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Due to enhanced safety, cost-e�ectiveness, and reliability requirements, fault diagnosis of bearings using vibration acceleration
signals has been a key area of research over the past several decades. Many fault diagnosis algorithms have been developed that can
e�ciently classify faults under constant speed conditions. However, the performances of these traditional algorithms deteriorate
with 	uctuations of the sha
 speed. In the past couple of years, deep learning algorithms have not only improved the classi�cation
performance in various disciplines (e.g., in image processing and natural language processing), but also reduced the complexity
of feature extraction and selection processes. In this study, using complex envelope spectra and stacked sparse autoencoder-
(SSAE-) based deep neural networks (DNNs), a fault diagnosis scheme is developed that can overcome 	uctuations of the sha

speed.�e complex envelope spectrummade the frequency components associated with each fault type vibrant, hence helping the
autoencoders to learn the characteristic features from the given input signals more readily. Moreover, the implementation of SSAE-
DNN for bearing fault diagnosis has avoided the need of handcra
ed features that are used in traditional fault diagnosis schemes.
�e experimental results demonstrate that the proposed scheme outperforms conventional fault diagnosis algorithms in terms of
fault classi�cation accuracy when tested with variable sha
 speed data.

1. Introduction

Reliable fault diagnosis of industrial machinery is an essential
task, as it not only contributes to the safety and reliability of
themachinery, but also decreases the associatedmaintenance
and operational costs [1–7]. Vibration acceleration signals
collected from complex industrial machines provide useful
information about their health status, and therefore, vibration
condition monitoring is considered a standard approach that
allows for corroboration as a part of reliable fault diagnosis
schemes [8–12]. Bearings are the most frequently used com-
ponents in rotatingmachinery and account for approximately
40–51% of the failure occurrences [13–15]. As a result, bearing
fault diagnosis has been extensively investigated.

Traditional fault diagnosis methods use e�cient fea-
ture extraction and a machine learning algorithm, such
as �-nearest neighbors (�-NN), support vectors machines
(SVMs), and arti�cial neural networks (ANNs), to perform
fault diagnosis [16–20]. Feature extraction is a cumbersome

process that requires expert knowledge and also adds to the
complexity of the fault diagnosis scheme [21]. Previously, ten
statistical parameters re	ecting the bearing health conditions
were �rst calculated, and then the calculated features were
provided as an input to the ANN for fault classi�cation
[22]. In a previous study, nineteen statistical parameters were
extracted from the vibration signals, and fault classi�cation
was performed using SVMs [23]. A combination of the coef-
�cients of the linear time-invariant autoregressive model and
nearest neighbor classi�er were utilized for fault diagnosis
[24]. �ese networks can e�ciently perform fault classi�ca-
tion under constant sha
 speeds. However, the e�ciency of
these fault diagnosis schemes decreases when testedwith data
for variable sha
 speeds. A mechanism is required to address
the issue for the underlying network so that it can e�ciently
extract useful information from nonstationary sha
 speed
data, making it suitable for e�cient fault diagnosis in variable
sha
 speed conditions.
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Table 1: Description of the datasets used in the proposed scheme.
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Figure 1: Illustration of the proposed fault diagnosis scheme.

In recent years, deep learning has emerged as a useful tool
for solving pattern recognition, image processing, computer
vision, and natural language processing problems and is
capable of attaining informative features from minimally
processed data via nonlinear transformations [25–27]. Deep
learning algorithms can replace the need for handcra
ed
features, as the algorithms are capable of unsupervised feature
learning and hierarchical feature extraction [28].

In this study, a three-step mechanism was developed,
which can diagnose bearing faults under sha
 speed 	uctua-
tions using vibration acceleration signals. First, the energy-
frequency distribution of the input vibration acceleration
signals is estimated by calculating its complex envelope
spectrum. �en, the calculated complex envelope spectrum,
which extracts essential properties of the signal, is provided
as input to the stacked sparse autoencoder (SSAE) based
deep neural network. �e end fault classi�cation is per-
formed using the So
Max classi�er. �e e�ciency of the
proposed scheme was evaluated by testing it with vibration
data obtained for four di�erent sha
s speeds. �e results
demonstrate a noticeable improvement of the diagnostic
performance compared to the outputs of existing techniques.
�e rest of this paper is organized as follows. Section 2
describes the dataset used for this study. Section 3 presents the
details of the proposed scheme, and Section 4 discusses the
experimental results. Finally, Section 5 concludes the paper.

