effect the prediction error estimates. As a rule of thumb, in

the inner loop as many objects as possible should be left

out to avoid overfitting while in the outer loop as few ob-

jects as possible should be left out to avoid overestimation

of the prediction error. According to the experience we

have, d ≥ 0.5 ⋅ ntrain in the inner loop and ntest ≈ 0.1 ⋅ n in

the outer loop provide good starting values for many cases

where combinatorial variable selection is combined with

latent variable regression techniques such as PCR. For

Lasso, a 10-fold cross-validation in the inner loop in mostly

sufficient since Lasso is far less susceptible to overfitting.

Experimental
All mathematical computations were done with the free

statistical software R, version 2.14.1 [72]. Except for the

Lasso algorithm, all mathematical computations and the

analysis thereof (e.g., the computation of the expectation

values, SA-kNN, TS-PCR, TS-MLR) were computed using

in-house developed R-code. The R package lars (version

1.1) was used for computing the Lasso algorithm.
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