2. Bearing Dataset

�e e�ectiveness of the proposed scheme was tested using
bearing fault data provided by Case Western Reserve Uni-
versity [29]. �e faults were seeded in the test bearings on
their outer raceway, inner raceway, and rolling element by

using an electro-dischargemachine (EDM). A variable length
vibration signal was collected each time from a 2-horsepower
(hp) reliance electric motor for a normal condition and
three faulty conditions.�e drive end vibration data obtained
from an accelerometer, placed at the 12 o’clock position on
the bearing housing, was utilized in the experiments. �e
sampling rate, fault diameter, and crack depthwere 12,000Hz,
7mils, and 0.11 inches, respectively.�e data was collected for
four sha
 speeds of 1,722, 1,748, 1,772, and 1,796 revolutions
perminute (rpm).�e four diverse types of signals specifying
the three faulty states and the one normal state are shown in
Table 1.

3. Complex Envelope Spectrum and Stacked
Autoencoders for Fault Diagnosis

�e proposed speed invariant fault diagnosis scheme is
elaborated in Figure 1. First, segmentation of the vibration
acceleration signal is carried out using a �xed size window,
resulting in 117 segments of 1,024 data points each for every
fault type and speed condition. �e complex envelope spec-
trumof each segment is computed to reveal the instantaneous
features hidden in the time domain signal. �is spectrum
contains an impulse response series on certain defect fre-
quencies associated with each fault type [30]. �e defect
frequencies are functions of the sha
 speed, and therefore, a
slight variation of the sha
 speed can cause variations of the
positions of these defect frequencies in the envelope power
spectrum. �erefore, under variable speed conditions, the
traditional envelope analysis yields poor results, as it relies
on detecting bearing faults through the exact location of
the corresponding defect frequencies in the envelope power
spectrum. �e proposed method does not rely on the exact
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locations of the defect frequencies; instead, it mines features
from the entire spectrum. A variation of the sha
 speed
changes the exact locations of the peaks at defect frequencies.
However, the relative positions of the peaks at the defect
frequencies and the peaks at the principal harmonics of
these defect frequencies remain unaltered. �us, changes of
the sha
 speed skew the envelope power spectrum but do
not drastically change its overall shape and structure, such
that the relative positions of the defect frequencies and their
principle harmonics remain the same. �erefore, due to the
unsupervised learning and hierarchical feature extraction
mechanism, stacked autoencoders can overcome the speed
variations and automatically mine meaningful information
from the complex spectrum. In this study, the focus was
to compute the complex envelope spectra of the three fault
conditions (i.e., inner, outer, and roller raceway faults). As a
result, stacked autoencodersmay take advantage of variations
of the amplitude levels, as well as the relative positions
of defect frequencies and the principle harmonics in the
spectrum, resulting in extraction of the informative features.

3.1. Complex Envelope Spectrum. �e following steps are
involved in computing the complex envelope spectrum.

(1) Computation of the analytical signal: it is described as
follows.

�e analytical signal is composed of a real signal and its
Hilbert transform. Let us suppose that �(�) is a time domain
signal; then its Hilbert transform and a new time domain
signal �(�), which is also known as the analytical signal, can
be mathematically represented as shown below.

� (�) = � (�) + ��̃ (�) . (1)

Here, the value of � is √−1. �e mathematical representation
of the Hilbert transform is given as

�̃ (�) = � (�) ∗ 1

� =

1

 ∫ � (�)

� − � �. (2)

(2) �e complex envelope spectrum is computed by
applying a Fourier transform �{�(�)} of the analytical
signal.

(3) �e absolute of this spectrum |�{�(�)}| is used for
further processing with stacked autoencoders.

Typically, a high pass �lter is applied as a preprocessing
step on this raw signal to eliminate the e�ects caused by
slow vibrations. Given that the deep network can extract
meaningful information automatically from the input data,
high pass �ltering of a raw signal is skipped while computing
the complex envelope spectrum.�us, the proposed method
using this spectrum, which is given as an input to the
deep network, helps to reduce the complexity, as well as
the number of steps for calculating the complex envelope
spectrum of signals.
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Figure 2: Sketch of a basic autoencoder.

3.2. Stacked Autoencoders. A stacked autoencoder is a deep
arti�cial neural network having more than one hidden layer,
and it is formed by stacking simple autoencoders for feature
extraction and classi�cation. �e functionality of stacked
autoencoders can be understood by considering the knowl-
edge of a single autoencoder. Figure 2 shows the architecture
of a typical stacked autoencoder. An autoencoder is a three-
layered arti�cial neural network (ANN) that operates in
an unsupervised manner. �ere are two main parts of an
autoencoder, the encoder and the decoder.

�e encoder part utilizes an input � ∈ �� and provides
an output � ∈ �� by transforming the inputs from a
higher-dimensional space (i.e., � dimensions) to a lower-
dimensional space (i.e., � dimensions). �e produced output
vector is known as codes or latent variables, and it can be
mathematically represented as follows:

� = �1 (�� + �) , (3)

where �1, �, and � are the encoding activation function,
weights, and biases, respectively, which are used in the hidden
layer. On the other hand, the decoder part tries to reconstruct
the inputs �̃ from the generated codes. �e reconstruction
process can be represented as follows:

�̃ = �2 (��� + ��) . (4)

Here, �2, ��, and �� are the deactivation transfer func-
tion, weight, and bias, respectively, which are used in the
reconstruction process. During the reconstruction process,
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autoencoders try to minimize the reconstruction error by
using the following loss function:

� (�, �̃) = ± (‖� − �̃‖)
= ������ − �2 (�� (�1 (�� + �)) + ��)����� .

(5)

In the current work, sparse autoencoders were used to create
sparse stacked autoencoders (SSAEs).�e concept of sparsity
in an autoencoder is explained in the following section.

3.3. Sparse Autoencoder. �e sparsity constraint can be intro-
duced to the cost function of an autoencoder with the help of
a regularization term. �is regularization term is a function
which measures the average output activation value of a
neuron and is helpful in avoiding the over�tting problem.
�e regularized cost function a
er introducing sparsity and
weight regularization can be represented as follows:

� (�, �̃) = 1
�
�
∑
�=1

�
∑
�=1

(��� − �̃)2 +  ∗ Ψweights + "

∗ Ψsparsity.
(6)

Here,  indicates the �2 regularization coe�cient and " is
the sparsity regularization coe�cient. During the training
of an autoencoder, it is possible that the value of sparsity
regularization term decreases by increasing the values of
weights � and decreasing the values of latent codes �. �is
issue can be resolved by introducing �2 regularization to the
cost function, which can be formulated as

#weights = 1
2
�
∑
�

�
∑
	

�
∑


(��	
)2 , (7)

where $, �, and � denote the number of hidden layers,
number of observations, and number of variables in the input
data, respectively. �e sparsity regularization term controls
the sparsity constraint on the output from the hidden layer
neurons. It takes a higher value when the �th neuron provides
an average activation value Ṽ
 that deviates mainly from the
desired value V. It can be de�ned by the Kullback-Leibler
divergence as follows:

#sparsity =
�(1)

∑

=1

%� (V ‖ Ṽ)

=
�(1)

∑

=1

V log(V
Ṽ

) + (1 − V) log( 1 − V

1 − Ṽ

) .

(8)

�e function given in (8)measures the di�erence between the
two distributions; if the two distributions are equal, it takes
a zero value and increases as the distributions diverge from
each other. When minimizing the cost function, this term is
forced to be as small as possible; as a result, the two values V
and Ṽ
 come closer to one another. �e activation Ṽ
 can be
de�ned as

Ṽ
 = 1
�
�
∑
	=1
/(1)
 (�	) = 1

�
�
∑
	=1
ℎ (3(1)�
 �	 + �1
 ) . (9)

Once all the sparse autoencoders are trained individually,
they are stacked to form the deep neural network (DNN).
A typical three-layered deep neural network (DNN) based
on SSAEs is given in Figure 3. In each hidden layer, sparsity
is introduced into the network by a sparsity regularization
term. In such aDNN, the autoencoders extract useful features
through an unsupervised learning process. �e DNN is then
�ne-tuned in a supervised manner using backpropagation in
combination with the standard gradient descent algorithm.
A
er �ne-tuning, the network is tested using unseen data.
�e steps that are carried out during the �ne-tuning of a deep
neural network using the standard gradient descent based
backpropagation algorithm are given as follows:

(1) �e weights and biases are initialized with small
random nonzero values.

(2) A set of input observations “�” are provided to
the DNN, and the corresponding activation �,1 is
calculated.

(3) For every layer in the network, an output /,� =
3��,�−1 + �� is computed and is feedforwarded along

with activation of neurons �,� = 4(/,�).
(4) �e predicted output is compared with the actual

value to calculate the error between the two values.
�e computed error is denoted by 5� = ∇�7 ⊙ 4�(/�),
where ∇�7 is the change in the cost function and 4� is
derivative of activation function used in the neurons
of a layer.

(5) Backpropagation of the error is performed to update
the weights in order to minimize the error.

(6) �e gradient of the cost function is calculated as

97/93�	� = ��−1� 5�	 and 97/9��	 = 5�	.
(7) Steps (1)–(5) are repeated until the overall error is

reduced to the smallest possible value.

4. Experimental Setup

In the current work, four experiments were carried out
to validate the e�ectiveness of the proposed scheme when
dealing with sha
 speed 	uctuations. �e set of experiments
is listed in Table 2, and each experiment was conducted
multiple times with di�erent numbers of epochs to train
the network. �e bearing fault data was divided into four
separate datasets based on the sha
 speed, with each dataset
containing samples from the normal state, as well as from the
inner raceway, outer raceway, and roller faults (468 samples).
In each experiment, the network was trained using samples
from one sha
 speed dataset and validated with the samples
of the other sha
 speed datasets.

4.1. Parameter Selection for Stacked Sparse Autoencoders
(SSAEs). According to [31], selection of parameters during
deep learning a�ects the performance of the model. In this
work, while developing an SSAE-based DNN for bearing
fault diagnosis, the model was repeatedly tested with dif-
ferent values for parameters, like the receptive input size,
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Table 2: Description of the experiments performed using data obtained for the di�erent RPM values.

Experiment number Number of samples Training and testing data RPM

Experiment 1
Training samples: 468 Training data RPM: 1722

Testing samples: 1404 Testing data RPM: 1748, 1772, 1796

Experiment 2
Training samples: 468 Training data RPM: 1748

Testing samples: 1404 Testing data RPM: 1722, 1772, 1796

Experiment 3
Training samples: 468 Training data RPM: 1772

Testing samples: 1404 Testing data RPM: 1722, 1748, 1796

Experiment 4
Training samples: 468 Training data RPM: 1796

Testing samples: 1404 Testing data RPM: 1722, 1748, 1772
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Figure 3: A schematic diagram of the three-layered SSAE-based DNN.

sparsity constraint, and the number of hidden nodes, and
their e�ects on the reconstruction error of the model were
observed. �e reconstruction error is the di�erence between
the reconstructed input and the original input and thus can
help to improve the developed fault diagnosis model. In
the subsequent sections, the details regarding the necessary
parameters that are used for developing an autoencoder
are given. �e following details about the parameters are

provided by considering the �rst autoencoder used in the
SSAEs.

4.1.1. Receptive Input Size. �e length of a single sample that
is provided as input to an autoencoder is called receptive
input size. It is observed that the quality of the higher-
level representative features, which are extracted from the
input, improves when larger input sample size is provided to
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Figure 4: �e e�ect of the number of hidden nodes in the �rst
autoencoder on the reconstruction error.

autoencoders. However, it also increases the computational
overhead and hence smaller receptive input size is used to
achieve better computational performance. In this work as
we have used a window size of 1024 to calculate the complex
envelope spectrum, the respective input size is 1024. Using an
even larger input sizewould signi�cantly increase the training
time for the DNN, but may not yield proportional improve-
ments in diagnostic performance. �erefore, an input size
of 1024 data points is used to achieve a reasonable trade-o�
between diagnostic performance and computational costs.

4.1.2. Number of Hidden Neurons. �e number of hidden
neurons that appear in the hidden layer of an autoencoder
plays a crucial role in the extraction of higher-level repre-
sentative features. �ere is no de�ned rule for selecting the
number of nodes in the hidden layer of an autoencoder.
According to the available literature [32], the number of
nodes in the hidden layermust be less than the receptive input
size to learn the compressed representation of the input data.
Figure 4 shows the e�ect of hidden layer neurons in the �rst
autoencoder on the reconstruction error. It is evident that
the reconstruction error of the autoencoder is less when the
number of nodes is equal to half of the receptive input size or
fewer. �is criterion of half or fewer than half is also valid for
all the subsequent hidden layers of the SSAEs.

4.1.3. Sparsity Constraint. �e primary objective of an
autoencoder is to extract higher-level representative features
through an unsupervised learning process. In unsupervised
learning, an appropriate sparsity constraint can improve the
forward learning of an autoencoder. �e e�ect of the sparsity
constraint on the reconstruction error of the �rst autoencoder
is shown in Figure 5. It is apparent that the reconstruction
error is almost invariant while keeping the sparsity propor-
tion in the range between 0.15 and 0.2.�erefore, to construct
a deep neural network, the value of the sparsity proportion in
all the hidden layers is kept at a value of 0.15.

4.1.4. Number of Hidden Layers. �enumber of hidden layers
in	uences the learning process of the SSAE-based DNN.
Table 3 shows the in	uence of the number of hidden layers
used to develop the DNN. It can be observed that the
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Figure 5: E�ect of sparsity proportion on the reconstruction error.

32.445
30.558

13.299 12.598

37.392 36.667

16.548

95.992

36.741 33.33 32.402

Network Architecture (Number of Layers and Number of
Nodes in each layer)

0

20

40

60

80

100

120

A
ve

ra
ge

 E
xe

cu
ti

o
n

C
o

st
 (

se
co

n
d

s)

20
0/

20
0

20
0/

10
0

10
0/

10
0

10
0/

50

20
0/

20
0/

20
0

20
0/

10
0/

50

10
0/

50
/2

5

50
0/

25
0/

12
5/

62

20
0/

20
0/

10
0/

10
0

20
0/

10
0/

50
/2

5

10
0/

50
/2

5/
10

Figure 6: E�ect of number of hidden layers and nodes in a DNN on
average execution cost.

smallest reconstruction error is for the case that 4 hidden
layers are used in the DNN. Moreover, there is no noticeable
decline in the reconstruction error with an increase in the
number of hidden layers. �e error remains almost the same
when a greater number of hidden layers are used, and the
performance of the DNN is almost unchanged.

4.1.5. Average Execution Cost. In addition to reconstruction
error, another metric that is worth considering is the com-
putational cost of the training process, that is, the average
amount of time required to train the DNN. �e number
of hidden layers and the nodes in each hidden layer a�ects
the average execution cost or the time required to train the
network.�e DNNwith the highest number of hidden layers
and nodes will have the highest average execution cost as it
will have more network parameters to tune. Figure 6 shows
the average execution cost for di�erent DNN structures
considered in this study. It can be observed that the execution
cost is high for networks with complex architecture. It can be
noted from Figure 6 that the DNN with four hidden layers
and 500, 250, 125, and 62 neurons, respectively, in each of
those four layers has the highest execution cost, whereas the
execution cost is reduced when the network architecture is
simple, that is, with fewer hidden layers and fewer nodes in
each hidden layer (i.e., 100/50). So, from these observations
it can be concluded that the addition of more nodes in the



Shock and Vibration 7

Table 3: Reconstruction of SSAEs with di�erent numbers of hidden layers and hidden nodes.

Number of hidden layers Hidden layers nodes Reconstruction error

2 200/200 0.014

2 200/100 0.011

2 100/100 0.020

2 100/50 0.022

3 200/200/200 0.008

3 200/100/50 0.010

3 100/50/25 0.019

4 500/250/125/62 0.006

4 200/200/100/100 0.006

4 200/100/50/25 0.014

4 100/50/25/10 0.019

Table 4: Speci�cations for the training and design parameters of the stacked autoencoders.

Input size (sample length) Number of layers Number of hidden nodes Sparsity constraint Transfer function

1024 3 100, 50, 25 0.15, 0.15, 0.15 Logistic sigmoid

hidden layers adds more complexity to the DNN structure,
thereby requiring more execution time.

By observing the e�ect of di�erent parameters on the
two metrics used to evaluate the performance of DNN, it
can be noted that although the reconstruction error is the
lowest for the most complex network, that is, the DNN
with four hidden layers, however the average execution
cost is maximum in this case. Moreover, it can also be
observed in Table 3 that if more nodes are added to a given
hidden layer, then the network reconstruction error does
not decrease substantially. So, to achieve the best trade-o�
between reconstruction error and execution cost, a three-
layered network structure has been adopted throughout the
experiments. �e reconstruction error and the execution
cost for this network structure vary little as compared to
the two-layered network structure, where these values are
at their minimum. �e network structures with multiple
hidden layers e�ciently perform dimensionality reduction,
thereby improving the �nal classi�cation results. Each hidden
layer performs principle component analysis on the input
data and outputs a reduced set of representative features,
hence reducing the features vector dimensions. Hence, the
adopted three-layered network provides a reduced set of
features, that is, 100, 50, and 25 features per features set
from its �rst, second, and third layer, respectively. Based
on the above discussion and a
er observing the e�ect of
di�erent parameters on the performance of stacked sparse
autoencoders (SSAEs), the optimal parameters selected for
the SSAE-based DNNs are listed in Table 4.

5. Results

Figure 7 shows the extracted complex envelope spectra for
the inner raceway, outer raceway, and roller element faults for
di�erent sha
 speeds.�e complex envelope spectrum is used
to calculate the energy-frequency distribution of the given
vibration signal. In the complex envelope spectrum, defect

frequencies exist for a given fault. A noticeable variation of
the energy levels, as well as in the energy distribution pattern,
can be observed among the spectra of the di�erent fault types.
However, the variation is indistinct among the given fault
types under di�erent speed conditions. By taking advantage
of the variations of energy levels and defect frequencies
present in the complex envelope spectrum for a given fault
type, the stacked autoencoders can learn distinct features.

In Figure 8, the scatter plots of the features extracted from
the complex envelope spectrum for di�erent sha
 speeds
are given. It is worth noticing that the features extracted
by the autoencoders from the complex envelope spectrum
for a given health condition under di�erent sha
 speeds
are clearly distinguished from one another and clustered
separately. �ese discriminant features enhance the perfor-
mance of the DNN, performing e�ective fault classi�cation
when 	uctuations of the sha
 speed occur. A comparison
of the results of the proposed scheme, stacked denoising
autoencoders (SDA) [33], and vibration spectral imaging
(VSI) [34] for four di�erent experiments is presented in
Table 5. In the SDA-based scheme, a two-layer deep neural
network was developed using denoising autoencoders. �e
raw vibration signals describing four health conditions of the
bearings were used as inputs, which were then contaminated
with noise and segmented into 200 window size samples.�e
resulting samples were provided as inputs to the DNN for
bearing fault diagnosis, which provided satisfactory diagnos-
tic results for the bearing when using a noisy signal under
constant speed conditions.Whereas in the VSI-based scheme
authors presented a bearing fault diagnosis based on vibration
spectrum imaging and arti�cial neural networks (ANNs), in
this scheme, a 513-point Fast Fourier Transform (FFT) was
�rst calculated by using 1024 window-sized vibration signals.
Later, the calculated 513-point spectral data was stacked to
create a 513 × 8 size grayscale image. �e resulting images
were subjected to an 8 × 4 sized smoothing �lter and later
converted to binary images by using an optimum threshold
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Figure 7: �e complex envelope spectra of an (a) inner raceway fault, (b) outer raceway fault, and (c) roller fault signals for various sha

speeds.
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Figure 8: Scatter plots of the features extracted by stacked autoencoders for di�erent sha
 speeds.
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Table 5: �e average classi�cation accuracy of the proposed method, BPNN, VSI, and SDA for variable sha
 speed conditions.

Method Training data RPM Testing data RPM Average classi�cation accuracy (%)

VSI

1796 1772, 1748, 1722 63.33

1772 1796, 1748, 1722 85

1748 1796, 1772, 1722 60

1722 1796, 1772, 1748 67

ANN

1796 1772, 1748, 1722 83

1772 1796, 1748, 1722 58

1748 1796, 1772, 1722 87

1722 1796, 1772, 1748 53

SDA

1796 1772, 1748, 1722 65

1772 1796, 1748, 1722 49

1748 1796, 1772, 1722 46.66

1722 1796, 1772, 1748 46

Proposed

1796 1772, 1748, 1722 96.33

1772 1796, 1748, 1722 93

1748 1796, 1772, 1722 96

1722 1796, 1772, 1748 90

value (0.7).�e resulting binary images having a total of 4014
frequency componentswere fed to anANNwith three hidden
nodes. Both the schemes (SDA and VSI) were evaluated
by using the Case Western Reserve University seeded fault
bearing dataset. In addition, the results of a backpropagation
neural network (BPNN), trained on the same data used in
the proposed method, are also included for comparison. It
can be observed that theminimumaverage fault classi�cation
accuracy of the proposed method is 90%. On the other hand,
SDA, VSI, and BPNN, despite having superior performance
in constant speed scenarios, fail to provide better results when
speed 	uctuations are experienced. Based on the results of
this study, the proposed method outperformed the existing
methods. In the proposed method, the variations of the
energy levels and the presence of defect frequencies in
the complex envelope spectrum of a given fault made the
anomalous pattern more vibrant, helping the autoencoders
to e�ciently mine informative features that can be easily
distinguished among the machine health conditions under
sha
 speed 	uctuations.

In addition to the steady-state regime, results of the
experiment are also presented in this work where subsamples
from each fault category and operating speed are taken for
training the SAE-based DNN. �e results obtained using
the proposed model in this con�guration are compared with
those of ANN and SDA. �ese experimental results are
shown in Figure 9, and they clearly reveal that the proposed
method yields the best results when subsamples from each
fault category and operating speed are used for training the
network as compared to the other two algorithms.

6. Conclusions

�is work presents a stacked sparse autoencoder-based deep
neural network (SSAE-DNN), which in combination with
a complex envelope spectrum for inputs performs fault
diagnosis of rotary machines when there are 	uctuations of
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Figure 9: �e accuracy of the proposed model, SDA, and ANN
when subsamples from every fault condition and RMP were used
for training the network.

the sha
 speed. In the proposed scheme, vibration signals
related to di�erent health conditions of a motor bearing
are preprocessed using the complex envelope signal. In
the proposed method, information obtained by the stacked
autoencoders from the defect frequency, as well as its princi-
ple harmonics present in the complex envelope spectrum for
a given fault, makes it possible to classify faults with varying
speeds. �e e�ciency of the proposed scheme was validated
using rotating machine bearing data for four di�erent sha

speeds. A series of experiments were performed, consisting of
dividing the fault data related to the four di�erent sha
 speeds
into separate datasets and processing each dataset separately
for fault diagnosis, in order to anticipate the e�ciency. In
each experiment, the complex envelope spectrum of one
operating speed was used to train the network before testing
with datasets comprised of the remaining three sha
 speeds.
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�is procedurewas conducted for all of the datasets.�emin-
imum average classi�cation accuracy for every experiment
was 90%, which demonstrates that the proposed scheme can
also classify faults when 	uctuations of the sha
 speed exist.
�is scheme was trained and tested on the complex envelope
spectrum of high-speed bearings. �erefore, this proposed
method can perform fault diagnosis on vibration signals with
a high and variable sha
 speed and periodicity.
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